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ABOUT

About me:

= Senior Lecturer (Associate Prof) in Data Analytics at Queen
Mary University of London.

= Lead the Bayesian Atrtificial Intelligence research lab:

= At QMUL since Oct 2009: joined as a PhD student!

About the presentation:

= Association and causation.

= What is causal machine learning.

= Why causal structure learning is difficult (limitations).
= Applied work.

= Why causal structure learning is important (benefits).
= Q&A.

@


http://bayesian-ai.eecs.qmul.ac.uk/

ASSOCIATION AND CEUSATION




ASSOCIATION AND CAUSATION

Causation claims:

= Smoking is a cause for Lung cancer and Yellow teeth.
= Lung cancer and Yellow teeth are effects of Smoking.
= Intervening on Smoking will affect Lung cancer and Yellow teeth.

= Intervening on Yellow teeth has no effect on Smoking nor on Lung
cancer.

Yellow
teeth




ASSOCIATION AND CAUSATION

Association claims:

Observing Smoking is predictive of both Lung cancer and Yellow teeth.
Observing Lung cancer is predictive of both Yellow teeth and Smoking.
Observing Yellow teeth is predictive of both Smoking and Lung cancer.
Association makes no claims about interventions.

Yellow Lung
teeth cancer




ASSOCIATION AND CEUSATION

= Causal models enable us to simulate the effect of
hypothetical interventions, which is important for decision
making.

= [f we want to reduce the risk of Lung cancer, a causal
model enables us to determine that we should:

Intervene on w
Yellow
teeth

To manipulate




ASSOCIATION AND CAUSATION

= Correlation does not imply causation!

Why Is this statement so important for machine
learning?

= Because the best predictors of X are often NOT
the causes of X!

€




ASSOCIATION AND CAUSATION

Spurious correlations represent events that are associated but
which are not causally related.

—_— Correlation s ;
Sale of Ice Cream Model Forest Fires B ICE CREAM SALES
$100 24.0 M SHARK ATTACKS
$50 12.0
JAN MAR MAY JUL SEP NOV
$25 6.0 Both ice cream sales and shark attacks increase when the weather is hot
- and sunny, but they are not caused by each other (they are caused by
Dec Jan Feb March Aprii May June July Aug Sep Oct Nov good weather, with lots of people at the beach, both eating ice cream
Time and having a swim in the sea)

Images taken from www.kdnuggets.com/2019/09/risk-ai-big-data.html

= Can ice cream sales predict forest fires or shark attacks?
= Yes!

= Can we intervene on ice cream sales to manipulate the outcomes of
forest fire or shark attacks?

= No! @



CAUSAL MACHINE LEARRNING




CAUSAL MACHINE LEARRNING

= The ML field that focuses on learning causal relationships or
some form of causal representation from data.

= Different works fall within this area of O O.
research. (D)) (D—()
« Produce different kind of graphs: (¢} (]
DAG, DCG, PAG, MAG, PDAG, (d) (d)
CPDAG... DAG CPDAG

= Each graph can be converted into a model (with some
uncertainty), such as a BN, a CBN, an ID, SCM, SEMs, Markov
network, etc.

= Our work primarily focuses on two well-established classes of
unsupervised learning, known as constraint-based and score-
based learning, and on (causal?) Bayesian networks.



SUPERVISED AND UNSUPERVISED
LEARNING

Supervised learning:

Motivation Positive Uncooper Procriminal Prior serious Length of stay

Gender Age Work for treatment life goals ativeness Anger Delusions Anxiety Self control attitudes  offences as inpatient
Female 52 No Yes MN/A Partly Partly Partly Nao No Mo 4 53
Female 46 Yes Yes Yes Mo No Partly Partly Yes Mo 0 78
Female 31 Mo Yes Yes Mo No Mo Partly Yes Mo 1

Male 27 Yes Mo Yes Partly Yes Mo Mo Yes Yes 3

Male 23 No Mo MN/A Yes Partly Yes Partly Mo Yes 2

Male 51 No Yes MN/A Partly No Partly Yes No Mo 5 34

-7
Features x -/

Unsupervised learning:

OtV —Pesitive—tincaapar.. wr=engtiTOTStay ~VIOTENCE at 6 months

Gender i £55 nger Delusions Anxiety Self contro! i i

Female 52 Mo Yes N/A Partly Partly Partly Mo Mo Mo 4 55 Mo

Female 46 Yes Yes Yes Mo Mo Partly Partly Yes Mo 0 78 Yes

Female 31 Mo Yes Yes Mo Mo Mo Partly Yes Mo 1 Mo

Male 27 Yes Mo Yes Partly Yes Mo Mo Yes Yes 3 Mo

Male 23 Mo MNo N/A Yes Partly Yes Partly Mo Yes 2 Yes

Male 51 Mo Yes N/A Partly Mo Partly Yes Mo Mo 5 34 Mo

Violence at 6 months
after release
Mo

Yes
Mo

Target variable y ———/-7

Usually do no data labels, but we expect to have
these labels in the case of causal structure learning.

Entire data set is gi
as input without

specifying x and y

w 7

There is no target

variable y to predict




POSSIBLE OUTPUT OF A STRUCTURE LEARNING
ALGORITHM: THE ASIA NETWORK




POSSIBLE OUTPUT OF A STRUCTURE LEARNING
ALGORITHM: THE ALARM NETWORK

e |
< @; ‘ Gy ()
Gmevor > (v (rro2) Small-to-moderate size network:
37 nodes and 46 edges.
Coarmas Camrcozy (Crvsa)
() Gron)




POSSIBLE OUTPUT OF A STRUCTURE LEARNING
ALGORITHM: THE FORMED NETWORK
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GRAPHS CAN BE CONVERTED INTO
MODELS: A BAYESIAN NETWORK

smoke
99.03% no 4 50.06%
yes | 49.94%
tub lung bronc
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GRAPHS CAN BE CONVERTED INTO
MODELS: A BAYESIAN NETWORK
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GRAPHS CAN BE CONVERTED INTO
MODELS: A BAYESIAN NETWORK
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GRAPHS CAN BE CONVERTED INTO
MODELS: A BAYESIAN NETWORK
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CONDMTRAINT-BASED LEARNING

= Constraint-based: they return a graph that is consistent with
the conditional independencies found in the data.

= They perform a series of conditional independence and
conditional dependence tests, usually in sets of triples.

Conditional independence: Conditional dependence:
Removes spurious edges. Orientates some of the edges.
The local graphs that could have The local graph that could have
produced X L Z|Y produced X TZ|Y.
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TYPICAL PROCESS OF CONSTRAINT-BASED
LEARNING: THE ALARM NETWORK

[ rue ymyé

Step 1: A fully connected graph.

@



TYPICAL PROCESS OF CONSTRAINT-BASED
LEARNING: THE ALARM NETWORK

[ rue ymyé

Step 2. Remove edges based on
marginal and conditional
Independencies.

@



TYPICAL PROCESNS OF CONSTREINT-BASED
LEARNING: THE ALARM NETWORK

[ rue ﬂmyé

Step 3: Orientate edges based
on conditional dependency tests.

@



TYPICAL PROCESNS OF CONSTREINT-BASED
LEARNING: THE ALARM NETWORK

[ rue ﬂmyé

Step 4: Orientate edges based
on additional directionality rules.

@



SCORE-BASED LEARNING

= Score-based: Traditional machine learning process that involves:

= Search: to explore the search-space of graphs; e.g., heuristics or
pruned combinatorial optimisation.

= Score: to evaluate each graph visited; e.g., BIC, BD/BDe/BDeu

= The solution space of graphs grows super-exponentially with the

number of variables. Variables DCGs DAGs DAGs
DCGs
_ 27

= Exhaustive search not a
100%

2

practical solution. = = S

- : 59,049 29,281 49.59%

= Algorithms will often B 14,349,000 3,781,500 26.35%
0 1.0460 x 10 1.1388 x 10° 10.89%

eXplore well below 1% DR 2.2877 x 1013 7.8730 x 104 3.42%

: _ R 1.5009 x 1017 1.2314 x 10%5 0.81%

of possible graphs; 2.9543x 1020 4.1751 x 1018 0.14%

especially in large networks. @



NEIGHBOURING DAGS

The neighbouring DAGs in which an existing edge is reversed.
: : O




NEIGHBOURING DAGS

The neighbouring DAGs in which an existing edge is removed.
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NEIGHBOURING DAGS

Some of the neighbouring DAGs which include an additional edge.
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WHY CAUSAL STRUCTURE LEARNING
IS DIFFICULT (LIMITATIONS)




EQUIVALENCE CLASSES

DAG CPDAG

= Algorithms typically rely on score-equivalent functions that produce
Markov equivalence DAGs.

= A set of DAGs that encode the same set of conditional
Independencies is represented by a CPDAG.

= Orientation of such undirected edges cannot be determined by
observational data alone (unless the temporal order of the variables

is given). €




CHALLENGES OF STRUCTURE LEARNING:
COMPUTATIONAL COMPLEXITY

R . ® Optimising probability distributions
‘ P across causal structures
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Optimising real numbers across hidden layers

= Number of graphs grows super-exponentially with the number of
variables.

= Optimising for conditional probability distributions further @
Increases complexity.



CHALLENGES OF STRUCTURE LEARNING:
SYNTHETIC DATA

= Generated based on hypothetical models assumed to represent the
ground truth.

= Synthetic data are clean and adhere to causal representation.

= Algorithms typically evaluated by reverse-engineering the synthetic
data generating process.

= Unlike synthetic data, real data suffer from numerous known and
unknown problems and hence, are noisy and do not adhere to causal
representation in the same way synthetic data do.

LIl uuvugouiuiu ol voLLl rvuuw
111 00111 10000 10011 01110 00001
011 01110 00001 10101 01010 10000
101 01010 10000 01111 00000 01010 ‘
111 00000 01010 01111 00111 10000
111 00111 10000 10011 01110 00001
011 01110 00001 10101 01010 10000

101 01010 10000 01111 00000 01010
111 00000 0101001111 00111 10000

Hypothetical model Synthetic data



THE IMPACT OF DATA NOISE ON
STRUCTURE LEERRNING

Based on (Constantinou et al., 2021):
= Tested 15 algorithms .

= Considered multiple case studies, sample sizes, and
evaluation criteria.

= Considered multiple types of data noise to investigate
their impact, independently and jointly:

= Missing values, Iincorrect values/measurement error,
merged states/dimensionality reduction, latent variables
and confounders.

= Work involved learning approximately 10,000 graphs with a
total structure learning runtime of seven months.

Constantinou, A. C., Liu, Y., Chobtham, K., Guo, Z., and Kitson, N. K. (2021). Large-scale empirical validation of Bayesian Network structure i‘»
learning algorithms with noisy data. International Journal of Approximate Reasoning, Vol. 131, pp. 151-188. | ]


https://www.sciencedirect.com/science/article/pii/S0888613X21000025

THE IMPACT OF DATA NOISE ON
STRUCTURE LEERNING

The strengths and weaknesses of the algorithms for each of the categories, based on the empirical results presented in this study, where 0% and
100% represent the weakest and strongest performance for each category.

Performance
Smaller Larger Limited Big Resilience|Under/Over-|Computational
Algorithm | Ranking networks networks data data Variance to noise fitting speed Reliabili
FCI 46% 35% 61% 55% 33% 50% 31% 52%
FGES 60% 52% 71% 58% 67% 64% 84% 87%
GFCI 60% 52% 66% 58% 63% 83% 62% 86%
GS 75% 47%
H2PC 79% 81% 74% 36% 74% 81%
HC 55% 51% 49%
ILP 82% 81% 83% 43% 39% 62% 63% 77%
Inter-IAMB |  37% 26% 41% 31% 45% 29% 60% 29%
MMHC 71% 84% 60% 68% 75% 64% 25%
NOTEARS 29% 28%
PC-Stable 56% 42% 73% 63% 39% 73% 29% 55%
RFCI-BSC 52% 35% T74%
SaiyanH 74% 81% 76% 58% 36% 48% 77%
TABU 78% 43% 51%
WINASOBS| 72% 76% 73% 60% 88% 64% 28% 48%

Constantinou, A. C., Liu, Y., Chobtham, K., Guo, Z., and Kitson, N. K. (2021). Large-scale empirical validation of Bayesian Network structure @
learning algorithms with noisy data. International Journal of Approximate Reasoning, Vol. 131, pp. 151-188. [Open-access DOI]



https://www.sciencedirect.com/science/article/pii/S0888613X21000025

THE IMPACT OF DATA NOISE ON
STRUCTURE LEERRNING

The results suggest that traditional synthetic performance may overestimate real-world
performance by anywhere between 10% and more than 50%.

Noisy experiment

M10 110 S10 L10 cM cMS cM clL cSL cMISL
OO/O - . . .

-10%
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%)
© -30% F1
> ——
§ -40% m SHD
£ -50% BSF
0]
@ -60%
o
8 -70%
)

-80%

-90%

-100%

Fig. The overall decrease in accuracy (F1 and BSF), and increase in error (SHD), over all 15
structure learning algorithms and for each type of noise added to the data.

Constantinou, A. C., Liu, Y., Chobtham, K., Guo, Z., and Kitson, N. K. (2021). Large-scale empirical validation of Bayesian Network structure {‘»
learning algorithms with noisy data. International Journal of Approximate Reasoning, Vol. 131, pp. 151-188. | ]


https://www.sciencedirect.com/science/article/pii/S0888613X21000025

RELIANCE ON APPROXIMATE SOLUTIONS

Typically the Bayesian Information Criterion (BIC)

= Model selection function that balances model fitting with
model dimensionality.

= The highest BIC scoring graph is not the ground truth
graph in the presence of data noise; e.g., real data.

= Still, it Is good at recovering a graph that is close to the
ground truth.

What do we conclude from this?

= Finding the global maximum graph DOES NOT IMPLY
finding a superior causal graph.

= Limited incentive to pursue exact learning solutions.
= Also restricted to smaller graphs.

= Less computationally expensive approximate learning
solutions might be a better option? @




LEARNING FROM IMPERFECT DATA

= Each algorithm is based on a set of assumptions about the input data.

= Almost all real-world data sets are ‘imperfect’ for the algorithms.

= Imperfect data: when the data set violates algorithmic assumptions.

= Data can be imperfect for one algorithm and perfect or another algorithm.
= No algorithm takes into consideration all possible data ‘imperfections’.

= Systematic missing data; i.e., when data missingness is not random.
= Limited data; e.g., BIC assumes sufficient data instances.

= Causal insufficiency; i.e., latent confounders.

= Dimensionality reduction leading to information loss.

= Measurement error; e.g., biased or inaccurate data records.

= Heterogeneous data; i.e., high variability of data types and formats.
= Ordinal or nominal data; e.g., low/medium/high vs red/blue/green.

= Distributional assumptions; e.g., normally distributed data.

= Observational/experimental data.

= Non-stationary distributions; e.g., distribution shift over time.

= Time-varying causality; i.e., when causal relationships change over time. @



CAUSATION WITHOUT CORRELATION

= Assume the variables are causally related:
a) road conditions influence risk of accident,
b) road conditions influence driving speed,
c) driving speed influences risk of accident.

= |t IS possible to observe no correlation between Road conditions
and Risk of accident.

= E.g., poor road conditions increase the risk of accident, but they
also decrease driving speed which in turn decreases the risk of
accident.

Road
conditions

Risk of
accident

“...the best predictors of Risk
of accident are often NOT the
causes of Risk of accident!”

@

&Y
Driving
speed



COMMON SENSE FRAILURES

= An algorithm may discover that the music is influenced by the moves of
the dancer, rather than concluding that the dancer is dancing to the

music.
Dance
moves

= Can we intervene on ‘Dance moves’ to manipulate ‘Music’ ?

@ Disease

= Can we intervene on ‘Symptoms’ to manipulate ‘Disease’ ?

= Such counterintuitive relationships are viewed as failures of causal
common-sense and raise questions as to whether machine learning is
capable of achieving human level causal understanding.

= Is this true? ML has historically been poor at some common-sense
tasks and good at some tasks that are difficult for humans. @



CAUSAL KNOWLEDGE

One solution is to guide algorithms using causal knowledge.

= Benefits: Effective use of causal knowledge helps algorithms avoid
common Sense errors.

= Limitations: bias, implementation effort, elicitation effort, cost, access to
experts.

KNOWLEDGE

CAUSAL
MODEL




KNOWLEDGE CONSTRAINTS

Approach Input example Knowledge Constrain or quide

Directed edge A—- B Directed dependency (or Constrains search space to those
causal relationship). containing A — B.

Undirected A—B Dependency without Constrains search space to those

edge knowledge of causal direction. containing A - B or A < B.

Forbidden ALlB No dependency. Constrains search space to those not

edge containing A —» B and A « B.

gl Mol e[S Tier 1: {A} B and C occur after observing Constrains search space to those not
Tier 2: {B,C} A and hence, B and C cannot containing A « B, A « C, or B and/or C
be parents nor ancestors of A. as ancestors of A.

Initial best- DAG An initial best guess graph Sets the starting point in the search

guess graph space of graphs to the initial best-guess
graph.

Variables are n/a All variables in the input data  The learnt graph must not contain

relevant are relevant. disjoint subgraphs or unconnected
nodes.

Target nodes Anode A or a Variable/s targeted for Relaxes the dimensionality penalty in

set of nodes identification of more causes. BIC for targeted variables.
{4, B}
Constantinou, A. C., Guo, Z., and Kitson, N. K. (2021). Information fusion between knowledge and data in Bayesian network structure @

learning. [arXiv:2102.00473] [cs.Al]



https://arxiv.org/abs/2102.00473

EXEMPLE OF KNOWLEDGE APPROACH
“TARGET NODE’ (NODE VIOLENCE)

PCLRfactor2

[4 states]

ViolentConvictions
|4 states |

ViolentConvictions
[4 states]

Violence

[2 states]

standard

ViolentConvictions
[4 states |

Age

[9states |

Violence

[2 states]

r=3,95,6

PCLRfactor2

[4 states]

ViolentConvictions
[4 states]

DomesticStability

[2 states ]

Violence
[2 states]

PCLRfactor2

[4 states]

ViolentConvictions
[4 states]

Age

[9 states]

Violence
[2 states]

r=7,8,9, 10




CHALLENGES OF STRUCTURE LEARNING:
EVALUATION

= There is no agreed evaluation process.

= Korb and Nicholson (2011) state that "every publication in the field
attempts to make some kind of empirical case for the particular algorithm
being described in that publication”.
= Graph-based metrics: Precision, Recall, F1, SHD, BSF, SID, etc.
= Inference-based metrics: LL, BIC, BD/BDe/BDeu, any other objective
function.

= Different evaluation methods lead to inconsistencies whereby one
evaluator determines algorithm A to be superior to algorithm B, whereas
another evaluator concludes the opposite.

= Solution (requires effort): Evaluate algorithms across different metrics,
case studies, sample sizes, data settings, hyperparameters.

Korb, K., & Nicholson, A. (2011). Bayesian Atrtificial Intelligence (Second Edition). CRC Press, London, UK (‘)



CAUSAL MODEL CONSTRUCTION

= Causal modelling has evolved in different directions.

= E.g., causal ML algorithms, expert systems, eliciting causal
knowledge, combining knowledge with data, causal data pre-
processing, dealing with latent confounders, randomised
control trials for causal interventions, etc.

= Most of these research directions have evolved independently
with little interaction between them.

= Building causal models requires solutions available in different
directions, often coming from different disciplines that rely on
different terminology, implemented in different programming
languages and statistical packages, some of which will be
open-source and others based on industry software and
proprietary technology.

@



APPLIED WORK




CAUSAL MODELS FOR BETTING MARKET
EFFICIENCY AND FOOTBALL PREDICTION

possession

= Assessment of the efficiency of the Asian handicap
betting market (Constantinou, 2021)

= |s it possible for automated betting decision making
models to beat the market?

= Asian handicap introduces a hypothetical score
advantage in favour of one team.

= Graphical structure determined by knowledge of the
natural temporal chain of events: Possession —
Shots — Shots on Target — Goals scored.

= Football prediction competition (Constantinou, 2018):

= Hosted by the Machine Learning journal (ranked 2"
with a predictive error 0.94% higher than the top and
116.78% lower than the bottom participants).

= Involved 52 football leagues worldwide.

Time-series data an issue: Had to combine BNs with
rating systems in both studies.

Constantinou, A. (2018). Dolores: A model that predicts football match outcomes from all over the

world. Machine Learning, pp. 1-27. [ , ]
Constantinou, A. (2021). Investigating the efficiency of the Asian handicap football betting market with ratings
and Bayesian networks. Journal of Sports Analytics, TBA [ ]



https://rdcu.be/Nntp
https://doi.org/10.1007/s10994-018-5703-7
https://content.iospress.com/articles/journal-of-sports-analytics/jsa200588

LEARNING BAYESIAN NETWORKS FROM
DEMOGRAPHIC AND HERLTH SURVEY DATA

SR j '(ﬁ(pw/é‘g/@ Vs ‘W

= Investigated the factors associated -
with childhood diarrhoea in India.

= Demographic and health survey
data is modelled using BNs.

= Uses structure |earning and i
knowledge to construct BN graphs. ==

= Found large variations in the
graphs learnt by the different
algorithms explored.

= Applied knowledge to the learning
process to reduce variation between
algorithms.

TABU graph (most edges) compared to the GS graph (least edges). Solid blue edges appear
exclusively in the TABU graph, dashed blue edges exclusively in the GS graph, black edges appear in
both graphs with the same orientation, and red edges appear in both graphs with different o@n.

Kitson, N. K., & Constantinou, A. (2021). Learning Bayesian networks from demographic and health survey
data. Journal of Biomedical Informatics, Vol. 113, Article 103588 [ ]


https://doi.org/10.1016/j.jbi.2020.103588

WHY CAUSAL STRUCTURE LEARNING
IS IMPORTANT (BENEFITS)




WHY
CAUSAL MOCDELS?

(3. COUNTERFACTUALS

ACTIVITY:  Imagining, Retrospection, Understanding

QUESTIONS:  What if 1 had done ...? Why?
(Was it X that caused Y? What if X had not
occurred? What if 1 had acted differently?)

BXAMPES. s i ol el = Pearl’s ladder of causation

Would Kennedy be alive if Oswald had not
killed him? What if T had not smoked for the

| suggests that there are
e three steps to achieving
o tue Al (Pearl  and
e Mackenzie, 2018).

EXAMPLES:  If I take aspirin, will my headache be cured?

What if we ban cigarettes?

(1. ASSOCIATION ]

ACTIVITY:  Seeing, Observing

QUESTIONS:  What if 1see...?
(How are the variables related?
How would seeing X change my belief in Y?)

EXAMPLES:  What does a symptom tell me about a disease?
What does a survey tell us about the J

election results?

VIR

Figure taken from:
Pearl, J., & Mackenzie, D. (2018). The Book of Why: The new science of cause and effect. Basic books.




FUTURE OF CAUSAL MACHINE LEARNING

Learning by association is not always a problem:

= Achievements in deep learning might be blind to causality but are
clearly impressive in some areas.
= Yet, these learning achievements made clearer than ever that
black-box solutions cannot satisfactorily inform human
decision-making.

= Causal ML to emerge as a crucial approach in complementing
predictive ML and to support verified human decision-making.

= \We already observe a shift, both in academia and industry, towards
white-box ML solutions that offer transparency and explainability.

= Distinguished deep learning researchers acknowledge the need to move
towards causal representation learning: “there is, now, cross-pollination
and increasing interest in both fields [deep learning and causal
representation] to benefit from the advances of the other” (Schdolkopf et
al., 2021).

Scholkopf, B., Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal, A., and Bengio, Y. (2021). Toward causal representation learning. @
In Proceeding of the IEEE, 109(5), pp. 612-634



BAYESYS OPEN-SOURCE SYSTEM

Bayesys is a Java NetBeans project.
Comes with a user manual and a
repository of data sets, networks and
case studies.

Provides access to:

6 structure learning algorithms.

10 knowledge-based approaches.

Enables learning using multiple structure
learning algorithms and data sets with a
single click.

Metrics to evaluate structure learning.
Methods to generate clean or
synthetic data.

Methods to draw learnt graphs in PDF.
Converts learnt graphs that can be
imported into AgenaRisk and GeNIle BNs
and IDs.

noisy

|£] Bayesys v3.2 Release

[(Main | ¥ ¥ I
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Select processes

[ structure learning
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[] Evaluate graph
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[[] Generate synthetic data
[] Generaf te MAG



http://bayesian-ai.eecs.qmul.ac.uk/bayesys/

THANK YOU

QUESTIONS?

Bayesian Artificial Intelligence \Q Queen Mary

Research Lab University of London




