


About me:

▪ Senior Lecturer (Associate Prof) in Data Analytics at Queen 
Mary University of London.

▪ Lead the Bayesian Artificial Intelligence research lab:

▪ http://bayesian-ai.eecs.qmul.ac.uk/

▪ At QMUL since Oct 2009: joined as a PhD student!

About the presentation: 

▪ Association and causation.

▪ What is causal machine learning.

▪ Why causal structure learning is difficult (limitations).

▪ Applied work.

▪ Why causal structure learning is important (benefits).

▪ Q&A.

http://bayesian-ai.eecs.qmul.ac.uk/
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Causation claims:

▪ Smoking is a cause for Lung cancer and Yellow teeth. 

▪ Lung cancer and Yellow teeth are effects of Smoking.

▪ Intervening on Smoking will affect Lung cancer and Yellow teeth.

▪ Intervening on Yellow teeth has no effect on Smoking nor on Lung
cancer.
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Association claims:

▪ Observing Smoking is predictive of both Lung cancer and Yellow teeth. 

▪ Observing Lung cancer is predictive of both Yellow teeth and Smoking.

▪ Observing Yellow teeth is predictive of both Smoking and Lung cancer.

▪ Association makes no claims about interventions.
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Intervene on

To manipulate

▪ Causal models enable us to simulate the effect of 
hypothetical interventions, which is important for decision 
making.

▪ If we want to reduce the risk of Lung cancer, a causal 
model enables us to determine that we should:



▪Correlation does not imply causation!

Why is this statement so important for machine 
learning?

▪Because the best predictors of 𝑋 are often NOT 
the causes of 𝑋!



Spurious correlations represent events that are associated but 
which are not causally related.

Images taken from www.kdnuggets.com/2019/09/risk-ai-big-data.html

▪ Can ice cream sales predict forest fires or shark attacks?

▪ Yes!

▪ Can we intervene on ice cream sales to manipulate the outcomes of 
forest fire or shark attacks?

▪ No!





▪ The ML field that focuses on learning causal relationships or 
some form of causal representation from data.

▪ Each graph can be converted into a model (with some 
uncertainty), such as a BN, a CBN, an ID, SCM, SEMs, Markov 
network, etc.

▪ Our work primarily focuses on two well-established classes of 
unsupervised learning, known as constraint-based and score-
based learning, and on (causal?) Bayesian networks.

▪ Different works fall within this area of 
research.

▪ Produce different kind of graphs: 
DAG, DCG, PAG, MAG, PDAG, 
CPDAG…



Supervised learning:

Unsupervised learning:

Target variable 𝑦
Features 𝑥

Entire data set is give 
as input without 
specifying 𝑥 and 𝑦

There is no target 

variable 𝑦 to predict

Usually do no data labels, but we expect to have 

these labels in the case of causal structure learning.



Small size network: 8 nodes and 

8 edges.



Small-to-moderate size network: 

37 nodes and 46 edges.



Moderate size network: 88 

nodes and 138 edges.



A BAYESIAN NETWORK

The Asia BN in AgenaRisk



A BAYESIAN NETWORK

The Asia BN in GeNIe



A BAYESIAN NETWORK

The Asia BN in GeNIe



A BAYESIAN NETWORK
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▪ Constraint-based: they return a graph that is consistent with 
the conditional independencies found in the data.

▪ They perform a series of conditional independence and 
conditional dependence tests, usually in sets of triples.

Conditional dependence:

Orientates some of the edges.

The local graph that could have 
produced 𝑋 ⊤ 𝑍 | 𝑌.

X Y ZX Y Z

X Y Z

X Y Z

Conditional independence:

Removes spurious edges.

The local graphs that could have 
produced 𝑋 ⊥ 𝑍 | 𝑌
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Step 1: A fully connected graph.

True graph
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Step 2: Remove edges based on 
marginal and conditional 
independencies.

True graph
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Step 3: Orientate edges based 
on conditional dependency tests.

True graph
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Step 4: Orientate edges based 
on additional directionality rules.

True graph



▪ Score-based: Traditional machine learning process that involves:

▪ Search: to explore the search-space of graphs; e.g., heuristics or 
pruned combinatorial optimisation.

▪ Score: to evaluate each graph visited; e.g., BIC, BD/BDe/BDeu

▪ The solution space of graphs grows super-exponentially with the 
number of variables.

▪ Exhaustive search not a

practical solution.

▪ Algorithms will often

explore well below 1%

of possible graphs;

especially in large networks.

Variables DCGs DAGs 𝐃𝐀𝐆𝐬

𝐃𝐂𝐆𝐬

2 3 3 100%

3 27 25 92.59%

4 729 543 74.49%

5 59,049 29,281 49.59%

6 14,349,000 3,781,500 26.35%

7 1.0460 x 1010 1.1388 x 109 10.89%

8 2.2877 x 1013 7.8730 x 1011 3.42%

9 1.5009 x 1017 1.2314 x 1015 0.81%

10 2.9543 x 1021 4.1751 x 1018 0.14%
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The neighbouring DAGs in which an existing edge is reversed.
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The neighbouring DAGs in which an existing edge is removed.
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Some of the neighbouring DAGs which include an additional edge.





▪ Algorithms typically rely on score-equivalent functions that produce 
Markov equivalence DAGs.

▪ A set of DAGs that encode the same set of conditional 
independencies is represented by a CPDAG.

▪ Orientation of such undirected edges cannot be determined by 
observational data alone (unless the temporal order of the variables 
is given).
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Optimising probability distributions 

across causal structures

Optimising real numbers across hidden layers

BN

NN

COMPUTATIONAL COMPLEXITY

▪ Number of graphs grows super-exponentially with the number of 
variables.

▪ Optimising for conditional probability distributions further 
increases complexity.



▪ Generated based on hypothetical models assumed to represent the

ground truth.

▪ Synthetic data are clean and adhere to causal representation.

▪ Algorithms typically evaluated by reverse-engineering the synthetic

data generating process.

▪ Unlike synthetic data, real data suffer from numerous known and

unknown problems and hence, are noisy and do not adhere to causal

representation in the same way synthetic data do.

SYNTHETIC DATA
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Based on (Constantinou et al., 2021):

▪ Tested 15 algorithms .

▪ Considered multiple case studies, sample sizes, and

evaluation criteria.

▪ Considered multiple types of data noise to investigate

their impact, independently and jointly:

▪ Missing values, incorrect values/measurement error,

merged states/dimensionality reduction, latent variables

and confounders.

▪ Work involved learning approximately 10,000 graphs with a

total structure learning runtime of seven months.

Constantinou, A. C., Liu, Y., Chobtham, K., Guo, Z., and Kitson, N. K. (2021). Large-scale empirical validation of Bayesian Network structure

learning algorithms with noisy data. International Journal of Approximate Reasoning, Vol. 131, pp. 151–188. [Open-access DOI]

https://www.sciencedirect.com/science/article/pii/S0888613X21000025


Constantinou, A. C., Liu, Y., Chobtham, K., Guo, Z., and Kitson, N. K. (2021). Large-scale empirical validation of Bayesian Network structure

learning algorithms with noisy data. International Journal of Approximate Reasoning, Vol. 131, pp. 151–188. [Open-access DOI]

https://www.sciencedirect.com/science/article/pii/S0888613X21000025


Fig. The overall decrease in accuracy (F1 and BSF), and increase in error (SHD), over all 15 

structure learning algorithms and for each type of noise added to the data.

The results suggest that traditional synthetic performance may overestimate real-world

performance by anywhere between 10% and more than 50%.

Constantinou, A. C., Liu, Y., Chobtham, K., Guo, Z., and Kitson, N. K. (2021). Large-scale empirical validation of Bayesian Network structure

learning algorithms with noisy data. International Journal of Approximate Reasoning, Vol. 131, pp. 151–188. [Open-access DOI]

https://www.sciencedirect.com/science/article/pii/S0888613X21000025


Typically the Bayesian Information Criterion (BIC)

▪ Model selection function that balances model fitting with 
model dimensionality.

▪ The highest BIC scoring graph is not the ground truth 
graph in the presence of data noise; e.g., real data.

▪ Still, it is good at recovering a graph that is close to the 
ground truth.

What do we conclude from this?

▪ Finding the global maximum graph DOES NOT IMPLY 
finding a superior causal graph.

▪ Limited incentive to pursue exact learning solutions.

▪ Also restricted to smaller graphs.

▪ Less computationally expensive approximate learning 
solutions might be a better option?



▪ Each algorithm is based on a set of assumptions about the input data.

▪ Almost all real-world data sets are ‘imperfect’ for the algorithms.

▪ Imperfect data: when the data set violates algorithmic assumptions.

▪ Data can be imperfect for one algorithm and perfect or another algorithm.

▪ No algorithm takes into consideration all possible data ‘imperfections’.

▪ Systematic missing data; i.e., when data missingness is not random.

▪ Limited data; e.g., BIC assumes sufficient data instances.

▪ Causal insufficiency; i.e., latent confounders.

▪ Dimensionality reduction leading to information loss.

▪ Measurement error; e.g., biased or inaccurate data records.

▪ Heterogeneous data; i.e., high variability of data types and formats.

▪ Ordinal or nominal data; e.g., low/medium/high vs red/blue/green.

▪ Distributional assumptions; e.g., normally distributed data.

▪ Observational/experimental data.

▪ Non-stationary distributions; e.g., distribution shift over time.

▪ Time-varying causality; i.e., when causal relationships change over time.



“…the best predictors of Risk 

of accident are often NOT the 

causes of Risk of accident!”

▪ Assume the variables are causally related:

a) road conditions influence risk of accident, 

b) road conditions influence driving speed, 

c) driving speed influences risk of accident.

▪ It is possible to observe no correlation between Road conditions
and Risk of accident.

▪ E.g., poor road conditions increase the risk of accident, but they 
also decrease driving speed which in turn decreases the risk of 
accident.



▪ An algorithm may discover that the music is influenced by the moves of 
the dancer, rather than concluding that the dancer is dancing to the 
music.

▪ Can we intervene on ‘Dance moves’ to manipulate ‘Music’ ?

▪ Can we intervene on ‘Symptoms’ to manipulate ‘Disease’ ?

▪ Such counterintuitive relationships are viewed as failures of causal 
common-sense and raise questions as to whether machine learning is 
capable of achieving human level causal understanding.

▪ Is this true? ML has historically been poor at some common-sense 
tasks and good at some tasks that are difficult for humans.

Symptoms Disease

Dance

moves
Music



One solution is to guide algorithms using causal knowledge.

▪ Benefits: Effective use of causal knowledge helps algorithms avoid 
common sense errors.

▪ Limitations: bias, implementation effort, elicitation effort, cost, access to 
experts.



Approach Input example Knowledge Constrain or guide

Directed edge 𝐴 → 𝐵 Directed dependency (or 

causal relationship).

Constrains search space to those 

containing 𝐴 → 𝐵.

Undirected 

edge

𝐴 − 𝐵 Dependency without 

knowledge of causal direction.

Constrains search space to those 

containing 𝐴 → 𝐵 or 𝐴 ← 𝐵.

Forbidden 

edge

𝐴 ⊥ 𝐵 No dependency. Constrains search space to those not

containing 𝐴 → 𝐵 and 𝐴 ← 𝐵.

Temporal order Tier 1: 𝐴
Tier 2: 𝐵, 𝐶

𝐵 and 𝐶 occur after observing 

𝐴 and hence, 𝐵 and 𝐶 cannot 

be parents nor ancestors of 𝐴.

Constrains search space to those not 

containing 𝐴 ← 𝐵, 𝐴 ← 𝐶, or 𝐵 and/or 𝐶
as ancestors of 𝐴.

Initial best-

guess graph

DAG An initial best guess graph Sets the starting point in the search 

space of graphs to the initial best-guess 

graph.

Variables are 

relevant

n/a All variables in the input data 

are relevant.

The learnt graph must not contain 

disjoint subgraphs or unconnected 

nodes.

Target nodes A node 𝐴 or a 

set of nodes 

𝐴, 𝐵

Variable/s targeted for 

identification of more causes.

Relaxes the dimensionality penalty in 

BIC for targeted variables.

Constantinou, A. C., Guo, Z., and Kitson, N. K. (2021). Information fusion between knowledge and data in Bayesian network structure 

learning. [arXiv:2102.00473] [cs.AI]

https://arxiv.org/abs/2102.00473




▪ There is no agreed evaluation process.

▪ Korb and Nicholson (2011) state that "every publication in the field

attempts to make some kind of empirical case for the particular algorithm

being described in that publication".

▪ Graph-based metrics: Precision, Recall, F1, SHD, BSF, SID, etc.

▪ Inference-based metrics: LL, BIC, BD/BDe/BDeu, any other objective

function.

▪ Different evaluation methods lead to inconsistencies whereby one

evaluator determines algorithm 𝐴 to be superior to algorithm 𝐵, whereas

another evaluator concludes the opposite.

▪ Solution (requires effort): Evaluate algorithms across different metrics,

case studies, sample sizes, data settings, hyperparameters.

EVALUATION

Korb, K., & Nicholson, A. (2011). Bayesian Artificial Intelligence (Second Edition). CRC Press, London, UK



▪ Causal modelling has evolved in different directions.

▪ E.g., causal ML algorithms, expert systems, eliciting causal 
knowledge, combining knowledge with data, causal data pre-
processing, dealing with latent confounders, randomised 
control trials for causal interventions, etc.

▪ Most of these research directions have evolved independently 
with little interaction between them. 

▪ Building causal models requires solutions available in different 
directions, often coming from different disciplines that rely on 
different terminology, implemented in different programming 
languages and statistical packages, some of which will be 
open-source and others based on industry software and 
proprietary technology.





▪ Assessment of the efficiency of the Asian handicap 
betting market (Constantinou, 2021)

▪ Is it possible for automated betting decision making 
models to beat the market?

▪ Asian handicap introduces a hypothetical score 
advantage in favour of one team.

▪ Graphical structure determined by knowledge of the 
natural temporal chain of events: Possession →
Shots → Shots on Target → Goals scored.

▪ Football prediction competition (Constantinou, 2018):

▪ Hosted by the Machine Learning journal (ranked 2nd

with a predictive error 0.94% higher than the top and 
116.78% lower than the bottom participants).

▪ Involved 52 football leagues worldwide.

Time-series data an issue: Had to combine BNs with  
eerating systems in both studies.

Constantinou, A. (2018). Dolores: A model that predicts football match outcomes from all over the 

world. Machine Learning, pp. 1–27. [Free view, DOI]

Constantinou, A. (2021). Investigating the efficiency of the Asian handicap football betting market with ratings 

and Bayesian networks. Journal of Sports Analytics, TBA [Open-access DOI]

https://rdcu.be/Nntp
https://doi.org/10.1007/s10994-018-5703-7
https://content.iospress.com/articles/journal-of-sports-analytics/jsa200588


Kitson, N. K., & Constantinou, A. (2021). Learning Bayesian networks from demographic and health survey 

data. Journal of Biomedical Informatics, Vol. 113, Article 103588 [Open-access DOI]

TABU graph (most edges) compared to the GS graph (least edges). Solid blue edges appear 

exclusively in the TABU graph, dashed blue edges exclusively in the GS graph, black edges appear in 

both graphs with the same orientation, and red edges appear in both graphs with different orientation.

▪ Investigated the factors associated 
with childhood diarrhoea in India.

▪ Demographic and health survey 
data is modelled using BNs.

▪ Uses structure learning and 
knowledge to construct BN graphs.

▪ Found large variations in the 
graphs learnt by the different 
algorithms explored.

▪ Applied knowledge to the learning 
process to reduce variation between 
algorithms.

Knowledge graph

https://doi.org/10.1016/j.jbi.2020.103588




Figure taken from:

Pearl, J., & Mackenzie, D. (2018). The Book of Why: The new science of cause and effect. Basic books.

▪ Pearl’s ladder of causation

suggests that there are

three steps to achieving

true AI (Pearl and

Mackenzie, 2018).



Learning by association is not always a problem:

▪ Achievements in deep learning might be blind to causality but are

clearly impressive in some areas.

▪ Yet, these learning achievements made clearer than ever that

black-box solutions cannot satisfactorily inform human

decision-making.

▪ Causal ML to emerge as a crucial approach in complementing

predictive ML and to support verified human decision-making.

▪ We already observe a shift, both in academia and industry, towards

white-box ML solutions that offer transparency and explainability.

▪ Distinguished deep learning researchers acknowledge the need to move

towards causal representation learning: “there is, now, cross-pollination

and increasing interest in both fields [deep learning and causal

representation] to benefit from the advances of the other” (Schölkopf et

al., 2021).

Schölkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., and Bengio, Y. (2021). Toward causal representation learning. 

In Proceeding of the IEEE, 109(5), pp. 612–634



http://bayesian-ai.eecs.qmul.ac.uk/bayesys/

▪ Bayesys is a Java NetBeans project.

▪ Comes with a user manual and a

repository of data sets, networks and

case studies.

Provides access to:

▪ 6 structure learning algorithms.

▪ 10 knowledge-based approaches.

▪ Enables learning using multiple structure

learning algorithms and data sets with a

single click.

▪ Metrics to evaluate structure learning.

▪ Methods to generate clean or noisy

synthetic data.

▪ Methods to draw learnt graphs in PDF.

▪ Converts learnt graphs that can be

imported into AgenaRisk and GeNIe BNs

and IDs.

http://bayesian-ai.eecs.qmul.ac.uk/bayesys/



