Introduction	Objective	Method & estimation	Results	Synopsis

Accounting for technology heterogeneity in the dynamic stochastic frontier model

Ioannis Skevas

Department of International & European Studies

University of Macedonia

30 November 2022 University of Crete Research Seminar

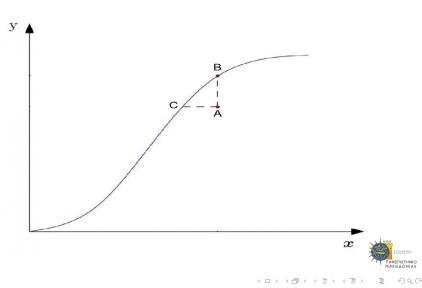
1/22

イロト イボト イヨト イヨト

Introduction	Objective	Method & estimation	Results	Synopsis
000000	O		00000	O
Motivatio	n for efficien	cv measurement		

- In neoclassical economics, the theory of the firm states that producers successfully optimize their production processes
- However, irrespective of the firms' objectives (cost minimization or profit maximization), this assumption rarely holds in practice
- This can be due to governmental regulation, poor management practices or even unforeseen events that are outside the control of producers
- Therefore, empirical studies have focused on quantifying deviations of observed from optimal production

イロト イボト イヨト イヨト



Mathematical formulation of production frontier

$$y = f(x) + v - u$$

•
$$f(x) \rightarrow$$
 production frontier

- $v \rightarrow$ stochastic disturbance
- $u \rightarrow \text{inefficiency}$

Introduction	Objective	Method & estimation	Results	Synopsis
000000	O		00000	O
Motivation	for dynami	c efficiency measu	urement	

- Efficiency measurement has traditionally been based on a static viewpoint of the firm
- However, firms' production decisions are intertemporal in nature
- This is because present choices can affect both today's outcomes and future production possibilities
- This requires the move to the dynamic analog of static efficiency measurement

< ロト < 同ト < ヨト < ヨ)

A	- (
000000				
	Objective	Method & estimation	Results	Synopsis

Aproaches for dynamic efficiency measurement

- The literature on parametric dynamic efficiency measurement is dictated by two approaches
- The first approach is based on reduced-form dynamic efficiency models
- These reduced-form models assume that high adjustment costs result in slugish adjustment of quasi-fixed factors of production, which makes a firm's inefficiency to persist over the short-run. This inefficiency persistence is modelled by allowing the inefficiency component to follow a first-order autoregressive process (AR(1))
- The second approach is based on structural parametric dynamic efficiency models, which specify gross investments the frontier, which reflect the differences in the values of quasi-fixed assets between two consecutive time periods

Introduction	Objective	Method & estimation	Results	Synopsis
000000	O		00000	0
Motivation f	or accounting	g for technology h	eterogeneity	/

- Investments in quasi-fixed assets typically involve adjustments costs which can be either pecuniary (i.e. credit constraints) or related to learning
- In practice though, firms tend to exhibit variations in gross investments given the heterogeneity in their financial conditions and/or in the managers' cognitive capacities
- This in turn implies that firms may face different production potentials
- Hence, firms should be benchmarked not against a common frontier but against their individual frontiers

イロト イポト イラトイ

Ohiective	& contribut	ion		
	•			
Introduction		Method & estimation	Results	Synopsis

- The objective of this paper is to account for technology heterogeneity whilst measuring firm dynamic efficiency and show how the efficiency scores can be distorted if technology heterogeneity is ignored
- This exercise adds to the existing literature that has completely disregarded the exploration of technology heterogeneity in the structural parametric dynamic efficiency framework
- The study's objective is achieved by specifying a structural parametric dynamic SFA model that includes firms' gross investments whilst allowing for the frontier coefficients to be random, thus assuming different frontiers across firms
- Furthermore, a structural parametric dynamic SFA model with fixed coefficients is estimated and the resulting efficiency scores are compared with those obtained from the random coefficients model

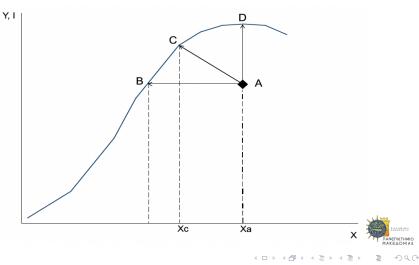
Enhanced dynamic hyperbolic distance function

- An enhanced dynamic hyperbolic distance function is used to measure firm dynamic efficiency
- The enhanced dynamic hyperbolic distance function assumes that, unlike fixed and quasi-fixed inputs, outputs, gross investments and variable inputs are decision variables
- I denote the output vector as y ∈ R^K₊, the vector of gross investments as I ∈ R^L₊, the vector of variable inputs as x ∈ R^Q₊, the quasi-fixed inputs vector as k ∈ R^L₊, and the vector of fixed inputs as f ∈ R^Z₊

Enhanced dynamic hyperbolic distance function

 $D_{EH}(y, l, x, k, f) = min \{ \theta > 0 : (y\theta^{-1}, l\theta^{-1}, x\theta, k, f) \in T \}$

• θ is a positive scalar that allows for the simultaneous equiproportionate expansion of outputs and gross investments and contraction of variable inputs to reach the boundary of the production possibilities set, T



Introduction	Objective	Method & estimation	Results	Synopsis
000000	O	0000000	00000	O
Estimable	form			

• Estimation of the enhanced dynamic hyperbolic distance function is based on the almost homogeneity property:

 $D_{EH}(\lambda y, \lambda I, \lambda^{-1} x, k, f) = \lambda D_{EH}(y, I, x, k, f), \lambda > 0$

• The almost homogeneity property states that if outputs and gross investments are increased by a given proportion and variable inputs are decreased by the same proportion, then the distance function will increase by the same proportion

• By setting
$$\lambda = \frac{1}{y_{K}}$$
 we have:
 $D_{EH}\left(\frac{y}{y_{K}}, \frac{l}{y_{K}}, xy_{K}, k, f\right) = \frac{1}{y_{K}}D_{EH}(y, l, x, k, f)$

• Replacing $D_{EH}(y, I, x, k, f)$ with EHE, taking logs, rearranging, and appending a noise term, v, we get:

1

$$-\log y_{\mathcal{K}} = \log D_{\mathcal{EH}}\left(\frac{y}{y_{\mathcal{K}}}, \frac{\mathsf{I}}{y_{\mathcal{K}}}, \mathsf{x}y_{\mathcal{K}}, \mathsf{k}, \mathsf{f}\right) + \mathbf{v} - \log \mathcal{EHE} \quad \text{is accompany}$$

Introduction	Objective	Method & estimation	Results	Synopsis
000000	O	00000000	00000	O
Parametric	specificatio	on		

• The parametric specification of the enhanced dynamic hyperbolic distance function for firm *i* in time *t* is:

$$-\log y_{it}^{K} = \log f\left(\alpha_{i}, \frac{y_{it}^{K}}{y_{it}^{K}}; \gamma_{ik}, \frac{I_{it}^{I}}{y_{it}^{K}}; \delta_{il}, x_{it}^{q}y_{it}^{K}; \zeta_{ir}, k_{it}^{I}; \eta_{il}, f_{it}^{z}; \lambda_{iz}\right)$$
$$+ v_{it} + u_{it}$$

- α_i is a firm-specific constant term, and $u_{it} \equiv -\log EHE$
- All parameters in the above equation are random as they have an *i* subscript, thus allowing for technology heterogeneity across firms, and therefore for individual frontiers

Introduction	Objective	Method & estimation	Results	Synopsis
000000	O		00000	O
Estimation				

- Three choices need to be made so as to estimate the model: 1) distributional assumptions for the two-sided error term v_{it} and the one-sided inefficiency component u_{it} , 2) distributional assumptions for the random parameters, and 3) specification of the functional form f
 - Error components: $v_{it} \sim \mathcal{N}(0, 1/\tau)$ and $u_{it} \sim \mathcal{N}^+(0, 1/\phi)$.
 - **2** Random parameters: $\beta_i \sim \mathcal{N}(\bar{\beta}, \Omega^{-1})$,
 - Functional form f can be Cobb-Douglas, semi-translog, or fully translog; I let the data decide

イロト 不得 トイヨト イヨト

Introduction	Objective	Method & estimation	Results	Synopsis
000000	O	00000000	00000	O
Estimation				

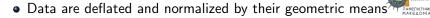
- Estimation is carried out in a Bayesian framework
- The complete-data likelihood is specified according to the distributional assumptions made for the error terms
- Non-informative priors are imposed on the parameters to be estimated
- The posterior is obtained by multiplying the complete-data likelihood and the priors
- Markov chain monte carlo simulation (MCMC) combined with data augmentation is used to draw samples from the posterior

Introduction	Objective	Method & estimation	Results	Synopsis
000000	O	00000000	00000	O
Model co	mparison			

- Model comparison is used for the specification of the model's functional form *f*, and to infer which specification of the model's parameters (fixed versus random) fits the data best
- Regarding the functional form, the model is estimated using a Cobb-Douglas form, a translog in investments form, a translog in investments, and output form, a translog in investments, output and variable inputs form, and a fully translog form
- In terms of the specification of the model's parameters, the model is once estimated with random parameters and once with fixed parameters
- Bayes factors are used for comparing the above models
- A Bayesian alternative to a t test is used (bayesian estimation supersedes the t test) to test for differences in the efficiency scores

Introduction	Objective	Method & estimation	Results	Synopsis
000000	O		00000	O
Data & er	mpirical spec	cification		

- Farm-level data from Dutch farm accountancy data network (FADN) consisting of 1736 observations:
 - Dutch dairy farms specialized in milk production
 - Period covered: 2009 to 2016
- Specified variables:
 - Two outputs: 1) milk and milk products and 2) meat & other
 - Gross investments in capital
 - Two variable inputs: 1) intermediate inputs and 2) purchased feed
 - One quasi-fixed input: capital (buildings & machinery)
 - Three fixed inputs: 1) labor, 2) land, and 3) animals
 - Time trend



イロト 不得 トイヨト イヨト

Introduction
000000Objective
0Method & estimation
0000000Results
00000Synopsis
0Marginal log-likelihoods, prior and posterior probabilities
for each functional formFor each functional formFor each functional form

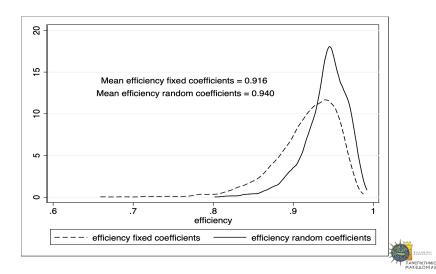
	Marginal	Prior	Posterior
Functional form	log-lik.	prob.	prob.
Cobb-Douglas	1958.750	0.200	0.000
Translog in inv.	1751.670	0.200	0.000
Translog in inv. & outp.	1720.250	0.200	0.000
Translog in inv., outp. & var. inp.	1993.690	0.200	1.000
Fully translog	-∞	0.200	0.000

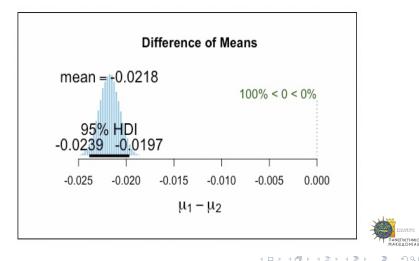
Introduction	Objective	Method & estimation	Results	Synopsis
000000	0		00000	O
Paramete	r estimates f	or first-order term	<i>د</i>	

	Random coefficients			Fixed coefficients		
Variable	Mean	SD	90% CI	Mean	SD	90% CI
cons.	-0.083	0.005	[-0.091, -0.076]	-0.107	0.005	[-0.116, -0.099]
log_y2	0.022	0.006	[0.012, 0.031]	0.041	0.004	[0.034, 0.048]
log_inv.	0.018	0.005	[0.010, 0.026]	0.030	0.005	[0.023, 0.038]
log₋K	-0.037	0.007	[-0.049, -0.025]	-0.048	0.006	[-0.058, -0.038]
log_L	-0.036	0.013	[-0.057, -0.016]	-0.048	0.010	[-0.064, -0.033]
log_A	-0.142	0.011	[-0.161, -0.124]	-0.148	0.008	[-0.162, -0.134]
log_S	-0.025	0.015	[-0.050, -0.000]	-0.013	0.010	[-0.030, 0.004]
log₋l	-0.118	0.010	[-0.135, -0.102]	-0.123	0.008	[-0.136, -0.110]
log_F	-0.274	0.010	[-0.289, -0.257]	-0.276	0.008	[-0.290, -0.263]
trend	-0.001	0.002	[-0.004, 0.002]	0.004	0.001	[0.002, 0.006]

Introduction
occoccoObjective
oMethod & estimation
occoccoResults
occoccSynopsis
oMarginal log-likelihoods, prior and posterior probabilitiesfor each model

Model	Marginal log-likelihood	Prior probability	Posterior probability
Random coefficients	1993.690	0.500	1.000
Fixed coefficients	1249.900	0.500	0.000





Introduction	Objective	Method & estimation	Results	Synopsis
000000	O		00000	•
Synopsis				

- A framework that combines the structural parametric dynamic efficiency model with the random coefficients model is presented
- The proposed model is applied to a panel dataset of specialized dairy farms in the Netherlands observed over the period 2009–2016
- The empirical findings suggest that inefficiency is inflated when technology heterogeneity is ignored
- Formal model comparison indicates that the random coefficients model fits the data better than the fixed coefficients model

イロト イヨト イヨト