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Introduction to SPC/M

Statistical Process Control/Monitoring (SPC/M) is an effective area
of Statistics that includes all methods that deal with the quick and
valid detection of any disorder in an ongoing process. Its main aim
is to detect when a process deteriorates from its In Control (IC)
state to the Out Of Control (OOC) state

IC state: only natural causes of variation are observed,

OOC state: exogenous to the process variation is present

SPC/M is applied in a plethora of disciplines, like:.

industrial processes,

medical laboratories,

economics,

geophysics etc.
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Introduction to SPC/M

The type of shifts, i.e. the OOC states, that are most often
considered in practice, are:

Transient shifts: an isolated unusual value, i.e. an outlier. It is
typically of large size.

Persistent shifts: systematic changes to at least one parameter of a
procedure , e.g. step changes, scale shifts, linear trends, rotations etc..
It is typically of small/medium size.

The majority of the proposed SPC/M methods, which are designed to
efficiently detect them, typically requires two phases (I/II).

Phase I is the training and typically offline phase, where independent
IC data are gathered and the goal is to perform calibration of the
monitoring scheme.

Phase II follows and it is the testing and typically online phase, where
new observations are collected and compared against the IC standards
that established in phase I.
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Issues in the standard setup

Violations of the assumptions during phase I (like autocorrealtion,
parameter shifts etc.) jeopardize performance in both phase I and II.

Furthermore, the phase I/II separation has certain restrictions.

In phase I analysis a large amount of independent IC samples is
needed to provide (offline) reliable estimates of the unknown
parameter(s).

The estimation error for the parameter(s) of interest is typically not
taken into account.

The IC information, which is available from phase II data, is wasted
using one-off plugged in phase I estimates.
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Self-starting methods

Self-starting methods in SPC/M have been proposed to mitigate
the problems arising from phase I/II separation. The developed
methodology provides testing from the early start of a process
without any preliminary calibration.

Nevertheless, there does not seem to be a concrete definition in the
literature of what can be called “self-starting” and what not.

Definition

A control chart will be called as self-starting if:

it can provide testing, without the need of a preliminary training
phase,

it allows monitoring and inference after each incoming data point
becomes available (online) and not retrospectively (offline),

the IC and the OOC states contain at least one unknown parameter.

From now on, we will characterize a method as self-starting based on the
above definition.
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Research goal

In this work the focus is placed on:

individual univariate short horizon data,

the online detection of persistent disorders and the reliable inference
for the unknown process parameter(s),

adopting the Bayesian perspective, without the requirement of any
calibration phase (self-starting).

Our proposal:

relaxes the strict assumption of known parameters,

utilizes prior information (if available),

focuses on detecting change points,

provides posterior inference for all parameters of interest.
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Self-starting Shiryaev (3S)

We will propose a family of innovative Bayesian online change point
models under the At Most One Change (AMOC) scenario, named
Self-Starting Shiryaev (3S).

3S is a generalization of the Shiryaev’s process (Shiryaev, 1963) and
it is based on the posterior marginal probability of a change point
occurrence.

We will provide all the assumptions and the methodological
framework to handle univariate (U3S) data with changes in the mean
or the variance.
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Self-starting Shiryaev (3S)

Assuming the “At Most One Change (AMOC)” model we have:

xn = (x1, x2, ..., xn) is a random sample of data, obtained sequentially

θ is the vector of the In Control (IC) unknown parameter(s)

φ is the vector of the Out Of Control (OOC) unknown parameter(s)

g(θ,φ) is a known function that represents the OOC scenario

τ is the unknown change point

The likelihood will be:

f (xn|θ,φ, τ) =


f (xn|θ,φ, τ ≤ n) =

τ−1∏
i=1

f (xi |θ)
n∏

i=τ

f (xi |g(θ,φ)) if τ ≤ n

f (xn|θ, τ > n) =
n∏

i=1

f (xi |θ) if τ > n
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Self-starting Shiryaev (3S)

The stopping time is based on the posterior marginal probability of a
change point occurrence, which is:

p (τ ≤ n|xn) =
f (xn|τ ≤ n)π(τ ≤ n)

f (xn|τ ≤ n)π(τ ≤ n) + f (xn|τ > n)π(τ > n)

=

n∑
k=1

π(τ = k)

π(τ > n)
· BFk,n+

n∑
k=1

π(τ = k)

π(τ > n)
· BFk,n+ + 1

where BFk,n+ =
f (xn|τ = k)

f (xn|τ > n)
(Bayes Factor), compares the evidence

the kth ≤ n observation to be the change point against the evidence
all available n observations to be IC.
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Self-starting Shiryaev (3S)

The marginal distributions involved in the computation are:

f (xn|τ > n) =

∫
Θ

f (xn|θ, τ > n)π(θ)dθ

f (xn|τ ≤ n) =

∫
Φ

∫
Θ

f (xn|θ,φ, τ ≤ n)π(θ)π(φ)dθdφ

If the prior π(θ) is improper, we sacrifice the s first observations x:s

necessary to make the posterior p(θ|x:s) proper and use it instead of
π(θ).
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Self-starting Shiryaev (3S)

Stopping times T (·):

Constant decision limit p∗

T (p∗) = inf {n ≥ 1 : p (τ ≤ n|xn) ≥ p∗}

Adapted decision limit p∗n

T (p∗n) = inf

n ≥ 1 : p (τ ≤ n|xn) ≥ p∗n =

K ·
n∑

k=1

π(τ = k)

π(τ > n)

K ·
n∑

k=1

π(τ = k)

π(τ > n)
+ 1


where p∗ and K are chosen with respect to the false alarm tolerance.

Apart from change point detection, we can also provide inference for
the unknown parameters:{

p (θ|xn) if a change point did not occur

p (θ,φ, τ |xn) an alarm is raised
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Self-starting Shiryaev (3S)

IC scenario (τ > n) OOC scenario (τ ≤ n)

f (xn|θ, τ > n) f (xn|θ,φ, τ ≤ n)

π (θ) π (τ) π (φ)

f (xn|τ > n) f (xn|τ ≤ n)

p(τ ≤ n|xn)

p (θ|xn) p (θ,φ, τ |xn)
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U3S for the Normal mean

Model parameters

θ =
(
θ1, θ

2
2

)
: the mean and the variance of the data

φ = δ: the magnitude of a mean step change

g(θ,φ) = θ1 + δ · θ2

Model states

IC state: xi |θ
iid∼ N

(
θ1, θ

2
2

)
OOC state: xi |(θ,φ)

iid∼ N
(
θ1 + δ · θ2, θ22

)

DeptEcon Research Seminars U3S January 19, 2021 13 / 37



U3S for the Normal mean

Model parameters

θ =
(
θ1, θ

2
2

)
: the mean and the variance of the data

φ = δ: the magnitude of a mean step change

g(θ,φ) = θ1 + δ · θ2

Model states

IC state: xi |θ
iid∼ N

(
θ1, θ

2
2

)
OOC state: xi |(θ,φ)

iid∼ N
(
θ1 + δ · θ2, θ22

)

DeptEcon Research Seminars U3S January 19, 2021 13 / 37



U3S for the Normal mean

Model parameters

θ =
(
θ1, θ

2
2

)
: the mean and the variance of the data

φ = δ: the magnitude of a mean step change

g(θ,φ) = θ1 + δ · θ2

Model states

IC state: xi |θ
iid∼ N

(
θ1, θ

2
2

)
OOC state: xi |(θ,φ)

iid∼ N
(
θ1 + δ · θ2, θ22

)

DeptEcon Research Seminars U3S January 19, 2021 13 / 37



U3S for the Normal mean

Model parameters

θ =
(
θ1, θ

2
2

)
: the mean and the variance of the data

φ = δ: the magnitude of a mean step change

g(θ,φ) = θ1 + δ · θ2

Model states

IC state: xi |θ
iid∼ N

(
θ1, θ

2
2

)
OOC state: xi |(θ,φ)

iid∼ N
(
θ1 + δ · θ2, θ22

)

DeptEcon Research Seminars U3S January 19, 2021 13 / 37



Prior setting

π (θ) ∝ L (θ|Y )α0 π0 (θ) (power prior, Ibrahim 2000), where:

Y = (y1, ..., yn0) is the vector of the historical data (if available),

0 ≤ α0 ≤ 1 is fixed and controls the influence of the historical data,

π0 (θ) = NIG (µ0, λ, a, b) (Normal-Inverse-Gamma) the initial prior.

δ = γ · δ1 + (1− γ) · δ2 (mixture of shifts), where:

δi ∼ N
(
µδi , σδi

2
)
,

γ ∼ Ber(π),

π is the prior probability of the shift δ1 in the mixture.

τ ∼ DW (p, β) (Discrete Weibull), where

τ is the location of a potential change point,

p is the probability for an observation to be OOC,

β controls the hazard function,

if β = 1 then τ ∼ G (p) (Geometric)
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Application to real data

Data description:

We will use data that come from the daily Internal Quality Control
(IQC) routine of a medical laboratory and specifically from the area of
clinical hemostasis. We are interested in the variable “Factor V”,
measured in % regarding the international standards and it is related to
blood clotting.

We sequentially gathered n = 21 normally distributed IQC observations
(xi ) from a medical lab.

The observations arrive sequentially, assuming:

Xi |θ
iid∼ N

(
θ1, θ

2
2

)
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Application to real data

Weakly informative prior setting:

π0
(
θ1, θ2

2|τ
)
∼ NIG (31.8, 1/2, 2, 4.41)

Also, we have n0 = 37 IC historical data with ȳ = 31.73 and
var(y) = 3.31 (α0 = 1/n0). Combining these two sources of
information, we obtain:

π
(
θ1, θ2

2|Y , α0, τ
)
∼ NIG (31.75, 3/2, 5/2, 6.02)

δ|γ ∼ γ · N(1, 0.252) + (1− γ) · N(−1, 0.252)

γ ∼ Ber(1/2)

τ ∼ DW (1/21, 1) ≡ G (1/21)

Decision limit elicitation:

We set pn
∗ to control PFA = 5% for n = 21 data points.
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var(y) = 3.31 (α0 = 1/n0). Combining these two sources of
information, we obtain:

π
(
θ1, θ2

2|Y , α0, τ
)
∼ NIG (31.75, 3/2, 5/2, 6.02)

δ|γ ∼ γ · N(1, 0.252) + (1− γ) · N(−1, 0.252)

γ ∼ Ber(1/2)

τ ∼ DW (1/21, 1) ≡ G (1/21)

Decision limit elicitation:

We set pn
∗ to control PFA = 5% for n = 21 data points.

DeptEcon Research Seminars U3S January 19, 2021 16 / 37
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U3S for the Normal variance

Model parameters

θ =
(
θ1, θ

2
2

)
: the mean and the variance of the data

φ = κ: the magnitude of a shift

g(θ,φ) = κ · θ22

Model states

IC state: xi |θ
iid∼ N

(
θ1, θ

2
2

)
OOC state: xi |(θ,φ)

iid∼ N
(
θ1, κ · θ22

)
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Prior setting

π (θ) ∝ L (θ|Y )α0 π0 (θ) (power prior, Ibrahim 2000), where:

Y = (y1, ..., yn0) is the vector of the historical data (if available),

0 ≤ α0 ≤ 1 is fixed and controls the influence of the historical data,

π0 (θ) = NIG (µ0, λ, a, b) (Normal-Inverse-Gamma) the initial prior.

κ = γ · κ1 + (1− γ) · κ2 (mixture of shifts), where:

κi ∼ IG (ci , di ),

γ ∼ Ber(π),

π is the prior probability of the shift κ1 in the mixture.

τ ∼ DW (p, β) (Discrete Weibull), where

τ is the location of a potential change point,

p is the probability for an observation to be OOC,

β controls the hazard function,

if β = 1 then τ ∼ Geom(p) (Geometric)
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U3S application to real data

Data description:

The dataset comes from Villanueva-Guerra et al. (2017) and it refers
to n = 60 monthly increments in the S&P 500, which is an American
stock market index.

We are interested in a two-sided U3S, either for an inflation or a
shrinkage of the variance.

The observations arrive sequentially, assuming:

Xi |θ
iid∼ N

(
θ1, θ

2
2

)
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U3S application to real data

Non-informative prior setting:

π(θ) ∝ 1/θ22 ≡ NIG (0, 0,−1/2, 0) (reference prior, Bernardo, 1979)

κ|γ ∼ γ · IG (50, 200) + (1− γ) · IG (50, 12.5)

γ ∼ Ber(1/2)

τ ∼ DW (1/60, 1) ≡ G (1/60)

Decision limit elicitation:

We set pn
∗ to control PFA = 10% for n = 60 data points.
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Model illustration
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Competing methods and sensitivity analysis

Competing methods:

Self-Starting CUSUM (SSC, Hawkins and Olwell, 1998),

Recursive Segmentation and Permutation (RS/P, Capizzi and
Masarotto, 2013),

Univariate Self-starting Shiryaev (U3S).

IC data:

Mean: For N = 50, we assume Xi |
(
θ1, θ

2
2

) i.i.d.∼ N
(
θ1, θ

2
2

)
, where

θ1 = 0 and θ22 = 1. We simulate 10, 000 iterations of each random
sample.

Variance: For N = 50, we assume Xi |
(
θ1, θ

2
2

) i.i.d.∼ N
(
θ1, θ

2
2

)
, where

θ1 = 0 and θ22 = 1. We simulate 10, 000 iterations of each random
sample.

OOC scenarios:

Mean: Step changes for the mean from a N(1, 1) and initiating at
location 11, or 26, or 41.

Variance: 50% sd inflation shift, i.e. the OOC is N(0, 1.5), initiating
at location 11, or 26, or 41.
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Competing methods and sensitivity analysis (m.)

U3S prior settings:

Non Informative

π(θ) ∝ 1/θ22 (reference prior)

δ|γ ∼ γ · N(1, 0.252) + (1− γ) · N(−1, 0.252)

γ ∼ Ber(1/2)

τ ∼ DW (1/50, 1)

Informative

θ ∼ NIG (0, 5, 2.5, 2)

δ|γ ∼ γ · N(1, 0.252) + (1− γ) · N(−1, 0.252)

γ ∼ Ber(1/2)

τ ∼ DW (1/50, 1)

SSC tuning parameter:

We set k = 0.5

RS/P parameter for the maximum number of change points:

We set K = 1
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Competing methods and sensitivity analysis (v.)

U3S prior settings:

Non Informative

π(θ) ∝ 1/θ22 (reference prior)

κ ∼ IG (50, 112.5)

τ ∼ DW (1/50, 1)

Informative

θ ∼ NIG (0, 5, 2.5, 2)

κ ∼ IG (50, 112.5)

τ ∼ DW (1/50, 1)

SSC tuning parameter:

We set k ≈ 1.46

RS/P parameter for the maximum number of change points:

We set K = 1

DeptEcon Research Seminars U3S January 19, 2021 31 / 37



Competing methods and sensitivity analysis (v.)

U3S prior settings:

Non Informative

π(θ) ∝ 1/θ22 (reference prior)

κ ∼ IG (50, 112.5)

τ ∼ DW (1/50, 1)

Informative

θ ∼ NIG (0, 5, 2.5, 2)

κ ∼ IG (50, 112.5)

τ ∼ DW (1/50, 1)

SSC tuning parameter:

We set k ≈ 1.46

RS/P parameter for the maximum number of change points:

We set K = 1
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Competing methods and sensitivity analysis

Performance metrics:

We select the appropriate decision limits for each method, so that all of
them will have identical Family Wise Error Rate (FWER):

FWER = P (T ≤ N|ω > N) = 0.05

We estimate the Probability of Successful Detection (PSD, Frisen,
1992) for each method:

PSD (ω) = P (ω ≤ T ≤ N)

We estimate the truncated Conditional Expected Delay (tCED)

tCED(ω) = Eω(T − ω + 1|ω ≤ T ≤ N)
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Simulation results (m.)
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Simulation results (v.)
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Conclusions

U3S process is a generalization of Shiryaev process, enriching the
existed methodology in three ways:

allowing both the IC parameter(s) θ and the OOC parameter(s) φ to
be unknown

offering a more flexible prior for the change point τ

providing posterior inference for all the parameters of interest
regarding the IC or the OOC scenario.

Comparing to the Frequentist based and Nonparametric alternatives,
U3S:

achieves greater detection percentages

has similar or smaller detection delay

is more resistant in absorbing an OOC scenario.
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The END

Thank you!
Questions?
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