Shiran Rachmilevitch Department of Economics, University of Haifa

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

K ロ X K 메 X K B X X B X X D X O Q Q O

 \triangleright Works in auction theory typically assume that bidders are individual agents (firms, organizations, persons).

 \triangleright Works in auction theory typically assume that bidders are individual agents (firms, organizations, persons).

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

In practice, they are often not.

- \triangleright Works in auction theory typically assume that bidders are individual agents (firms, organizations, persons).
- In practice, they are often not.
- \blacktriangleright Examples:
	- 1. Spectrum auctions;
	- 2. A couple of roommates jointly bidding on a TV set.

KORKA SERKER ORA

- \triangleright Works in auction theory typically assume that bidders are individual agents (firms, organizations, persons).
- In practice, they are often not.
- \blacktriangleright Examples:
	- 1. Spectrum auctions;
	- 2. A couple of roommates jointly bidding on a TV set.
- \blacktriangleright Economic characteristics:
	- 1. Public good;
	- 2. Aggregation problem in a strategic bidding setting.

K □ ▶ K @ ▶ K 할 K X 할 K : 할 \ 10 Q Q Q

▶ Team play: Duggan 2001, Kim et al. 2021.

K ロ X K 메 X K B X X B X X D X O Q Q O

 \blacktriangleright Team play: Duggan 2001, Kim et al. 2021.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Auctions for patents: Asker et al. 2021.

- \blacktriangleright Team play: Duggan 2001, Kim et al. 2021.
- ▶ Auctions for patents: Asker et al. 2021.
- \triangleright Collusion a cartel is a "bidding team." E.g., McAfee and McMillan 1992, Mailath and Zemsky 1991, many more.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \blacktriangleright Team play: Duggan 2001, Kim et al. 2021.
- ▶ Auctions for patents: Asker et al. 2021.
- \triangleright Collusion a cartel is a "bidding team." E.g., McAfee and McMillan 1992, Mailath and Zemsky 1991, many more.

KORKA SERKER ORA

 \triangleright Group contests - the group/team wins together or loses together. E.g., Kobayashi and Konishi 2021.

 \blacktriangleright Auction with two bidders.

- \blacktriangleright Auction with two bidders.
- \blacktriangleright Bidder A consists of *n* symmetric individuals: players $1, \dots, n$. Type dist - F on $[0, 1]$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

- \blacktriangleright Auction with two bidders.
- \blacktriangleright Bidder A consists of *n* symmetric individuals: players $1, \dots, n$. Type dist - F on [0, 1].
- \triangleright Bidder B is a single agent, player $n+1$ (the regular bidder). Type dist. on \mathbb{R}_+ according to the CDF G.

- \blacktriangleright Auction with two bidders.
- \triangleright Bidder A consists of *n* symmetric individuals: players $1, \dots, n$. Type dist - F on [0, 1].
- \triangleright Bidder B is a single agent, player $n+1$ (the regular bidder). Type dist. on \mathbb{R}_+ according to the CDF G.
- If bidder A wins and its members' valuations are $(\theta_1, \dots, \theta_n)$, then the utility of player i is:

$$
\theta_i-p_i,
$$

KORKAR KERKER EL VOLO

where $\sum_{i=1}^n p_i = cost$

- \blacktriangleright Auction with two bidders.
- \triangleright Bidder A consists of *n* symmetric individuals: players $1, \dots, n$. Type dist - F on [0, 1].
- \triangleright Bidder B is a single agent, player $n+1$ (the regular bidder). Type dist. on \mathbb{R}_+ according to the CDF G.
- If bidder A wins and its members' valuations are $(\theta_1, \dots, \theta_n)$, then the utility of player i is:

$$
\theta_i-p_i,
$$

KORKAR KERKER EL VOLO

where $\sum_{i=1}^n p_i = cost$

 \blacktriangleright Team mechanism=bid aggregation rule (A) and cost sharing rule (s) .

K ロ X K 메 X K B X X B X X D X O Q Q O

 \blacktriangleright Let (A, s) be a mechanism.

K ロ X K 메 X K B X X B X X D X O Q Q O

I

Let
$$
(A, s)
$$
 be a mechanism.

$$
\Pi_i^{(A,s)} \equiv G(A(b_1,\dots,b_n)) \times \times [\theta_i - s_i(b_1,\dots,b_n) \cdot \mathbb{E}(\theta_{n+1} : \theta_{n+1} \leq A(b_1,\dots,b_n))].
$$

K ロ K イロ K K モ K K モ K エ エ エ イ の Q Q C

Let
$$
(A, s)
$$
 be a mechanism.

$$
\Pi_i^{(A,s)} \equiv G(A(b_1,\dots,b_n)) \times \times [\theta_i - s_i(b_1,\dots,b_n) \cdot \mathbb{E}(\theta_{n+1} : \theta_{n+1} \leq A(b_1,\dots,b_n))].
$$

\blacktriangleright Theorem If $\{\Pi_i^{(A,s)}\}$ $\binom{(A,s)}{i}_{i=1}^n$ are continuous, then the game has an equilibrium.

Let
$$
(A, s)
$$
 be a mechanism.

$$
\Pi_i^{(A,s)} \equiv G(A(b_1,\dots,b_n)) \times \times [\theta_i - s_i(b_1,\dots,b_n) \cdot \mathbb{E}(\theta_{n+1} : \theta_{n+1} \leq A(b_1,\dots,b_n))].
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

\blacktriangleright Theorem If $\{\Pi_i^{(A,s)}\}$ $\binom{(A,s)}{i}_{i=1}^n$ are continuous, then the game has an equilibrium.

\blacktriangleright Theorem

There does not exist a mechanism that leads to an efficient allocation.

K ロ X K 메 X K B X X B X X D X O Q Q O

 \blacktriangleright Notation: $\Gamma^{FPA}(A, s)$, $\Gamma^{APA}(A, s)$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

- \blacktriangleright Notation: $\Gamma^{FPA}(A, s)$, $\Gamma^{APA}(A, s)$.
- \triangleright Equilibrium with complete free riding: $n-1$ team members abstain, just one competes against the outside bidder.

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

- \blacktriangleright Notation: $\Gamma^{FPA}(A, s)$, $\Gamma^{APA}(A, s)$.
- \triangleright Equilibrium with complete free riding: n 1 team members abstain, just one competes against the outside bidder.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

 \blacktriangleright Theorem

If $\Gamma^{FPA}(A,s)$ has an equilibrium, then it is an equilibrium with complete free-riding.

- \blacktriangleright Notation: $\Gamma^{FPA}(A, s)$, $\Gamma^{APA}(A, s)$.
- \triangleright Equilibrium with complete free riding: n 1 team members abstain, just one competes against the outside bidder.
- \blacktriangleright Theorem

If $\Gamma^{FPA}(A,s)$ has an equilibrium, then it is an equilibrium with complete free-riding.

 \blacktriangleright Theorem

If $\Gamma^{APA}(A, s)$ has an equilibrium, then it is an equilibrium with complete free-riding.

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A

K ロ X K 메 X K B X X B X X D X O Q Q O

If at least two team members participate (i.e., they follow non-zero reporting functions) there is some free riding amongst them.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- If at least two team members participate (i.e., they follow non-zero reporting functions) there is some free riding amongst them.
- I Low enough types of each participant report zero (on $[0, a_i]$).

- If at least two team members participate (i.e., they follow non-zero reporting functions) there is some free riding amongst them.
- I Low enough types of each participant report zero (on $[0, a_i]$).
- \triangleright There is probability $p > 0$ that the team will send a zero bid.

- If at least two team members participate (i.e., they follow non-zero reporting functions) there is some free riding amongst them.
- I Low enough types of each participant report zero (on $[0, a_i]$).
- \triangleright There is probability $p > 0$ that the team will send a zero bid.
- \triangleright For low enough types of the outside bidder, the BR is to bid zero.

- If at least two team members participate (i.e., they follow non-zero reporting functions) there is some free riding amongst them.
- I Low enough types of each participant report zero (on $[0, a_i]$).
- \triangleright There is probability $p > 0$ that the team will send a zero bid.
- \triangleright For low enough types of the outside bidder, the BR is to bid zero.

KORK ERKER ADE YOUR

 \triangleright Not an equilibrium.

K ロ X K 메 X K B X X B X X D X O Q Q O

K ロ X K 메 X K B X X B X X D X O Q Q O

 \triangleright SPA.

- \triangleright SPA.
- \blacktriangleright Bid aggregation: $A = \sum_{i=1}^{n} b_i$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

 \triangleright SPA.

► Bid aggregation:
$$
A = \sum_{i=1}^{n} b_i
$$
.

K ロ X K 메 X K B X X B X X D X O Q Q O

• Cost sharing:
$$
s_i = \frac{b_i}{\sum_{j=1}^n b_j}
$$
.

 \triangleright SPA.

► Bid aggregation:
$$
A = \sum_{i=1}^{n} b_i
$$
.

• Cost sharing:
$$
s_i = \frac{b_i}{\sum_{j=1}^n b_j}
$$
.

• w.l.o.g:
$$
A = \sum_{i=1}^{n} \psi(b_i), s_i = \frac{\psi(b_i)}{\sum_{j=1}^{n} \psi(b_j)}
$$
.

K ロ X K 메 X K B X X B X X D X O Q Q O

 \triangleright SPA.

► Bid aggregation:
$$
A = \sum_{i=1}^{n} b_i
$$
.

- ▶ Cost sharing: $s_i = \frac{b_i}{\sum_{j=1}^n b_j}$.
- w.l.o.g: $A = \sum_{i=1}^{n} \psi(b_i), s_i = \frac{\psi(b_i)}{\sum_{j=1}^{n} \psi(b_j)}.$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \blacktriangleright G - uniform on [0, M].

 \triangleright SPA.

- Bid aggregation: $A = \sum_{i=1}^{n} b_i$.
- ▶ Cost sharing: $s_i = \frac{b_i}{\sum_{j=1}^n b_j}$.
- w.l.o.g: $A = \sum_{i=1}^{n} \psi(b_i), s_i = \frac{\psi(b_i)}{\sum_{j=1}^{n} \psi(b_j)}.$
- \triangleright G uniform on [0, M].

\blacktriangleright Theorem

Suppose that $M \geq 2n$. Then the linear-proportional model has a unique equilibrium. The equilibrium is symmetric: $\beta_1=\cdots=\beta_n=\beta^{SPA}$, where the bid function β is given by:

$$
\beta^{\text{SPA}}(\theta) = \max\{\theta - a, 0\},\
$$

where a is the unique solution to:

$$
a=\frac{n-1}{n+1}\cdot(\int_a^1tf(t)dt+aF(a)).
$$

K ロ X K 메 X K B X X B X X D X O Q Q O

I

$$
\beta^{SPA}(\theta) = \max\{\theta - a, 0\},\
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

I

$$
\beta^{\text{SPA}}(\theta) = \max\{\theta - a, 0\},\
$$

If $n = 1$ then $a = 0$: the weak dominance equilibrium of the standard (IPV) second-price auction.

$$
\beta^{\text{SPA}}(\theta) = \max\{\theta - a, 0\},\
$$

If $n = 1$ then $a = 0$: the weak dominance equilibrium of the standard (IPV) second-price auction.

\blacktriangleright Proposition

I

In the linear-proportional model, the equilibrium-expected-utility of a team member with type θ is:

$$
\pi^*(\theta) = \frac{1}{2M} \cdot [2\theta - \max\{\theta - a, 0\}] \cdot [2a + \max\{\theta - a, 0\}].
$$

$$
\beta^{\text{SPA}}(\theta) = \max\{\theta - a, 0\},\
$$

If $n = 1$ then $a = 0$: the weak dominance equilibrium of the standard (IPV) second-price auction.

\blacktriangleright Proposition

I

In the linear-proportional model, the equilibrium-expected-utility of a team member with type θ is:

$$
\pi^*(\theta)=\frac{1}{2M}\cdot[2\theta - \max\{\theta - a,0\}]\cdot[2a + \max\{\theta - a,0\}].
$$

 \blacktriangleright The team size *n* and type. dist. F only affects the cutoff a.

K ロ K K (메 K K X B K X B H X B K O Q Q C

 \triangleright a_n=the cutoff a corresponding to a bidding team of size n.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

 \triangleright a_n=the cutoff a corresponding to a bidding team of size n.

KORK ERKER ADE YOUR

 \blacktriangleright Proposition

The cutoff a_n satisfies the following:

- 1. a_n is strictly increasing in n.
- 2. $\lim_{n\to\infty} a_n = 1$.
- 3. $\left(\frac{n-1}{n+1}\right) \mathbb{E}(\theta) \leq a_n$ for all $n \geq 1$.

 \triangleright a_n=the cutoff a corresponding to a bidding team of size n.

\blacktriangleright Proposition

The cutoff a_n satisfies the following:

1. a_n is strictly increasing in n.

2. $\lim_{n\to\infty} a_n = 1$.

3.
$$
\left(\frac{n-1}{n+1}\right) \mathbb{E}(\theta) \leq a_n
$$
 for all $n \geq 1$.

\blacktriangleright Proposition

Consider two copies of the model—one in which the type distribution is F and one in which it is G, where F first-order stochastically dominates G . Let a^z be the cutoff corresponding to $z \in \{F,G\}$. Then $a^F \ge a^G$.

K ロ X (日) X (日)

\blacktriangleright Proposition

Consider the linear-proportional model under the second-price format, and let the regular bidder's type be uniform on $[0, M]$, where $M > 2n$. Then the team's equilibrium expected bid, $n\times\mathbb{E}(\beta^{SPA})$, is increasing in n.

First-price and all-pay

K ロ K イロ K K モ K K モ K エ エ エ イ の Q Q C

First-price and all-pay

\blacktriangleright Proposition

If F and G are both uniform over $[0,1]$ and the auction-format is all-pay, then the linear-proportional model has equilibria with complete free riding.

KORK STRATER STRAKER

First-price and all-pay

\blacktriangleright Proposition

If F and G are both uniform over $[0,1]$ and the auction-format is all-pay, then the linear-proportional model has equilibria with complete free riding.

\blacktriangleright Proposition

If F and G are both uniform over $[0,1]$ and the auction-format is first-price, then the linear-proportional model has no equilibrium with complete free riding. Therefore, it has no equilibrium.

Future research

K ロ K K (메 K K X B K X B H X B K O Q Q C

 \blacktriangleright Not an exogenous mechanism (A, s) ; instead, within-team negotiation;

K ロ K K (P) K (E) K (E) X (E) X (P) K (P)

 \blacktriangleright Not an exogenous mechanism (A, s) ; instead, within-team negotiation;

 \triangleright Competition between multiple teams.