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Auctions with a multi-member bidder

I Works in auction theory typically assume that bidders are
individual agents (firms, organizations, persons).

I In practice, they are often not.
I Examples:

1. Spectrum auctions;
2. A couple of roommates jointly bidding on a TV set.

I Economic characteristics:

1. Public good;
2. Aggregation problem in a strategic bidding setting.
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Model

I Auction with two bidders.

I Bidder A consists of n symmetric individuals: players 1, · · · , n.
Type dist - F on [0, 1].

I Bidder B is a single agent, player n + 1 (the regular bidder).
Type dist. on R+ according to the CDF G .

I If bidder A wins and its members’ valuations are (θ1, · · · , θn),
then the utility of player i is:

θi − pi ,

where
∑n

i=1 pi = cost

I Team mechanism=bid aggregation rule (A) and cost sharing
rule (s).
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Second-price auctions

I Let (A, s) be a mechanism.

I

Π
(A,s)
i ≡ G (A(b1, · · · , bn))×
× [θi − si (b1, · · · , bn) · E(θn+1 : θn+1 ≤ A(b1, · · · , bn))].

I Theorem
If {Π(A,s)

i }ni=1 are continuous, then the game has an equilibrium.

I Theorem
There does not exist a mechanism that leads to an efficient
allocation.
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First-price and all-pay auctions

I Notation: ΓFPA(A, s), ΓAPA(A, s).

I Equilibrium with complete free riding : n − 1 team members
abstain, just one competes against the outside bidder.

I Theorem
If ΓFPA(A, s) has an equilibrium, then it is an equilibrium with
complete free-riding.

I Theorem
If ΓAPA(A, s) has an equilibrium, then it is an equilibrium with
complete free-riding.
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Sketch of the theorems’ proofs

I If at least two team members participate (i.e., they follow
non-zero reporting functions) there is some free riding
amongst them.

I Low enough types of each participant report zero (on [0, ai ]).

I There is probability p > 0 that the team will send a zero bid.

I For low enough types of the outside bidder, the BR is to bid
zero.

I Not an equilibrium.
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The linear-proportional model

I SPA.
I Bid aggregation: A =

∑n
i=1 bi .

I Cost sharing: si = bi∑n
j=1 bj

.

I w.l.o.g: A =
∑n

i=1 ψ(bi ), si = ψ(bi )∑n
j=1 ψ(bj )

.

I G - uniform on [0,M].

I Theorem
Suppose that M ≥ 2n. Then the linear-proportional model has a
unique equilibrium. The equilibrium is symmetric:
β1 = · · · = βn = βSPA, where the bid function β is given by:

βSPA(θ) = max{θ − a, 0},

where a is the unique solution to:

a =
n − 1

n + 1
· (
∫ 1

a
tf (t)dt + aF (a)).
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Properties, interpretation

I

βSPA(θ) = max{θ − a, 0},

I If n = 1 then a = 0: the weak dominance equilibrium of the
standard (IPV) second-price auction.

I Proposition

In the linear-proportional model, the equilibrium-expected-utility of
a team member with type θ is:

π∗(θ) =
1

2M
· [2θ −max{θ − a, 0}] · [2a + max{θ − a, 0}].

I The team size n and type. dist. F only affects the cutoff a.



Properties, interpretation

I

βSPA(θ) = max{θ − a, 0},

I If n = 1 then a = 0: the weak dominance equilibrium of the
standard (IPV) second-price auction.

I Proposition

In the linear-proportional model, the equilibrium-expected-utility of
a team member with type θ is:

π∗(θ) =
1

2M
· [2θ −max{θ − a, 0}] · [2a + max{θ − a, 0}].

I The team size n and type. dist. F only affects the cutoff a.



Properties, interpretation

I

βSPA(θ) = max{θ − a, 0},

I If n = 1 then a = 0: the weak dominance equilibrium of the
standard (IPV) second-price auction.

I Proposition

In the linear-proportional model, the equilibrium-expected-utility of
a team member with type θ is:

π∗(θ) =
1

2M
· [2θ −max{θ − a, 0}] · [2a + max{θ − a, 0}].

I The team size n and type. dist. F only affects the cutoff a.



Properties, interpretation

I

βSPA(θ) = max{θ − a, 0},

I If n = 1 then a = 0: the weak dominance equilibrium of the
standard (IPV) second-price auction.

I Proposition

In the linear-proportional model, the equilibrium-expected-utility of
a team member with type θ is:

π∗(θ) =
1

2M
· [2θ −max{θ − a, 0}] · [2a + max{θ − a, 0}].

I The team size n and type. dist. F only affects the cutoff a.



Properties, interpretation

I

βSPA(θ) = max{θ − a, 0},

I If n = 1 then a = 0: the weak dominance equilibrium of the
standard (IPV) second-price auction.

I Proposition

In the linear-proportional model, the equilibrium-expected-utility of
a team member with type θ is:

π∗(θ) =
1

2M
· [2θ −max{θ − a, 0}] · [2a + max{θ − a, 0}].

I The team size n and type. dist. F only affects the cutoff a.



The cutoff

I an=the cutoff a corresponding to a bidding team of size n.

I Proposition

The cutoff an satisfies the following:

1. an is strictly increasing in n.

2. limn→∞an = 1.

3. ( n−1
n+1 )E(θ) ≤ an for all n ≥ 1.

I Proposition

Consider two copies of the model—one in which the type
distribution is F and one in which it is G , where F first-order
stochastically dominates G . Let az be the cutoff corresponding to
z ∈ {F ,G}. Then aF ≥ aG .
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I Proposition

Consider the linear-proportional model under the second-price
format, and let the regular bidder’s type be uniform on [0,M],
where M ≥ 2n. Then the team’s equilibrium expected bid,
n × E(βSPA), is increasing in n.
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First-price and all-pay

I Proposition

If F and G are both uniform over [0, 1] and the auction-format is
all-pay, then the linear-proportional model has equilibria with
complete free riding.
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first-price, then the linear-proportional model has no equilibrium
with complete free riding. Therefore, it has no equilibrium.
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negotiation;

I Competition between multiple teams.
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