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1 Introduction

Overlapping ownership, be it in the form of common or cross ownership, has generated

concern for its potential anti-competitive impact (Elhauge, 2016; Posner et al., 2017),

especially due to the rising shares of large investment funds in multiple competitors

in several industries; for example airlines (Azar et al., 2018), banks and supermarkets

(Schmalz, 2018). Azar and Vives (2019, 2021) and Backus et al. (2021b) document the

dramatic rise in common ownership in the S&P 500 firms in the last decades.

At the same time, firm entry patterns have been argued to pose a significant impact

on the aggregate economy. Using a panel of U.S. states over the period 1982–2014, Gourio

et al. (2016) find that (positive) shocks to the number of new firms have sizable and lasting

(positive) effects on a state’s real GDP, productivity, and population. Gutiérrez and

Philippon (2019) document a decline in entry of firms in the U.S. economy and estimate

the elasticity of entry with respect to Tobin’s Q to have dropped to zero since the late

1990s, up to which point it was positive and significant.1 Gutiérrez et al. (2021) argue

that increases in entry costs have had a considerable impact on the U.S. economy over

the past 20 years, leading to higher concentration, as well as lower entry, investment and

labor income. Figure 1 documents the increase in regulatory restrictions that accompanies

the decrease in entry.

The literature above documents the decline in firm entry rates (accompanied by a

milder decrease in firm exit rates) and a concurrent increase in common ownership over

close to 40 years in the U.S economy (see Figure 1). There are several explanations for

the decreased entry dynamism, an increase in entry costs (for technological or regulatory

reasons) being a prominent one. It is possible also that apart from softening competition

in pricing, overlapping ownership also contributes to diminishing entry dynamism. Some

recent empirical work points in this direction. Newham et al. (2019) find that in the U.S.

pharmaceutical industry higher common ownership between the brand firm and potential

generic entrants leads to fewer generic entrants. Relatedly, Xie and Gerakos (2020) analyze

patent infringement lawsuits filed by brand-name drug manufacturers against generic

manufacturers to find that common institutional ownership of the brand and generic
1Apart from a generalized decline in entry, Decker et al. (2016) document a particular decline in

high-growth young firms in the U.S. since 2000, when such firms could have had a major contribution to
job creation.
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firms increases the likelihood that the two litigants enter into a settlement whereby the

brand firm often pays the generic to delay entry. Ruiz-Pérez (2019) estimates a structural

model of market entry and price competition under common ownership in the U.S. airline

industry to find that the higher the common ownership between the incumbents and a

potential entrant, the lower the likelihood of entry.

Figure 1: Firm entry, regulatory restrictions and overlapping ownership trends in the U.S.

(a) Firm entry/exit rates and regulatory restrictions (b) Average weight on competing firms’ profits

Note: firm count and death data are from U.S. Census Bureau Business Dynamics Statistics. The firm
entry (resp. exit) rate in year 𝑡 is calculated as the count of age zero firms (resp. firm deaths) in year 𝑡
divided by the average count of firms in year 𝑡 and 𝑡− 1. The total number of regulatory restrictions
data are from McLaughlin et al. (2021). Panel (b) shows the average intra-sector Edgeworth sympathy
coefficient for the largest 1500 firms by market capitalization (i.e., the average weight placed by a firm
on the profits of another firm in the same sector relative to a weight of 1 placed on its own profit),
as calculated in Azar and Vives (2021) based on Thomson-Reuters 13F filings data on institutional
ownership.

In this paper we provide a framework to study the effects of overlapping ownership

in a Cournot oligopoly with free entry. We study an industry or product market which

established firms with existing ownership ties consider whether to enter; that is, there

is pre-entry overlapping ownership. This is common in today’s markets with extensive

common ownership links among public firms.2 In Appendix B we consider the case of

post-entry overlapping ownership.

We are interested in several questions. How does overlapping affect entry, prices and

welfare? Will overlapping ownership suppress entry or will entry still tend to be excessive

as in the case without overlapping ownership? What are the forces at play? How does

overlapping ownership mediate the (negative) effect of entry costs on entry? What level

of overlapping ownership is socially optimal?
2For example, one can think of pharmaceuticals considering whether to incur R&D costs to enter a

new drug market.
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We address the main concern about how overlapping ownership can affect competitive

outcomes through entry: by inducing firms to internalize the negative externality that

their entry would pose on other firms, thus reducing entry. Modulo the integer constraint,

entry is lower than what it would be without the internalization of the entry externality,

so that in equilibrium the net profit is positive.

Overlapping ownership differs from collusion in terms of both the mechanism through

which it affects competitive outcomes and the actual competitive effects. Indeed, the

mechanism in overlapping ownership is through incentives of owners and managers

(Schmalz, 2018, 2021; Anton et al., 2022b), while collusion works with dynamic threats,

rewards and punishements. Both pre-entry overlapping ownership and collusion induce

firms to internalize the effects of their actions on other firms’ profits, but the former gives

rise to different trade-offs and forces which are not present under collusion. For example,

collusion and post-entry overlapping ownership (that is, when ownership links develop

after entry) tend to spur entry, since a firm—which decides whether to enter only seeking

to maximize its own profit—expects higher profits when there is going to be collusion

or softer competition in pricing compared to when there is not (e.g., see Fershtman and

Pakes, 2000). Pre-entry overlapping ownership induces a novel trade-off that we describe

below.

Our findings follow. First, we distinguish the three channels through which an increase

in the level of pre-entry overlapping ownership affects entry; these channels are not specific

to our assumption of Cournot competition. Overlapping ownership tends to limit entry by

increasing the degree of internalization of the negative externality of entry on other firms’

profits but also tends to increase equilibrium profits in the product market competition

stage, which tends to increase entry. There also is a channel with an ambiguous effect on

entry: overlapping ownership changes the magnitude of the entry externality. The effect

of overlapping ownership on entry will depend on the size of the different channels and

the direction of the ambiguous channel’s effect. We find that an increase in the degree

of overlapping ownership can limit or, counter-intuitively, spur entry. For low levels of

overlapping ownership, the rise in own profit due to increases in overlapping ownership

can dominate. However, for high levels, competition in the product market is already

soft enough, so that further increases in overlapping ownership suppress entry. Common

ownership among U.S.-listed firms is indeed already high enough, so that if private firms
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are treated as a competitive fringe, then further increases in common ownership are likely

to limit entry by public firms into product markets where other public firms already

operate. In the extreme case of complete indexation of the industry, where firms maximize

aggregate industry profits, only one firm enters so that fixed entry costs are minimized

unless there are substantial decreasing returns to scale (DRS).

Second, we show that under common assumptions, overlapping ownership exacerbates

the negative impact of an increase in the entry cost on entry. Therefore, overlapping own-

ership could magnify the negative macroeconomic implications documented in Gutiérrez

et al. (2021).

Third, we find that whether entry is excessive or insufficient will depend on (i) the

level of overlapping ownership, (ii) the magnitude of the entry externality, (iii) whether

returns to scale are increasing (IRS) or decreasing and to what degree, and (iv) whether

competition is business-stealing or business-enhancing (i.e., whether individual quantity

decreases or increases, respectively, with the number of firms in the Cournot game), and

to what degree. Under business-stealing competition, increases in the level of overlapping

ownership or the magnitude of the entry externality, tend to make entry insufficient with

the two forces being complements in inducing insufficient entry. Also, DRS tend to make

entry insufficient, since the planner takes advantage of variable-cost savings due to entry

to a greater extent than firms do. Increases in the magnitude of the business-stealing

effect and IRS tend to make entry excessive. Under business-enhancing competition, entry

is always insufficient.

In the standard case of business-stealing competition, we find that with non-DRS entry

is indeed excessive under general conditions. However, if returns to scale are decreasing

enough, then entry is insufficient under high levels of overlapping ownership. On the

one hand, the planner combats DRS by having many firms enter. On the other hand,

while with positive overlapping ownership a firm also prefers lower average costs both for

itself and for the other firms, the internalization of the price effect that its entry will have

suppresses entry relative to the planner’s solution.

Fourth, a welfare-maximizing planner that can only regulate overlapping ownership

and then allow firms to freely enter may optimally choose (a) no overlapping ownership,

(b) intermediate levels of it, or even (c) complete indexation of the industry. For instance,

consider constant returns to scale (CRS); then the average variable cost of production is
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not affected by entry. The planner has to balance the effect of overlapping ownership—in

the Cournot game and in the entry stage—on the total quantity and price, and on the total

entry costs. In numerical simulations we find that for low entry cost, the planner chooses

no overlapping ownership, while for higher entry cost intermediate levels of overlapping

ownership or complete indexation can be optimal. With IRS, complete indexation of

the industry (leading to a monopoly) can be optimal under both a total surplus and a

consumer surplus standard.

Last, we examine the effects of overlapping ownership in the case where apart from the

commonly-owned firms, there are also maverick firms (price-taking and without ownership

ties), which may enter the market. The presence of maverick firms essentially changes the

demand faced by the commonly-owned firms by depressing it and making it more elastic.

This suppresses entry by commonly-owned firms and makes it less sensitive to the level of

overlapping ownership. Our results on the effects of overlapping ownership on the price,

entry by commonly-owned firms, as well as our comparison of equilibrium and socially

optimal levels of entry extend to this case with the demand appropriately adjusted.

The plan of the paper is as follows. Section 2 discusses related literature and section

3 presents the model and studies the pricing stage. Section 4 studies the entry stage,

existence and uniqueness of equilibrium in the complete game with entry. Section 5 studies

the effects of overlapping ownership under free entry. Section 6 considers post-entry

overlapping ownership and the entry of maverick firms. Last, section 7 concludes. Proofs

are gathered in Appendix A, and supplementary material (including the examination of

the case of post-entry overlapping ownership) and proofs thereof in the Appendices B and

C.

2 Related literature

Research attention to the possible anti-competitive effects of overlapping ownership dates

back to at least Rubinstein and Yaari (1983) and Rotemberg (1984). Recently, interest on

the topic has revived given the rising shares of large diversified funds. As Banal-Estañol

et al. (2020) show, the profit loads firms place on competing firms increase if the holdings

of more diversified investors increase relative to those of less diversified investors. Multiple

empirical studies have been conducted and there is a debate on whether and how common
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ownership affects corporate conduct and softens competition.3

Theoretical work has considered models where the effects of overlapping ownership are

not only through product market competition: when (i) there are diversification benefits

because investors are risk-averse (Shy and Stenbacka, 2020) or (ii) firms choose cost-

reducing or quality-enhancing R&D investment possibly with R&D spillovers (Bayona and

López, 2018; López and Vives, 2019), product positioning (Li and Zhang, 2021) or qualities

(Brito et al., 2020), (iii) firms invest in a preemption race (Zormpas and Ruble, 2021), (iv)

firms may choose to transfer their innovation technology to a rival firm (Papadopoulos

et al., 2019). Last, other studies have examined the effects of overlapping ownership in a

general equilibrium setting (Azar and Vives, 2019, 2021) or under alternative models of

corporate control (Vravosinos, 2021).

All of the models above treat the number of firms in the industry as exogenous.4

Sato and Matsumura (SM; 2020) provide a circular-market model with CRS and free

entry under pre-entry symmetric common ownership. In their model the welfare effects of

common ownership are directly implied by its effects on entry.5 They show that entry

always decreases with common ownership. Thus, given that in their setting for low levels

of common ownership entry is excessive while for high it is insufficient, welfare has an

inverted-U shaped relationship with the degree of common ownership, which implies a

strictly positive optimal degree of common ownership.

Our model differs from theirs in several ways. First, we consider quantity instead of

price competition. Second we derive our results under general demand and cost functions

and consider examples of parametric assumptions for ease of interpretation. In our

setting total surplus depends on equilibrium objects not only through the number of

firms. This means, for example, that higher overlapping ownership can induce a social

planner that regulates entry (but not overlapping ownership) to allow fewer firms to enter,
3While He and Huang (2017), Azar et al. (2018), Park and Seo (2019), Boller and Morton (2020),

Banal-Estañol et al. (2020) and Anton et al. (2022a,b) find evidence in favor of this hypothesis, others
have found little to no effect (e.g., see Koch et al., 2021; Lewellen and Lowry, 2021; Backus et al., 2021a).
Backus et al. (2021c) outline the limitations of the empirical approaches used so far and argue that these
make it difficult to draw clear conclusions. Schmalz (2021) provides a compelling survey of the available
evidence on how common owners influence firm decisions. See also Elhauge (2021) and Shekita (2022).

4Li et al. (2015) show that in a Cournot duopoly the incumbent firm can strategically develop cross
ownership to deter the other firm from entering.

5Welfare only depends on the number of firms, the cost of transportation and the entry cost. Consumers
have a unit demand and pay transportation costs proportional to their distance from the firm that they
choose to buy from. The planner’s problem is equivalent to minimizing the total transportation and entry
costs; the former decrease with the number of firms, while the latter increase with it.
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since overlapping ownership decreases the effectiveness of entry in reducing the price.

Our modelling allows us to delineate three channels through which pre-entry overlapping

ownership affects entry and test the robustness of the results obtained in SM.6

Our work can be seen as an extension of the literature on free entry in Cournot markets.

Mankiw and Whinston (1986) show that in a symmetric Cournot market with free entry

and non-IRS where in the pricing stage (i) the total quantity increases with the number of

firms, and (ii) the business-stealing effect is present, entry is never insufficient by more than

one firm. Amir et al. (2014) extend these results to the case of limited IRS, showing that

still under business-stealing competition entry is never insufficient by more than one firm.

We extend the result of Amir et al. (2014) to the case of competition under overlapping

ownership, showing that under business-enhancing competition, entry is always insufficient.

However, we show that under business-stealing competition, overlapping ownership can

lead to insufficient entry (by more than one firm) when returns to scale are decreasing.

The setting of symmetric firms with a symmetric overlapping ownership structure that

we consider preserves the properties of the Cournot game being symmetric, which allows

for extensions of existing oligopoly results (e.g., see Vives, 1999) to the case of competition

under overlapping ownership. Namely, we extend the results of Amir and Lambson (2000),

who use lattice-theoretic methods to study equilibrium existence and comparative statics

with respect to the (exogenous) number of firms in a symmetric Cournot market, and of

Amir et al. (2014), who build on the latter to study free entry.

3 The Cournot-Edgeworth 𝜆-oligopoly model with free entry

There is a (large enough) finite set ℱ := {1,2, . . . , 𝑁} of 𝑁 symmetric firms that can

potentially enter a market. The game has two stages, the entry stage and the pricing stage.

In the first stage, each firm chooses whether to enter by paying a fixed cost 𝑓 > 0.7 In the

pricing stage, entrants compete à la Cournot. Namely, each firm 𝑖 chooses its production

quantity, 𝑞𝑖 ∈ R+, simultaneously with the other firms. We denote by 𝑠𝑖 := 𝑞𝑖/𝑄 firm 𝑖’s
6For example, SM find that entry always decreases with overlapping ownership, while in our case

overlapping ownership sometimes spurs entry. In addition, in our model equilibrium total surplus can
behave in multiple different ways as the extent of overlapping ownership changes—contrary to the
inverted-U relationship found in SM. Last, we study how overlapping ownership mediates the effect of the
entry cost on entry, which is not examined in SM.

7We study pure strategy equilibria. If firms decide whether to enter sequentially, this is indeed without
loss of generality. However, if they decide simultaneously, then although the pure equilibrium is still an
equilibrium, there can also be equilibria where firms mix in their entry decisions (e.g., see Cabral, 2004).
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share of the total quantity 𝑄 :=
∑︀𝑛

𝑖=1 𝑞𝑖. We also write 𝑞 and 𝑞−𝑖 to denote the production

profile of all firms, and all firms expect 𝑖, respectively; also, 𝑄−𝑖 :=
∑︀

𝑗 ̸=𝑖 𝑞𝑗.

3.1 The pricing stage

Each firm 𝑖’s production cost is given by the function 𝐶 : R+ → R+ with 𝐶(𝑞𝑖) ≥ 0 and

𝐶 ′(𝑞𝑖) > 0 for every 𝑞𝑖. Denote by 𝐸𝐶(𝑞) := 𝐶 ′(𝑞)𝑞/𝐶(𝑞) the elasticity of the cost function.

When 𝐶(𝑞𝑖) = 𝑐𝑞𝜅𝑖 /𝜅 for some 𝑐,𝜅 > 0, firms have constant elasticity costs and 𝐸𝐶(𝑞) ≡ 𝜅.

(i) For 𝜅 = 1 we have CRS, (ii) for 𝜅 ∈ (0,1) we have IRS, (iii) for 𝜅 > 1 DRS (for 𝜅 = 2

costs are quadratic). 𝐴𝐶(𝑞) := 𝐶(𝑞)/𝑞 is the average cost.

The inverse demand function 𝑃 : R+ → R+ satisfies 𝑃 ′(𝑄) < 0 for every 𝑄 ∈
[︀
0,𝑄
)︀
,

where 𝑄 ∈ (0,+∞] is such that 𝑃 (𝑄) > 0 if and only if 𝑄 ∈
[︀
0,𝑄
)︀
.8 We assume that there

exists 𝑞 > 0 such that 𝑃 (𝑞) < 𝐴𝐶(𝑞) for every 𝑞 > 𝑞, and that 𝑃 and 𝐶 are two-times

differentiable.9 For 𝑄 < 𝑄 we denote by 𝜂(𝑄) := −𝑃 (𝑄)/(𝑄𝑃 ′(𝑄)) the elasticity of

demand, and by 𝐸𝑃 ′(𝑄) := −𝑃 ′′(𝑄)𝑄/𝑃 ′(𝑄) the elasticity of the slope of inverse demand.

An inverse demand function with constant elasticity of slope (CESL), 𝐸𝑃 ′(𝑄) ≡ 𝐸,

allows for log-concave and log-convex demand encompassing linear and constant elasticity

specifications. When we refer to linear demand, we mean 𝑃 (𝑄) = max {𝑎− 𝑏𝑄, 0}. Every

result applies to generic cost function and inverse demand function unless otherwise stated.

We assume that the optimal (gross) monopoly profit is higher than the entry cost, that is,

max𝑄≥0 {𝑃 (𝑄)𝑄− 𝐶(𝑄)} > 𝑓 .

Suppose 𝑛 firms enter. A quantity profile 𝑞* is an equilibrium of the pricing stage

if for each firm 𝑖 ∈ {1, . . . ,𝑛}, 𝑞*𝑖 ∈ argmax𝑞𝑖≥0

{︁
𝜋𝑖

(︀
𝑞𝑖,𝑞

*
−𝑖

)︀
+ 𝜆

∑︀
𝑗 ̸=𝑖 𝜋𝑗

(︀
𝑞𝑖,𝑞

*
−𝑖

)︀}︁
, where

𝜋𝑖 (𝑞) := 𝑃 (𝑄) 𝑞𝑖 − 𝐶(𝑞𝑖) and 𝜆 ∈ [0,1] is the (exogenous) Edgeworth (1881) coefficient of

effective sympathy among firms.10 This coefficient can for example arise from a symmetric

overlapping ownership structure (be it common or cross ownership) as in López and Vives

(2019) or Azar and Vives (2021).

Our model with symmetric overlapping ownership is rich enough to capture the main

forces and allows us to study a number of issues.11 Although the assumption of a unique
8More precisely, 𝑃 (𝑄) and its derivatives may be undefined for 𝑄 = 0 (e.g., with lim𝑄↓0 𝑃 (𝑄) = +∞

and lim𝑄↓0 𝑃
′(𝑄) = −∞).

9𝑃 is required to be differentiable for 𝑄 < 𝑄.
10Section B.1 in Appendix B presents models that give rise to this objective function.
11The assumption of a symmetric overlapping ownership structure greatly facilitates the analysis. First,

with an asymmetric overlapping ownership structure, the Cournot game is neither symmetric, nor even
aggregative and the analysis would require very strong assumptions. Second, there would be extensive
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Edgeworth coefficient of effective sympathy 𝜆 across all firm pairs is a simplification, an

increase in 𝜆 in comparative statics exercises captures a particularly relevant phenomenon.

It can for instance represent the expansion of an investment fund’s holdings across all

firms in an industry, as has recently been the trend that has spurred the antitrust interest

in overlapping ownership.12 This is also the reason why proposed policies have emphasized

the industry-wide holdings of each investor rather than only individual stock trades. For

instance, Posner et al. (2017) and Posner (2021) propose that an investor holding shares

of more than one firm in an oligopoly be not allowed to own more than 1% of the market

shares unless they commit to being purely passive. Further, in section 6.2 we discuss the

case where there is also a competitive fringe of maverick firms.

Given a quantity profile 𝑞 where the number of firms that have entered is 𝑛 ≡

dim(q), total surplus is given by TS(𝑞) :=
∫︀ 𝑄

0
𝑃 (𝑋)𝑑𝑋 −

∑︀𝑛
𝑖=1𝐶(𝑞𝑖) − 𝑛𝑓 , while the

Herfindahl–Hirschman index (HHI) and modified HHI (MHHI) are given by HHI(𝑞) :=∑︀𝑛
𝑖=1 𝑠

2
𝑖 and MHHI(𝑞) ≡ (1 − 𝜆)HHI(𝑞) + 𝜆. We denote the MHHI at a symmetric

equilibrium by 𝐻𝑛 := (1 + 𝜆(𝑛− 1))/𝑛.

3.2 Equilibrium in the pricing stage

3.2.1 Existence and uniqueness of a pricing stage equilibrium

Having described the environment we first derive conditions for equilibrium existence and

uniqueness in the pricing stage using lattice-theoretic methods as in Amir and Lambson

(AL; 2000). Let ∆(𝑄,𝑄−𝑖) := 1 − 𝜆 − 𝐶 ′′(𝑄 − 𝑄−𝑖)/𝑃
′(𝑄) be defined on the lattice

𝐿 :=
{︀
(𝑄,𝑄−𝑖) ∈ R2

++ : 𝑄 > 𝑄 ≥ 𝑄−𝑖

}︀
. ∆ > 0 allows for decreasing, constant and mildly

IRS, while ∆ < 0 allows for more significant IRS.

Proposition 1. The following statements hold:

(i) Assume ∆(𝑄,𝑄−𝑖) > 0 on 𝐿. Then, in the pricing stage

(a) there exists a symmetric equilibrium and no asymmetric equilibria,

multiplicity of equilibria in the entry stage. Even when there are two groups of firms, one with and one
without overlapping ownership, there would often be equilibria where (i) firms from only the first group
enter, (ii) firms from only the second group enter, and (iii) firms from both groups enter. Third, there
would be no single measure of overlapping ownership, as is 𝜆 in our model.

12In a market with more than two firms, a trade that only involves two firms (e.g., a firm buying shares
of another firm) will generally not shift the coefficient of effective sympathy uniformly for all firm pairs.
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(b) if also 𝐸𝑃 ′(𝑄) < (1 + 𝜆+∆(𝑄,𝑄−𝑖)/𝑛)/𝐻𝑛 on 𝐿, then there exists a unique

and symmetric equilibrium.

(ii) Assume that ∆(𝑄,𝑄−𝑖) < 0 and 𝐸𝑃 ′(𝑄) < 1+𝜆+Δ(𝑄,𝑄−𝑖)
1−(1−𝜆)(1−𝑠𝑖)

on 𝐿. Then, in the pricing

stage

(a) for every 𝑚 ∈ {1,2 . . . ,𝑛} there exists a unique quantity 𝑞𝑚 such that any

quantity profile where each of 𝑚 firms produces quantity 𝑞𝑚 and the remaining

𝑛−𝑚 firms produce 0 is an equilibrium,

(b) no other equilibria exist.

Remark 3.1. The second order of differentiability of 𝑃 (𝑄) is inessential. However, it

simplifies the arguments and interpretation and emphasizes the tension between the

assumption ∆ < 0 and the one on 𝐸𝑃 ′(𝑄). The latter guarantees that 𝜋𝑖 is strictly

concave in 𝑞𝑖 whenever 𝑃 (𝑄) > 0. IRS are needed for ∆ < 0 but at the same time tend

to violate profit concavity.13

Corollary 1.1 studies existence and uniqueness of the pricing stage equilibrium under

linear demand and linear-quadratic cost. The linear-quadratic cost function is of the form

𝐶(𝑞) = 𝑐1𝑞 + 𝑐2𝑞
2/2, where 𝑐1 ≥ 0, for (i) 𝑞 ∈ [0, +∞) if 𝑐2 ≥ 0, (ii) 𝑞 ∈ [0, − 𝑐1/𝑐2] if

𝑐2 < 0.14

Corollary 1.1. Let demand be linear, 𝑃 (𝑄) = max {𝑎− 𝑏𝑄, 0}, and cost be linear-

quadratic with 𝑎 > 𝑐1 ≥ 0 and 𝑐2 > −2𝑏𝑐1/𝑎. Then,

(i) if 𝑐2 > −𝑏(1− 𝜆), then ∆ > 0 on 𝐿 and a unique and symmetric equilibrium exists,

(ii) if 𝑐2 < −𝑏(1−𝜆), then ∆ < 0 on 𝐿 and a unique (in the class of symmetric equilibria),

symmetric equilibrium exists.
13In the Δ > 0 case, for 𝜆 = 0 we recover the condition 𝐶 ′′ − 𝑃 ′ > 0, under which AL show that a

symmetric equilibrium exists and there are no asymmetric equilibria (Theorem 2.1). In the Δ < 0 case,
the assumption on 𝐸𝑃 ′ guarantees that the firm’s objective is quasiconcave in its own quantity, under
which condition AL show the same result. For 𝜆 = 1, DRS are necessary for uniqueness of the (symmetric)
equilibrium. For example, with CRS, there are infinitely many equilibria (the symmetric one included),
all with the same fixed total quantity arbitrarily distributed across firms, since each firm maximizes
aggregate industry profits. Analogously, with 𝐶 ′′ < 0 it is an equilibrium for firms to concentrate all
production in one firm to take advantage of the IRS, as indicated in part (ii-a) of the proposition.

14Cost is indeed increasing over 𝑞 ≤ −𝑐1/𝑐2 when 𝑐2 < 0. The value of 𝐶(𝑞) for higher 𝑞 will not matter
in applications, as parameter values will be such that firms do not produce more than −𝑐1/𝑐2.
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In light of Proposition 1 we maintain from now on the following assumption unless

otherwise stated in a specific result. The assumption should be understood to hold at the

relevant values of (𝑛,𝜆) for each result.15

Maintained Assumption. The conditions in part (i-a,b) or part (ii) of Proposition 1

hold.

Remark 3.2. When in a result we assume ∆ > 0 (resp. ∆ < 0) it is thus understood

that the additional assumption of part (i) (resp. part (ii)) of Proposition 1 also holds. In

section B.10 of the Appendix we discuss what happens when the condition in part (i-b)

need not hold.

The maintained assumption guarantees that firms will play a symmetric equilibrium

in the pricing stage subgame of any SPE. Given that monopoly profit is positive, that

equilibrium will be interior.16 When ∆ < 0, the pricing subgame also has asymmetric

equilibria; however, these cannot be part of an SPE of the complete game, since the

entering firms that do not produce would prefer to avoid the entry cost by not entering.

We denote by 𝑞𝑛 the symmetric Cournot equilibrium when 𝑛 firms are in the market

(which is unique under out maintained assumption), and with some abuse of notation

by 𝑞𝑛 the quantity each firm produces in that profile, where the subscript 𝑛 now does

not refer to the identity of the 𝑛-th firm; we also write 𝑄𝑛 := 𝑛𝑞𝑛, TS𝑛 := TS (𝑞𝑛). To

simplify notation, for any 𝑛 > 0 we also denote by Π(𝑛,𝜆) := 𝑃 (𝑄𝑛) 𝑞𝑛 − 𝐶(𝑞𝑛) the

individual (gross) profit in the symmetric equilibrium of the Cournot game with 𝑛 firms

and Edgeworth coefficient 𝜆. When we ignore the integer constraint on 𝑛, we allow all

equilibrium objects, such as Π(𝑛,𝜆), to be defined for 𝑛 ∈ R++. We refer to Π(𝑛,𝜆)− 𝑓 as

net profit. The Cournot equilibrium pricing formula is

𝑃 (𝑄𝑛)− 𝐶 ′(𝑞𝑛)

𝑃 (𝑄𝑛)
=

𝐻𝑛

𝜂(𝑄𝑛)
. (1)

3.2.2 Comparative statics of the pricing stage equilibrium

Proposition 2 describes some comparative statics for the pricing stage (i.e., under a fixed

number of firms).
15For example, for global comparative statics of the Cournot game as 𝜆 changes, the assumption is

assumed to hold for fixed 𝑛 and every 𝜆 ∈ [0,1]. For existence of a free entry equilibrium for a fixed 𝜆, it
is sufficient that the assumption hold for every 𝑛 ∈ R++ and that fixed 𝜆.

16Proposition 7 in Appendix B.3 studies the stability of the pricing stage equilibrium.
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Proposition 2. The following statements hold:

(i) total and individual quantity, and total surplus (resp. individual profit) are decreas-

ing (resp. increasing) in 𝜆,

(ii) individual profit is deceasing in 𝑛,

(iii) if 𝐸𝑃 ′(𝑄) < 2 (resp. 𝐸𝑃 ′(𝑄) > (1+𝜆)/𝜆) for every 𝑄 < 𝑄, then individual quantity

is decreasing (resp. increasing) in 𝑛 over 𝑛 ≥ 2,17

(iv) if ∆ > 0 (resp. ∆ < 0), then total quantity is increasing (resp. decreasing) in 𝑛.

Competition is business-stealing (i.e., 𝑞𝑛 is decreasing in 𝑛) under standard assumptions.

As in AL, for ∆ > 0 the Cournot market is quasi-competitive (i.e., 𝑄𝑛 is increasing in 𝑛)

while for ∆ < 0 it is quasi-anticompetitive (i.e., 𝑄𝑛 is decreasing in 𝑛). Also, increases in

overlapping ownership cause the price to increase and total surplus to fall.18

4 The entry stage

Assume that potential entrants have overlapping ownership with a coefficient of effective

sympathy 𝜆 ∈ [0,1]. Given that 𝑛 − 1 firms enter, it is optimal for an 𝑛-th firm to

enter if and only if (1 + 𝜆(𝑛− 1)) (Π (𝑛, 𝜆)− 𝑓) ≥ 𝜆(𝑛− 1) (Π (𝑛− 1,𝜆)− 𝑓). This can

equivalently be written as

Ψ(𝑛,𝜆) :=

own profit from entry⏞  ⏟  
Π(𝑛, 𝜆) −𝜆

=:Ξ(𝑛,𝜆)>0, entry externality on other firms⏞  ⏟  
(𝑛− 1) (Π (𝑛− 1, 𝜆)− Π(𝑛, 𝜆)) ≥

cost of entry⏞ ⏟ 
𝑓 , (2)

where Ξ(𝑛,𝜆) denotes the externality that the entry of the 𝑛-th firm poses on the other

firms, that is, the absolute value of the reduction in the aggregate profits of all other firms
17Of course, the condition 𝐸𝑃 ′(𝑄) > (1 + 𝜆)/𝜆 is very strong, especially given the assumption

𝐸𝑃 ′(𝑄) < (1 + 𝜆+Δ/𝑛)/𝐻𝑛 on 𝐿. Also, it pushes against profit concavity in own quantity, which can
make even make the monopolist’s problem ill-behaved. For example, with CESL demand, when 𝐸 > 2,
lim𝑄↓0(𝑃 (𝑄)𝑄− 𝐶(𝑄)) = +∞.

18Aggregate industry profits depend on the number of firms in the following way (see Appendix B
for details). Under IRS, monopoly maximizes aggregate industry profits. As we will see, this combined
with the fact that the Cournot market is quasi-anticompetitive for Δ < 0 will imply that monopoly
maximizes total surplus when Δ < 0. Similarly, under constant elasticity costs and non-DRS (𝐸𝐶 ≤ 1),
aggregate industry profits decrease with the number of firms. However, under DRS the effect of entry
on aggregate industry profits depends on two main factors: entry causes price to fall, but as more firms
enter, production is distributed across more firms, which induces savings in variable costs. For returns to
scale decreasing strongly enough the latter effect dominates and aggregate industry profits increase with
the number of firms. This is why multiple firms may enter in that case even when 𝜆 = 1.
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caused by the entry of the 𝑛-th firm.19 Ψ(𝑛,𝜆) is a firm’s own profit from entry minus the

part of the entry externality that is internalized by the firm (i.e., the entry externality

multiplied by 𝜆). We call Ψ(𝑛,𝜆) a firm’s “internalized profit” from entry. We assume that

when indifferent, firms enter. Then, 𝑞𝑛 is a free entry equilibrium if and only if

Ψ(𝑛,𝜆) ≥ 𝑓 > Ψ(𝑛+ 1,𝜆), (3)

which for 𝜆 = 0 reduces to the standard free entry condition Π (𝑛,0) ≥ 𝑓 > Π (𝑛+ 1,0).20

We assume that Ψ(𝑁,𝜆) < 𝑓 for every 𝜆.

In deciding whether to enter a firm compares the profit it will make to the cost of

entry and the negative externality its entry will pose to the other firms.21 Pre-existing

overlapping ownership directly alters the incentives of firms to enter in a way additional

to its effect on individual profit in the Cournot game.

The planner’s problem We will consider the problem of a total surplus-maximizing

planner who takes 𝜆 as given and chooses the number of firms that will compete à la

Cournot. Denote by 𝑛𝑜(𝜆) := argmax𝑛∈N TS𝑛 the number of firms that given 𝜆 maximizes

total surplus.22 Clearly, if the planner could choose both 𝑛 and 𝜆, she would set 𝜆 = 0,

since total surplus is decreasing in 𝜆. Define also ̂︀𝑛𝑜(𝜆) := argmax𝑛∈R+
TS𝑛, the number

of firms that given 𝜆 maximizes total surplus if we ignore the integer constraint on 𝑛.

We will also look at comparative statics with respect to 𝜆—including how free entry
19This externality can be further decomposed into two effects:

Ξ(𝑛,𝜆) =

profit-stealing⏞  ⏟  
(𝑛− 1)

Π (𝑛− 1, 𝜆)

𝑛
+
𝑛− 1

𝑛

change in aggregate industry profits⏞  ⏟  
[(𝑛− 1)Π (𝑛− 1, 𝜆)− 𝑛Π(𝑛, 𝜆)]

Even if the entry of the 𝑛-th firm did not affect aggregate industry profits, the firm still steals 1/𝑛-th of
the profit of each of the other 𝑛− 1 firms; this corresponds to the profit-stealing effect. At the same time,
the 𝑛-th firm’s entry affects aggregate industry profits—share (𝑛− 1)/𝑛 of which is earned by the other
𝑛− 1 firms—as shown in Proposition 9 in Appendix B.

20For 𝜆 = 1, (3) reduces to 𝑛Π(𝑛, 1)− (𝑛− 1)Π (𝑛− 1, 1) ≥ 𝑓 > (𝑛+ 1)Π (𝑛, 1)− 𝑛Π(𝑛, 1). Each firm
seeks to maximize aggregate profits, so firms enter as long as entry increases aggregate gross profits by
enough to cover entry costs. Hence, provided that the savings in variable costs are not large enough
to compensate for additional entry costs, only one firm enters. In the simulation of Figure 7(c) in the
appendix savings in variable costs are large enough compared to the fixed cost to make five firms enter
when 𝜆 = 1.

21If we compare this with the post-entry overlapping ownership case, where—modulo the integer
constraint—net profit is zero, we see that investors would prefer to become common owners before rather
than after entry.

22Since monopoly net profit is positive, it follows that 𝑛𝑜(𝜆) ≥ 1. Also, the planner can give subsidies
in case the net profit in the symmetric Cournot equilibrium is negative.
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equilibrium total surplus varies with 𝜆. This way we will deduce the optimal choice of a

planner that only controls overlapping ownership and allows firms to freely enter.

Existence and uniqueness of equilibrium Define ∆Π(𝑛,𝜆) := Π (𝑛, 𝜆)−Π (𝑛− 1, 𝜆) <

0, the decrease in individual profit caused by the entry of an extra firm. Proposition 3

identifies a condition under which a unique equilibrium exists. We treat 𝑛 as a continuous

variable and differentiate with respect to it.

Proposition 3. Assume that for every 𝑛 ∈ [1,+∞)

𝐸ΔΠ,𝑛(𝑛,𝜆) := −
𝜕ΔΠ(𝑛,𝜆)

𝜕𝑛

∆Π(𝑛,𝜆)
(𝑛− 1) <

(𝑛− 1) (1 + 𝜆+ 𝜀(𝑛,𝜆))

1 + 𝜆(𝑛− 1)

where 𝐸ΔΠ,𝑛 is (a measure of) the elasticity with respect to 𝑛 of the slope of individual

profit with respect to 𝑛, and 𝜀(𝑛,𝜆) := 𝜕Π(𝜈, 𝜆) /𝜕𝜈|𝜈=𝑛−1 /∆Π(𝑛,𝜆)− 1. Then, Ψ(𝑛,𝜆)

is decreasing in 𝑛, and thus a unique equilibrium with free entry exists.

Remark 4.1. 𝜀(𝑛,𝜆) will be close to 0 since by the mean value theorem ∆Π(𝑛,𝜆) =

𝜕Π(𝜈,𝜆) /𝜕𝜈|𝜈=𝜈* for some real number 𝜈* ∈ [𝑛− 1,𝑛].

Remark 4.2. For example, it can be checked that for 𝜆 < 1, Ψ(𝑛,𝜆) is indeed decreasing

in 𝑛 under linear demand and linear-quadratic cost with 𝑎 > 𝑐1 ≥ 0 and 𝑐2 ≥ 0.

The condition in Proposition 3 requires that equilibrium profit in the pricing stage be

not too convex in 𝑛; that is, the rate at which individual profit decreases with 𝑛 should

not decrease (in absolute value) too fast with 𝑛. With regard to internalized profit Ψ(𝑛,𝜆),

see (2), an increase in 𝑛 (i) decreases the first term Π(𝑛,𝜆), (ii) tends to increase the entry

externality Ξ(𝑛,𝜆) through the increase in (𝑛 − 1) (as entry affects the profits of more

firms), which tends to decrease Ψ(𝑛,𝜆), and (iii) affects Ξ(𝑛,𝜆) through its effect on the

magnitude of the entry externality Π(𝑛− 1, 𝜆) − Π(𝑛, 𝜆) on a single firm. As long as

the per-firm entry externality does not decrease with 𝑛 too fast, Ψ(𝑛,𝜆) decreases with

𝑛.23 We maintain the assumption that Ψ(𝑛,𝜆) is decreasing in 𝑛. Then, for a given 𝜆, the
23For example, if Π(𝑛,𝜆) is concave in 𝑛, then the condition is satisfied given 𝜀(𝑛,𝜆) ≈ 0. For 𝜆 = 0 the

condition reduces to Π(𝑛,𝜆) being decreasing in 𝑛, which has been shown in Proposition 2. For 𝜆 = 1, the
proposition requires that as the number of firms increases, aggregate industry profits increase (e.g., due
to variable cost-savings) by less and less. The case 𝜆 = 1 can be special. Under CRS, (gross) aggregate
industry profits are independent of the number of firms, so Ψ(𝑛,𝜆) = 0 for every 𝑛 ≥ 2, and thus only one
firm enters in equilibrium.
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number ̂︀𝑛*(𝜆) of firms that enter in equilibrium if we ignore the integer constraint on 𝑛 is

pinned down by Ψ(̂︀𝑛*(𝜆),𝜆) = 𝑓 , and 𝑛*(𝜆) = ⌊̂︀𝑛*(𝜆)⌋ is the number of firms that enter

if we respect the integer constraint.

5 The effects of overlapping ownership under free entry

This section studies the following concerns about the anti-competitive effects that overlap-

ping ownership can have: suppress entry by inducing firms to internalize the effect their

entry would have on other firms’ profits (subsections 5.1 and 5.2), magnify the impact

of entry costs on entry (subsection 5.3), and induce entry which is not welfare optimal

(subsection 5.4).

5.1 Overlapping ownership effects on entry

The effect of changes in 𝜆 on entry will be determined by the sign of the (partial) derivative

of Ψ(𝑛,𝜆) with respect to 𝜆. If 𝜕Ψ(𝑛,𝜆)/𝜕𝜆 is positive (resp. negative), then increases in 𝜆

should be met with increases (resp. decreases) in 𝑛 for (3) to continue to hold. Proposition

4 studies the effects of overlapping ownership on entry.

Proposition 4. Equilibrium entry (locally) changes with 𝜆 in direction given by24

sgn

{︂
𝑑̂︀𝑛*(𝜆)

𝑑𝜆

}︂
= sgn

{︃ increase in own
profit from entry⏞  ⏟  

1

𝜆

𝐸Π,𝜆(̂︀𝑛*(𝜆),𝜆)̂︀𝐸Π,𝑛(̂︀𝑛*(𝜆),𝜆)
−

change in magnitude
of entry externality⏞  ⏟  
𝐸Ξ,𝜆 (̂︀𝑛*(𝜆),𝜆) −

increase in internalization
of entry externality⏞ ⏟ 

1

}︃

where ̂︀𝐸Π,𝑛(𝑛,𝜆) := − (Π (𝑛, 𝜆)− Π(𝑛− 1, 𝜆)) (𝑛 − 1)/Π(𝑛,𝜆) > 0 is a measure of the

elasticity of individual profit with respect to 𝑛, 𝐸Π,𝜆(𝑛,𝜆) := 𝜆𝜕Π(𝑛,𝜆)/𝜕𝜆/Π(𝑛,𝜆) > 0 is

the elasticity of individual profit with respect to 𝜆, and 𝐸Ξ,𝜆(𝑛,𝜆) := 𝜆𝜕Ξ(𝑛,𝜆)/𝜕𝜆/Ξ(𝑛,𝜆)

is the elasticity of the entry externality with respect to 𝜆.25

Remark 5.1. With the integer constraint 𝑛*(𝜆) does not change with an infinitesimal

change 𝑑𝜆 in 𝜆 unless we are the knife-edge case where Ψ(𝑛*(𝜆),𝜆) = 𝑓 . Thus, as 𝜆

increases everything will behave as in the case with a fixed number of firms, until 𝜆 reaches

knife-edge cases causing a jump in 𝑛*(𝜆) as implied by Proposition 4.
24For 𝜆 = 0, cancel the 𝜆 in 1/𝜆 with the one in 𝐸Π,𝜆(𝑛,𝜆).
25𝐸Ξ,𝜆 which can also be seen as a measure of the elasticity with respect to 𝜆 of the slope of individual

profit with respect to 𝑛.
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An increase in overlapping ownership affects entry through three separate channels.

On the one hand, it increases the degree of internalization of the negative externality of

entry on other firms’ profits; this increased internalization tends to limit entry. On the

other hand, it tends to increase equilibrium profits in the Cournot game, which tends to

increase entry.26 Last, there is a channel with an ambiguous effect on entry: overlapping

ownership changes the magnitude of the entry externality; that is, it affects how strongly

equilibrium profits in the pricing stage decrease with the number of firms. A high (and

positive) elasticity 𝐸Ξ,𝜆 of the entry externality Ξ with respect to 𝜆 tends to make entry

decreasing in 𝜆, while 𝐸Ξ,𝜆 being negative tends to make entry increasing in 𝜆. Indeed,

the magnitude of the entry externality Ξ(𝑛*(𝜆),𝜆) can increase or decrease with 𝜆.27

These three channels are not specific to our assumption of Cournot competition in the

pricing stage. Nevertheless, the direction of the change in the entry externality Ξ(𝑛,𝜆) and

the magnitudes of the different channels depend on the market structure. For example,

the three channels are also present in the circular-market model with common ownership

of Sato and Matsumura (SM; 2020)—although the authors discuss only the first two

channels. The direction of the third channel’s effect is not ambiguous in their model,

where the magnitude of the entry externality monotonically increases with the extent of

overlapping ownership.

Remark 5.2. Evaluating the expressions in Propositions 3 and 4 requires evaluation

of profits and derivatives thereof in different equilbria of the pricing stage (with 𝑛 and

𝑛− 1 firms). This is possible under parametric assumptions while the problem remains

intractable in general. In what follows, we present numerical results.28

Numerical Result 1. Under CESL demand, CRS, 𝜆 < 1 and ̂︀𝑛*(𝜆) ≥ 2, it holds that

(i) entry is decreasing in 𝜆 if (a) 𝐸 ∈ (1,2) and 𝜆 ≥ 1/2, or (b) 𝐸 < 1 and 𝜆 ≥ 2/5,

(ii) entry is increasing in 𝜆 if ̂︀𝑛*(𝜆) ≥ 7 and (a) 𝐸 ∈ (1,2) and 𝜆 ≤ 1/4, or (b) 𝐸 ∈ [0,1)

and 𝜆 ≤ 1/5,
26The model of Stenbacka and Van Moer (2022), where two firms choose how much to invest in product

innovation and can only produce if they successfully innovate, has two similar forces.
27Under the parametrizations of Figures 7(a) and 7(b) in the appendix, where entry is low, Ξ is

decreasing in 𝜆. Ξ being decreasing in 𝜆 is expected under low entry given Proposition 16 on the modified
model in section B.11 of Appendix B where firms decide whether to enter by examining a differential
version of (2). However, Ξ is increasing in 𝜆 under the parametrization of Figure 2(a).

28Propositions 14 and 15 in Appendix B are differential versions of Propositions 3 and 4, respectively.
Corollary 15.1 shows that in the modified model of Appendix B, total quantity decreases with 𝜆 under
constant marginal costs and general assumptions on demand.
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(iii) the total quantity is decreasing in 𝜆.

For high enough levels of overlapping ownership further increases in these levels

suppress entry. In the U.S. for example, common ownership levels among publicly listed

firms have indeed been “high enough” during at least the last decade (see Figure 1 and

Azar and Vives, 2021; Backus et al., 2021b; Amel-Zadeh et al., 2022).29 Thus, if private

firms are treated as a competitive fringe that only affects the residual demand in the

oligopolies of public firms, then further increases in common ownership among the latter

are likely to reduce entry by public firms in product markets where other public firms are

already present (see section 6.2).

These results can be loosely interpreted as follows. For 𝜆 low and entry high, competi-

tion is intense, so that there is ample room for an increase in 𝜆 to soften it and increase

individual profit in the Cournot game. For 𝜆 high, pricing competition is already soft

enough so that the increase in the internalization of the entry externality (due to an

increase in 𝜆) dominates and entry decreases with 𝜆.

Under ∆ > 0, when entry is decreasing in 𝜆, the price will be increasing in 𝜆, since

both the increase in 𝜆 and the resulting decrease in entry tend to increase the price. On

the other hand, for low levels of overlapping ownership and not too low entry, overlapping

ownership spurs entry (up to the point where 𝜆 is too high and then entry decreases with

it). However, Numerical Result 1 asserts that with CRS the direct effect of 𝜆 on the total

quantity dominates, so that the price always increases with 𝜆.

Last, a few words on the interpretation of this comparative statics exercise on a

change in 𝜆 are in place. Strictly speaking, this exercise amounts to changing the level

of overlapping ownership before firms make their entry decisions. Therefore, it can be

thought of as a counterfactual or a comparison of otherwise similar markets that have

different levels of overlapping ownership (before firms enter). When interpreting changes

in 𝜆 in a market where firms have already entered, one should consider the following. If

our model predicts that a change in 𝜆 will cause the number of firms to fall, whether

incumbent firms will indeed exit can depend on the extent to which the entry cost 𝑓 is a

sunk cost or a fixed operating cost that they can avoid by exiting.
29This means that the average value of 𝜆 (across pairs of firms) has surpassed 0.4− 0.5 in recent years.

Clearly, the average 𝜆 estimate depends on the particular corporate control assumptions. Also, notice that
we compare the average value of 𝜆 to the threshold of 𝜆 in our model of symmetric firms and overlapping
ownership structure.
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5.2 Overlapping ownership effects: the linear-quadratic model

We examine in this section the case of linear demand and quadratic costs under DRS,

CRS or IRS and the impact of 𝜆 on entry, prices, quantities and welfare.

In Figure 2(a), for 𝜆 low, the rise in own profit due to increases in 𝜆 dominates the other

two channels—in this parametrization the magnitude of the entry externality increases

with 𝜆.30 However, for high 𝜆 competition in the product market is already soft enough,

so that further increases in 𝜆 suppress entry.

Within the simple framework of linear demand and CRS or quadratic costs, equilibrium

total surplus can behave in multiple different ways as the extent of overlapping ownership

changes.31 (i) It can have a U relationship with 𝜆 (Figure 2(a)), so that an intermediate

level of overlapping ownership actually minimizes total surplus. (ii) It can have an

inverted-U relationship with 𝜆 (Figure 7(b) in the appendix) with an intermediate level of

overlapping ownership maximizing total surplus. (iii) It can be monotonically increasing

(Figure 7(a) in the appendix) in 𝜆 with complete indexation of the industry being optimal

(𝜆 = 1). (iv) Last, it can be decreasing (Figure 7(c) in the appendix) in 𝜆 with 𝜆 = 0

maximizing total surplus. With CRS, the average variable cost of production is not

affected by entry. Thus, the planner has to balance the effect of overlapping ownership—

direct (in the Cournot game), and indirect (through its effect on entry)—on the total

quantity and price, and on the total entry costs (through its effect of entry). For low

entry cost (Figure 2(a)), the planner chooses no overlapping ownership, while for higher

entry cost, intermediate values of 𝜆 (Figure 7(b) in the appendix) or even 𝜆 = 1 can be

optimal (Figure 7(a) in the appendix). With IRS (Figure 2(b)), an increase in overlapping

ownership can both decrease the price and increase total surplus. Particularly, choosing 𝜆

high enough (e.g., 𝜆 = 1)—inducing a monopoly—is socially optimal under both a total

surplus and a consumer surplus standard. Also, a planner that only controls overlapping

ownership will still achieve what a planner that can control both would (i.e., a monopoly).

Corollary 4.1 studies how entry, the total quantity and total surplus change with

overlapping ownership around 𝜆 = 0. Figure 3 summarizes the results.

Corollary 4.1. Ignore the integer constraint on 𝑛 (so that entry is given by ̂︀𝑛*(𝜆)). Let
30Also, under the IRS parametrization of Figure 2(b), the number of firms increases in 𝜆 up to a point

where it jumps to 1.
31See Figure 2, as well as Figure 7 in the appendix. In describing the relationship of equilibrium total

surplus with 𝜆 we ignore the integer constraint on 𝑛, which is taken into account in the figures.
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Figure 2: Equilibrium and planner outcomes for varying 𝜆

(a) linear demand, CRS: 𝑎 = 2, 𝑏 = 𝑐 = 1, 𝑓 = 0.01
(b) linear demand, linear-quadratic costs (IRS): 𝑎 =

10, 𝑏 = 1, 𝑐1 = 9, 𝑐2 = −3/2, 𝑓 = 0.01

Note: black lines represent values in equilibrium; blue represent values in the planner’s solution.

demand be linear and cost be linear-quadratic with 𝑎 > 𝑐1 ≥ 0, 𝑐2 > −2𝑏𝑐1/𝑎, 𝑐2 ̸= −𝑏,

and assume ̂︀𝑛*(0) ≥ 2. Then, there exist thresholds 𝑛(𝑏,𝑐2) ∈ R3 (that depend on 𝑏 and

𝑐2) such that

(i) if 𝑐2 > −3𝑏/2, then 𝑛3(𝑏,𝑐2) > 𝑛2(𝑏,𝑐2) > 2 and starting from 𝜆 = 0: (a) entry

is locally increasing (resp. decreasing) in 𝜆 if ̂︀𝑛*(0)
(resp. <)

> 𝑛3(𝑏,𝑐2), (b) the total

quantity is locally decreasing in 𝜆,

(ii) if 𝑐2 < −3𝑏/2, then 𝑛3(𝑏,𝑐2) > 𝑛2(𝑏,𝑐2) > 𝑛1(𝑏,𝑐2) > 2 and starting from 𝜆 = 0: (a)

entry is locally increasing (resp. decreasing) in 𝜆 if ̂︀𝑛*(0)
(resp. <)

> 𝑛3(𝑏,𝑐2), (b) the

total quantity is locally increasing (resp. decreasing) in 𝜆 if ̂︀𝑛*(0)
(resp. >)

< 𝑛1(𝑏,𝑐2),

(iii) the total surplus is locally increasing (resp. decreasing) in 𝜆 if ̂︀𝑛*(0)
(resp. >)

< 𝑛2(𝑏,𝑐2).

Parts (i-a) and (ii-a) of the Corollary extend our finding that if without overlapping

ownership many (resp. few) firms enter, then marginally increasing overlapping ownership

will increase (resp. decrease) entry.

Parts (i-b) and (ii-b) show that introducing a small amount of overlapping ownership

may only increase the total quantity if there are significant IRS (so that the Cournot

market is quasi-anticompetitive) and entry is low. In that case, the softening of pricing
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Figure 3: Comparative statics around 𝜆 = 0 under linear demand and linear-quadratic cost

2 𝑛1(𝑏,𝑐2) 𝑛2(𝑏,𝑐2) 𝑛3(𝑏,𝑐2)
̂︀𝑛*(0)

Entry decreasing in 𝜆 Entry increasing in 𝜆

Total surplus increasing in 𝜆 Total surplus decreasing in 𝜆

Total quantity increasing in 𝜆 Total quantity decreasing in 𝜆

Note: see Corollary 4.1 for precise statement. 𝑛1(𝑏,𝑐2) > 2 only under significant IRS.

competition due to the increase in overlapping ownership is dominated by the concurrent

decrease in entry—which tends to increase the total quantity since the market is quasi-

anticompetitive. This yields a sufficient condition for consumer surplus to be maximized

by some 𝜆 > 0. As shown in Figure 2(b), this condition is not necessary, since with IRS a

positive level of overlapping ownership can be optimal under a consumer surplus standard

even when overlapping ownership decreases the total quantity around 𝜆 = 0.

Part (iii) shows that marginally increasing 𝜆 above 0 increases total surplus if and only

if entry is low. Particularly, the direct (negative) effect of an increase in 𝜆 on total surplus

is dominated by the alleviation of excessive entry (since for 𝜆 = 0 entry is excessive) due

to the increase in 𝜆. We thus obtain another sufficient condition: if absent overlapping

ownership, entry would be low, then a planner that regulates overlapping ownership (but

not entry) should choose a positive level of it.

5.3 Entry cost effect on entry

Proposition 5 below studies the effect of the entry cost on entry, as well as how this effect

depends on the extent of overlapping ownership (with the level of entry held fixed). Note

that 𝜆 affects the slope 𝑑̂︀𝑛*(𝜆)/𝑑𝑓 directly but also through its effect on 𝑛*(𝜆). We are

interested in the direct effect so we keep 𝑛*(𝜆) fixed as we vary 𝜆.

Proposition 5. Ignore the integer constraint on 𝑛 (so that entry is given by ̂︀𝑛*(𝜆)). Then

(i) entry is decreasing in the entry cost,

(ii) if 𝜆 increases and other parameters 𝑥 (e.g., demand, cost parameters) change infinites-

imally so that ̂︀𝑛*(𝜆) stays fixed and 𝜕2Ψ(𝑛,𝜆)/(𝜕𝑥𝜕𝑛) = 0 (e.g., (𝑓,𝜆) infinitesimally
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changes in direction v := (−(𝑑̂︀𝑛*(𝜆)/𝑑𝜆)/(𝑑̂︀𝑛*(𝜆)/𝑑𝑓),1)), then |𝑑̂︀𝑛*(𝜆)/𝑑𝑓 | changes

in direction given by sgn
{︁
𝜕2Ψ(𝑛,𝜆) /(𝜕𝜆𝜕𝑛)|𝑛=̂︀𝑛*(𝜆)

}︁
.

As long as Ψ(𝑛,𝜆) is decreasing in 𝑛, the results of Proposition 5 are not specific to

Cournot competition. Part (ii) says that if an increase in 𝜆 makes the internalized profit

in the pricing stage equilibrium more (resp. less) strongly decreasing in the number of

firms, then an increase in the entry cost needs to be met with a smaller (resp. larger)

increase (resp. decrease) in the number of firms for the condition Ψ(̂︀𝑛*(𝜆),𝜆) = 𝑓 to

continue to hold.

Figure 4 explains the reasoning behind this. There are initially 𝑛* = 3 firms, which can

be a result of 𝜆 = 0 and 𝑓 = 𝑓1, or 𝜆 = 1/2 and 𝑓 = 𝑓2. Also, an increase of 𝜆 from 0 to 1/2

makes the internalized profit less strongly decreasing in 𝑛 (i.e., 𝜕2Ψ(𝑛,𝜆) /(𝜕𝜆𝜕𝑛) > 0).32

Thus, an increase in the entry cost by 𝜀 will decrease entry by more when 𝜆 = 1/2 (and

initially 𝑓 = 𝑓2) compared to when 𝜆 = 0 (and initially 𝑓 = 𝑓1).

Figure 4: Entry cost effect on entry mediated by 𝜆 under linear demand and CRS

0 1 2 4 5 6

0.05

0.1

0.15

0.2

0.25

𝑛* = 3

𝑓1

𝑓1 + 𝜀

𝑓2

𝑓2 + 𝜀

𝑛

Ψ
(𝑛
,𝜆
)

𝜆 = 0
𝜆 = 1/2

Note: 𝑎 = 2, 𝑏 = 1, 𝑐 = 1. The black and blue solid lines represent Ψ(𝑛,0) and Ψ(𝑛,1/2), respectively.
The black and blue dashed lines are tangent to the corresponding solid lines at 𝑛 = 𝑛*.

Numerical result 2 provides conditions under which the cross derivative of Ψ(𝑛,𝜆)

32For example, at 𝑛 = 3, the slope of Ψ(𝑛,1/2) (see the tangent blue dashed line) is smaller in absolute
value than the slope of Ψ(𝑛,0) (see the tangent black dashed line). Ψ(𝑛,𝜆) decreases less strongly with 𝑛
when 𝜆 = 1/2 than when 𝜆 = 0.
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is positive, which by Proposition 5 implies that overlapping ownership exacerbates the

negative effect of the entry cost on entry.

Numerical Result 2. Under CESL demand and CRS, 𝜕2Ψ(𝑛,𝜆) /(𝜕𝜆𝜕𝑛) > 0 if (i)

𝐸 ∈ (1,1.7] and 𝑛 ∈ [2,7], or (ii) 𝐸 < 1 and 𝑛 ∈ [2,8].

Under CESL demand and CRS, markets with low entry are particularly susceptible to

further decreases in entry when there is overlapping ownership. In such markets, apart

from the direct effect it has on entry, overlapping ownership also makes entry more strongly

decreasing in the entry cost. This means that overlapping ownership could exacerbate the

negative macroeconomic implications of rising entry costs documented by Gutiérrez et al.

(2021) in the U.S. over the past 20 years. Empirical estimates for various markets place 𝐸

in the range specified in Numerical Result 2.33

5.4 Equilibrium entry versus the socially optimal level of entry

We now study whether equilibrium entry is excessive or insufficient TS𝑛 is single-peaked

and ignoring the integer constraint on 𝑛.34 The internalization of the entry externality

makes the analysis significantly different from the one without overlapping ownership. We

have that

𝑑TS𝑛

𝑑𝑛

⃒⃒⃒⃒
𝑛=̂︀𝑛*(𝜆)

= Π(̂︀𝑛*(𝜆),𝜆)− 𝑓 − (1 + 𝜆(𝑛− 1))𝑄𝑛𝑃
′(𝑄𝑛)

𝜕𝑞𝑛
𝜕𝑛

⃒⃒⃒⃒
𝑛=̂︀𝑛*(𝜆)

∝ 𝜆
Ξ (̂︀𝑛*(𝜆),𝜆)

Π (̂︀𝑛*(𝜆),𝜆)

⏟  ⏞  
>0

internalized
normalized

entry externality

+

⎛⎜⎜⎜⎝1−
𝐸𝐶

(︀
𝑞̂︀𝑛*(𝜆)

)︀
− 1

𝑃
(︀
𝑄̂︀𝑛*(𝜆)

)︀
𝐴𝐶

(︀
𝑞̂︀𝑛*(𝜆)

)︀ − 1

⎞⎟⎟⎟⎠
⏟  ⏞  

>0
if DRS, then < 1
if CRS, then = 1
if IRS, then > 1;

𝜕𝑞𝑛
𝜕𝑛

𝑛

𝑞𝑛

⃒⃒⃒⃒
𝑛=̂︀𝑛*(𝜆)

⏟  ⏞  
<0 if 𝐸𝑃 ′(𝑄̂︀𝑛*(𝜆))<2

and ̂︀𝑛*(𝜆)≥2;
if negative, the higher

in absolute value,
the stronger the

business-stealing effect

, (4)

where we have used the Ψ(̂︀𝑛*(𝜆),𝜆) = 𝑓 entry condition and the pricing formula (1).

Let us have a closer look at the two terms in the above expression. Ξ (𝑛,𝜆) /Π(𝑛,𝜆) ≡
33See for example Duso and Szücs (2017), Mrázová and Neary (2017) and Bergquist and Dinerstein

(2020).
34Lemma 2 in Appendix B provides sufficient conditions for it to be concave. Ignoring the integer

constraint is not as important, since as we will see both cases of excessive and insufficient entry are
possible (and by more than one firm under the integer constraint as can be seen in Figure 5).
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(𝑛− 1)(Π (𝑛− 1,𝜆)− Π(𝑛,𝜆))/Π(𝑛,𝜆) is the normalized entry externality.35

1− 𝐸𝐶(𝑞)− 1
𝑃 (𝑛𝑞)
𝐴𝐶(𝑞)

− 1
=

𝑃 (𝑛𝑞)− 𝐶 ′(𝑞)

𝑃 (𝑛𝑞)− 𝐴𝐶(𝑞)
> 0

is a (coarse) measure of the elasticity of the cost function, and thus of the extent to which

returns to scale are decreasing or increasing.36 For example, under constant elasticity

costs, (𝐸𝐶(𝑞)− 1) / (𝑃 (𝑛𝑞)/(𝐴𝐶(𝑞))− 1) is higher than (resp. lower than/equal to) 0 if

and only if returns to scale are decreasing (resp. increasing/constant).

We see then that whether entry is excessive or insufficient will depend on (i) the level

of overlapping ownership 𝜆, (ii) the magnitude of the normalized entry externality, (iii)

whether returns to scale are increasing or decreasing and to what extent, and (iv) whether

competition is business-stealing or business-enhancing, and to what degree
⃒⃒⃒
𝜕𝑞𝑛
𝜕𝑛

𝑛
𝑞𝑛

⃒⃒⃒
.

Under business-stealing competition and all else constant, we distinguish the following

forces. Increases in the level of overlapping ownership or the magnitude of the entry

externality, tend to make entry insufficient; these forces are complements in inducing

insufficient entry. Also, DRS tend to make entry insufficient, since the planner takes

advantage of variable-cost savings due to entry to a greater extent than firms do. Firms

do not fully internalize the variable cost-savings of entry (except in the case of complete

indexation) and at the same time more strongly consider the effect of entry on profits

through the price. On the other hand, increases in the magnitude of the business-stealing

effect and IRS tend to make entry excessive.

Under business-enhancing competition, entry is always insufficient. This can be seen

as a generalization of the result of Amir et al. (2014), who prove that entry is insufficient

under business-enhancing competition and 𝜆 = 0.

We now formally compare equilibrium entry ̂︀𝑛*(𝜆) to the socially optimal level of entrŷ︀𝑛𝑜(𝜆). First, define

𝜑 (𝑛,𝜆) :=
(𝑛− 1) (Π (𝑛, 𝜆)− Π(𝑛− 1, 𝜆))

𝑛𝜕Π(𝑛,𝜆) /𝜕𝑛
≈ 1,

which is positive, since the numerator and denominator are negative. It is close to 1, since

(i) by the mean value theorem Π(𝑛, 𝜆)− Π(𝑛− 1, 𝜆) = 𝜕Π(𝜈,𝜆) /𝜕𝜈|𝜈=𝜈* for some real
35It is equal to (𝑛− 1) times the percentage increase in the profit of each of the 𝑛− 1 other firms when

the 𝑛-th firm decides not to enter compared to the case where it did enter.
36It is positive by the pricing formula (1) and since gross profit is positive in equilibrium.
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number 𝜈* ∈ [𝑛− 1,𝑛], and (ii) (𝑛− 1)/𝑛 ≈ 1 for 𝑛 not too small.37

Proposition 6. Assume that TS𝑛 is single-peaked in 𝑛, 1 − 𝜆𝜑 (̂︀𝑛*(𝜆),𝜆) > 0. Then̂︀𝑛*(𝜆)
(resp. <)

> ̂︀𝑛𝑜(𝜆) if and only if

𝐸𝑃 ′
(︀
𝑄̂︀𝑛*(𝜆)

)︀ (resp. >)
< 𝐻−1

𝑛

[︂
1 + 𝜆

(︂
1− 𝜑 (𝑛,𝜆)

1− 𝜆𝜑 (𝑛,𝜆)

∆(𝑄𝑛, (𝑛− 1) 𝑞𝑛)

1 + 𝜆(𝑛− 1)

)︂]︂⃒⃒⃒⃒
𝑛=̂︀𝑛*(𝜆)

.

Substituting 𝜆 = 0 we recover the standard excessive entry result. Entry is excessive if

and only if 𝐸𝑃 ′
(︀
𝑄̂︀𝑛*(𝜆)

)︀
< ̂︀𝑛*(𝜆), which is indeed satisfied under standard assumptions on

demand.38 Proposition 6 also asserts that entry is still excessive unless there are DRS

(with 𝐶 ′′, and thus ∆, high).39 Indeed, the following remarks show this in more detail.

Remark 5.3. If ∆(𝑄̂︀𝑛*(𝜆),(𝑛 − 1)𝑞̂︀𝑛*(𝜆)) ≤ [1+𝜆(̂︀𝑛*(𝜆)−1)][1−𝜆𝜑(̂︀𝑛*(𝜆),𝜆)]
𝜑(̂︀𝑛*(𝜆),𝜆)

and 𝐸𝑃 ′
(︀
𝑄̂︀𝑛*(𝜆)

)︀
<

𝐻−1̂︀𝑛*(𝜆), then ̂︀𝑛*(𝜆) > ̂︀𝑛𝑜(𝜆).

Remark 5.4. If for simplicity we let 𝜑 (̂︀𝑛*(𝜆),𝜆) = 1, then if 𝐶 ′′(𝑞̂︀𝑛*(𝜆)) ≤ 0, ̂︀𝑛*(𝜆) ≥ 2

and 𝐸𝑃 ′
(︀
𝑄̂︀𝑛*(𝜆)

)︀
< 2− (̂︀𝑛*(𝜆))−1, then ̂︀𝑛*(𝜆) > ̂︀𝑛𝑜(𝜆).

Remark 5.5. If ∆ < 0, then (i) 𝑛𝑜(𝜆) = 1 for any 𝜆 ∈ [0,1], as 𝑛 = 1 maximizes both 𝑄𝑛

and 𝑛Π(𝑛,𝜆), and (ii) for 𝜆 = 1, 𝑛*(1) = 𝑛𝑜(1) = 1.

On the other hand, under DRS and high levels of overlapping ownership, entry is

insufficient. The numerical simulations in Figure 5 verify the result. Particularly, Remark

5.6 shows that all else fixed, an increase in the elasticity 𝐸𝐶 of the cost function tends to

make entry insufficient.

Remark 5.6. If 𝐶 ′′ > 0, there exists ̃︀𝑞 ∈ [0,𝑞̂︀𝑛*(𝜆)] such that

∆(𝑄𝑛, (𝑛− 1) 𝑞𝑛)

1 + 𝜆(𝑛− 1)
=

1− 𝜆

1 + 𝜆(𝑛− 1)
+

𝐶 ′′(𝑞𝑛)

𝐶 ′′(̃︀𝑞)
(︃ 𝑃 (𝑄𝑛)−𝐶′(0)

𝐴𝐶(𝑞𝑛)

𝑃 (𝑄𝑛)
𝐴𝐶(𝑞𝑛)

− 𝐸𝐶(𝑞𝑛)
− 1

)︃
,

37For Π(𝑛, 𝜆) strictly convex in 𝑛, in which case individual profit decreases with 𝑛 at a decreasing (in
absolute value) rate, (Π (𝑛, 𝜆)−Π(𝑛− 1, 𝜆)) /(𝜕Π(𝑛,𝜆) /𝜕𝑛) > 1, which counterbalances (𝑛− 1)/𝑛 < 1.
The numerical results of Figure 8 in the Appendix verify that 𝜑 (𝑛,𝜆) ≈ 1.

38Indeed, given ̂︀𝑛*(𝜆) ≥ 2 and Δ > 0, Proposition 2 asserts that the total quantity in the pricing stage
is increasing in 𝑛 and competition is business-stealing, which are the conditions under which Mankiw
and Whinston (1986) show excessive entry. However, we see that Δ > 0 is not necessary, consistent with
Amir et al. (2014), who show excessive entry under business-stealing competition and Δ > 0 or Δ < 0.

39Notice that the right-hand side in Proposition 6 is decreasing in Δ. The results of Proposition 6
closely resemble those of Proposition 17—which compares ̂︀𝑛*(𝜆) and ̂︀𝑛𝑜(𝜆) in the model where firms’
entry decisions are based on a differential version of (2)—in section B.11 of Appendix B. The difference is
that Proposition 6 requires the correction term 𝜑, which is replaced with exactly 1 in Proposition 17.
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evaluated at 𝑛 = ̂︀𝑛*(𝜆), so (all else constant) the right-hand side in the condition of

Proposition 6 is decreasing in 𝐸𝐶(𝑞𝑛).

Figure 5: Equilibrium versus socially optimal entry under linear demand and quadratic costs

Note: 𝑎 = 2, 𝑏 = 1, 𝑓 = 0.05.

Remark 5.7 shows that if instead of a total surplus, the planner follows a consumer

surplus standard, then entry is insufficient (resp. excessive) when returns to scale are at

most mildly increasing (resp. sufficiently increasing). In the case of significant IRS (i.e.,

∆ < 0), as we have already observed in Figure 2(b), an increase in overlapping ownership

can stop excessive entry making the market achieve the planner’s solution (under both a

consumer and a total surplus standard).

Remark 5.7. Under a consumer surplus standard

(i) if ∆ > 0, then 𝑛𝑜(𝜆) = ∞ (since 𝑄𝑛 is increasing in 𝑛), so 𝑛*(𝜆) < 𝑛𝑜(𝜆),

(ii) if ∆ < 0, then 𝑛𝑜(𝜆) = 1 (since 𝑄𝑛 is decreasing in 𝑛), so 𝑛*(𝜆) ≥ 𝑛𝑜(𝜆).

Last, Remark 5.8 studies the case of linear demand and linear-quadratic cost.

Remark 5.8. Let 𝜆 = 1, demand be linear and cost be linear-quadratic with 𝑎 > 𝑐1 ≥ 0

and 𝑐2 > −2𝑏𝑐1/𝑎. If 𝑐2 > 0, then ∆ > 0 and there exists 𝑓 > 0 such that ̂︀𝑛*(𝜆)
(resp. <)

>̂︀𝑛𝑜(𝜆) if and only if 𝑓
(resp. <)

> 𝑓 , where 𝑓 is increasing (resp. decreasing) in 𝑎− 𝑐1 (resp.

𝑏) and single-peaked in 𝑐2 with the peak at 𝑐2 = 3𝑏. If instead 𝑐2 ≤ 0, then ∆ ≤ 0 and

𝑛*(1) = 𝑛𝑜(1) = 1.
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In a fully-indexed industry (𝜆 = 1) a monopoly arises in the free entry equilibrium

under non-DRS, which coincides with the entry-controlling planner’s solution. However,

if there are DRS, then entry is insufficient when the entry cost 𝑓 is low, the market is

large (i.e., 𝑎− 𝑐1 high) and/or the demand is highly elastic (i.e., 𝑏 low).

6 Extensions and robustness

6.1 Post-entry overlapping ownership

Post-entry overlapping ownership applies to the case of a new industry that is to mostly

be populated by start-ups without overlapping ownership that will develop ownership

links after entry.40 In this case, firms do not internalize the negative externality their

entry has on other firms, as in the standard Cournot model with free entry. Thus, modulo

the integer constraint on the number of firms, firms enter until the individual gross profit

is equal to the entry cost, so that in equilibrium the net profit is zero. Nevertheless, when

deciding whether to enter, they take into account how overlapping ownership will affect

product market outcomes. Naturally, an increase in the degree of post-entry overlapping

ownership spurs entry, since it tends to increase profits by softening pricing competition

(see Proposition 2). However, section B.9 in the Appendix (which studies the model with

post-entry overlapping ownership) shows that the anti-competitive effect of overlapping

ownership prevails causing price to increase and total surplus to fall. The results on the

effects of post-entry overlapping ownership are schematically summarized in Figure 6.

The comparison between the equilibrium and the optimal level of entry also changes

since the result on the tendency for excessive entry under business-stealing competition

generalizes. Entry is never insufficient by more than one firm (compared to the level

of entry chosen by a planner that can regulate entry but not the extent of overlapping

ownership) as in the standard Cournot model with free entry (see Mankiw and Whinston,

1986; Amir et al., 2014).

6.2 Entry under the presence of maverick firms

We have examined the effects of overlapping ownership under a symmetric overlapping

ownership structure. In that context, overlapping ownership can suppress entry by
40The post-entry overlapping ownership case can also be interpreted to address pre-entry overlapping

ownership but with overlapping ownership not causing firms to internalize their entry externality.
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Figure 6: Equilibrium with post-entry overlapping ownership for varying 𝜆

Note: the solid lines represent equilibrium values under the integer constraint; from bottom to top they
represent the behavior of total quantity, individual quantity, total surplus, and the number of firms. The
dashed lines represent equilibrium values when we ignore the integer constraint; from bottom to top the
first line represents the behavior of both the total and the individual quantity, the second of total surplus,
and the third of the number of firms. The solid total quantity line is drawn for the case Δ > 0. The solid
individual quantity is drawn above the dashed one given that 𝑞𝑛 is decreasing in 𝑛 (see Proposition 2). To
draw the solid total surplus line above the dashed ones we assume that the total surplus is single-peaked
in 𝑛, and that 𝑛*(𝜆) ≥ 𝑛𝑜(𝜆) (see footnote 58 and Proposition 13 in the Appendix). Only the signs of
the slopes of the lines and the directions of the jumps are part of the result; the curvatures of lines and
spacing of the jumps have been chosen for simplicity in depiction.

inducing firms to internalize the negative externality that their entry would have on other

firms. However, if there are also potential entrants without ownership ties—which we call

maverick firms, then limited entry by commonly-owned firms may spur entry by maverick

ones. This could enhance the incentives of a commonly-owned firm to enter.

In section B.8 of the Appendix we model the maverick firms as a competitive fringe that

in the first stage (where oligopolists enter) submit an aggregate supply schedule. We show

that the (prospect of) entry by maverick firms essentially changes the demand faced by the

commonly-owned firms by depressing it and making it more elastic. With demand adjusted

accordingly, the results of the previous sections on the effects of overlapping ownership on

entry and the price continue to hold (with the number of firms 𝑛 not counting maverick

firm entry), as does the comparison between the equilibrium and socially optimal levels of

entry. Since demand is depressed, we expect lower levels of entry by commonly-owned

firms. Also, given that higher (resp. lower) entry by commonly-owned firms leads to lower

(resp. higher) entry by maverick firms, we expect entry to be less sensitive to overlapping
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ownership due to the presence of the maverick firms.41 This is indeed verified in section

B.8.

7 Conclusion

In this paper we have studied the effects of overlapping ownership in a Cournot oligopoly

with free entry. Potential entrants are established firms with overlapping ownership and

decide whether to enter a new industry or product market. We derive four main results.

First, an increase in overlapping ownership affects entry through three separate channels.

It increases the degree of internalization of the negative externality of entry on other

firms’ profits, which tends to limit entry. However, it also increases equilibrium profits in

the pricing stage, which tends to increase entry. Last, it changes the magnitude of the

entry externality on other firms’ profits; this channel can affect entry in either direction.

With Cournot competition in the pricing stage an increase in the degree of overlapping

ownership can limit or—in contrast to prior theoretical and empirical work—spur entry.

The three channels through which overlapping ownership affects entry are not specific

to the assumption of Cournot competition. Nevertheless, their direction (especially of

the ambiguous channel) and magnitudes can vary with the form of competition. For

example, (keeping the number of firms fixed) overlapping ownership may increase profits

in a differentiated products market by less than it does in the Cournot game, since

with differentiated products competition is already less intense. At the same time, the

magnitude of the entry externality may also be diminished. In the extreme case of

independent monopolies, overlapping ownership would not affect profits at all.

Second, given the negative macroeconomic implications of rising entry costs documented

by Gutiérrez et al. (2021) in the U.S. economy over the past 20 years, we are interested in

how overlapping ownership mediates the negative effect of entry costs on entry. We find

that overlapping ownership exacerbates the negative impact of an increase of entry costs

on entry.
41That is because all channels through which 𝜆 affects entry will diminish in magnitude when there are

maverick firms. First, pricing-stage profit will not increase as strongly with 𝜆, because maverick firms will
produce more when oligopolists reduce production as 𝜆 increases. In other words, when maverick firms
are present, the demand that the oligopolists face is more elastic, so the externality that one oligopolist
imposes on the others by producing—thereby pushing down the price—is lower. Thus, as 𝜆 increases
there is a smaller externality to be internalized in the pricing stage, so the effect of 𝜆 on Cournot profit is
milder. Second, the entry externality is also lower, since by entering an oligopolist limits the mavericks’
entry. Hence, there is a smaller entry externality to be internalized due to an increase in 𝜆.
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Third, apart from entry we also study welfare since as Bar-Isaac (2016) notes, the

extent of entry is not a sufficient statistic for welfare and the efficiency of a market. We

find that entry is excessive under non-DRS. However, with DRS entry will tend to be

insufficient in industries with (i) high levels of overlapping ownership, (ii) strong (negative)

effects of entry on other firms’ profits, (iii) business-enhancing competition.42 Still, there

is a channel through which overlapping ownership can enhance efficiency that is not

captured in our model. In a model with asymmetric—especially with regard to production

costs—firms, an increase in overlapping ownership can improve production efficiency by

causing production to shift towards the more efficient firms.43

Out last finding is that in industries with significant barriers to entry—so that the

number of firms is fixed—overlapping ownership damages welfare when firms are symmetric

(with symmetric firms no efficiency gains due to production shifting to more efficient

firms are possible). However, in industries with free entry and symmetric firms a welfare-

maximizing planner that can only regulate overlapping ownership and then allow firms to

freely enter may choose any level of overlapping ownership, from none at all to complete

indexation of the industry. For example, when the entry cost is high, a higher level

of overlapping ownership suppresses entry and reduces total entry costs; this effect

can be strong enough to make high levels of overlapping ownership welfare-maximizing.

Particularly, under increasing returns to scale, complete indexation of the industry will

lead to a monopoly, which can be optimal not only under a total welfare standard but

also under a consumer surplus standard. Therefore, regulation of overlapping ownership

should take into account its effect not only on product market competition but also on

entry.

Further, we derive the following testable implications for markets that existing firms

with overlapping ownership consider entering. First, for low levels of overlapping ownership,

an increase in overlapping ownership will (i) increase entry if there are many firms in

the market already (low market concentration), but (ii) it will decrease entry if there are

only few firms in the industry. Second, for high levels of overlapping ownership, further

increases in it will suppress entry. Thus, entry will either depend negatively on overlapping
42Particularly, in a completely indexed industry where firms maximize aggregate industry profits, entry

is insufficient under DRS when entry costs are low and/or demand is large and elastic.
43That is because an increase in production by a firm has—regardless of that firm’s identity—the same

negative externality on other firms (to be internalized as overlapping ownership increases), while the
positive effect on the firm’s own profit is larger when the firm has a higher profit margin.
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ownership or have an inverted-U relationship with it. Third, unless there are increasing

returns to scale, an increase in the extent of overlapping ownership will increase the price.

Fourth, increases in the entry cost can suppress entry more in industries with higher levels

of overlapping ownership. Fifth, entry by commonly-owned firms is more responsive to the

level of overlapping ownership in industries where the prospect of entry by firms without

ownership ties to incumbents is less salient.

Finally, given that the extent to which ownership ties affect firm conduct is an open

empirical question, our results suggest a test of the common ownership hypothesis. If

the common ownership hypothesis fails completely—so that common ownership neither

affects pricing decisions nor causes firms to internalize their entry externality, then

entry (and other market outcomes) should be independent of common ownership. If the

common ownership hypothesis is only partially correct in the sense that common ownership

influences pricing behavior but does not cause the entry externality to be internalized,

then entry is expected to increase with the level of common ownership. Finally, if the

common ownership hypothesis is correct (i.e., common ownership affects firm conduct in

both ways), then entry is expected to either depend negatively on common ownership or

have an inverted-U relationship with it.

References

Amel-Zadeh, A., Kasperk, F., and Schmalz, M. C. (2022). Mavericks, universal, and

common owners - the largest shareholders of US public firms.

Amir, R., Castro, L. D., and Koutsougeras, L. (2014). Free entry versus socially optimal

entry. Journal of Economic Theory, 154:112–125.

Amir, R. and Lambson, V. E. (2000). On the effects of entry in Cournot markets. Review

of Economic Studies, 67:235–254.

Anton, M., Azar, J., Gine, M., and Lin, L. X. (2022a). Beyond the target: M&A decisions

and rival ownership. Journal of Financial Economics, 144(1):44–66.

Anton, M., Ederer, F., Gine, M., and Schmalz, M. C. (2022b). Common ownership,

competition, and top management incentives. Journal of Political Economy, forthcoming.

30



Azar, J., Schmalz, M. C., and Tecu, I. (2018). Anticompetitive effects of common

ownership. Journal of Finance, 73:1513–1565.

Azar, J. and Vives, X. (2019). Common ownership and the secular stagnation hypothesis.

AEA Papers and Proceedings, 109:322–326.

Azar, J. and Vives, X. (2021). General equilibrium oligopoly and ownership structure.

Econometrica, 89:999–1048.

Backus, M., Conlon, C., and Sinkinson, M. (2021a). Common ownership and competition

in the ready-to-eat cereal industry. SSRN Electronic Journal.

Backus, M., Conlon, C., and Sinkinson, M. (2021b). Common ownership in America:

1980–2017. American Economic Journal: Microeconomics, 13:273–308.

Backus, M., Conlon, C., and Sinkinson, M. (2021c). Empirical studies of the effects of

common ownership.

Banal-Estañol, A., Seldeslachts, J., and Vives, X. (2020). Diversification, common

ownership, and strategic incentives. AEA Papers and Proceedings, 110:561–564.

Bar-Isaac, H. (2016). Introduction to the symposium on market structure, competition

and economic outputs. The Journal of Industrial Economics, 64(3):367–374.

Bayona, A. and López, A. L. (2018). Silent financial interests and product innovation.

Economics Letters, 170:109–112.

Bergquist, L. F. and Dinerstein, M. (2020). Competition and entry in agricultural markets:

Experimental evidence from Kenya. American Economic Review, 110:3705–47.

Boller, L. and Morton, F. M. S. (2020). Testing the theory of common stock ownership.

SSRN Electronic Journal.

Brito, D., Ribeiro, R., and Vasconcelos, H. (2020). Overlapping ownership, endogenous

quality, and welfare. Economics Letters, 190:109074.

Cabral, L. M. (2004). Simultaneous entry and welfare. European Economic Review,

48:943–957.

31



Decker, R. A., Haltiwanger, J., Jarmin, R. S., and Miranda, J. (2016). Where has all

the skewness gone? the decline in high-growth (young) firms in the U.S. European

Economic Review, 86:4–23.

Duso, T. and Szücs, F. (2017). Market power and heterogeneous pass-through in German

electricity retail. European Economic Review, 98:354–372.

Edgeworth, F. Y. (1881). Mathematical Psychics. An Essay on the Application of

Mathematics to the Moral Sciences. C. Kegan Paul and Co.

Elhauge, E. (2016). Horizontal shareholding. Harvard Law Review, 129:1267–1317.

Elhauge, E. (2021). The causal mechanisms of horizontal shareholding. Ohio State Law

Journal, 82:1–75.

Fershtman, C. and Pakes, A. (2000). A dynamic oligopoly with collusion and price wars.

The RAND Journal of Economics, 31:207–236.

Gourio, F., Messer, T., and Siemer, M. (2016). Firm entry and macroeconomic dynamics:

A state-level analysis. American Economic Review, 106:214–218.

Gutiérrez, G., Jones, C., and Philippon, T. (2021). Entry costs and aggregate dynamics.

Journal of Monetary Economics, 124:S77–S91.

Gutiérrez, G. and Philippon, T. (2019). The failure of free entry. SSRN Electronic Journal.

He, J. and Huang, J. (2017). Product market competition in a world of cross-ownership:

Evidence from institutional blockholdings. Review of Financial Studies, 30:2674–2718.

Koch, A., Panayides, M., and Thomas, S. (2021). Common ownership and competition in

product markets. Journal of Financial Economics, 139:109–137.

Lewellen, K. and Lowry, M. (2021). Does common ownership really increase firm coordi-

nation? Journal of Financial Economics, 141:322–344.

Li, S., Ma, H., and Zeng, C. (2015). Passive cross holding as a strategic entry deterrence.

Economics Letters, 134:37–40.

Li, Y. and Zhang, J. (2021). Product positioning with overlapping ownership. Economics

Letters, 208:110058.

32



López, A. L. and Vives, X. (2019). Overlapping ownership, R&D spillovers, and antitrust

policy. Journal of Political Economy, 127:2394–2437.

Mankiw, N. G. and Whinston, M. D. (1986). Free entry and social inefficiency. The

RAND Journal of Economics, 17:48–58.

McLaughlin, P., Nelson, J., Powers, T., Stover, W., and Strosko, S. (2021). RegData

U.S. 4.0 Annual (dataset), QuantGov, Mercatus Center at George Mason University,

Arlington, VA.

Mrázová, M. and Neary, J. P. (2017). Not so demanding: Demand structure and firm

behavior. American Economic Review, 107:3835–3874.

Newham, M., Seldeslachts, J., and Banal-Estañol, A. (2019). Common ownership and

market entry: Evidence from pharmaceutical industry. SSRN Electronic Journal.

Papadopoulos, K. G., Petrakis, E., and Skartados, P. (2019). Product innovation transfer

under passive partial ownership holdings. Economics Letters, 177:22–25.

Park, A. H. and Seo, K. (2019). Common Ownership and Product Market Competition:

Evidence from the U.S. Airline Industry. Korean Journal of Financial Studies, 48:617–

640.

Posner, E. A. (2021). Policy implications of the common ownership debate. Antitrust

Bulletin, 66:140–149.

Posner, E. A., Morton, F. M. S., and Weyl, E. G. (2017). A proposal to limit the

anti-competitive power of institutional investors. Antitrust Law Journal, 81:669–728.

Rotemberg, J. (1984). Financial transaction costs and industrial performance.

Rubinstein, A. and Yaari, M. E. (1983). The competitive stock market as cartel maker:

Some examples.

Ruiz-Pérez, A. (2019). Market structure and common ownership: Evidence from the US

airline industry.

Sato, S. and Matsumura, T. (2020). Free entry under common ownership. Economics

Letters, 195:109489.

33



Schmalz, M. C. (2018). Common-ownership concentration and corporate conduct. Annual

Review of Financial Economics, 10:413–448.

Schmalz, M. C. (2021). Recent studies on common ownership, firm behavior, and market

outcomes. Antitrust Bulletin, 66:12–38.

Shekita, N. (2022). Interventions by common owners. Journal of Competition Law &

Economics, 18:99–134.

Shy, O. and Stenbacka, R. (2020). Common ownership, institutional investors, and welfare.

Journal of Economics and Management Strategy, 29:706–723.

Stenbacka, R. and Van Moer, G. (2022). Overlapping ownership and product innovation.

Vives, X. (1999). Oligopoly pricing: old ideas and new tools. MIT Press.

Vravosinos, O. (2021). Common ownership, corporate control, and competitive effects.

Xie, J. and Gerakos, J. (2020). The anticompetitive effects of common ownership: The

case of paragraph iv generic entry. AEA Papers and Proceedings, 110:569–572.

Zormpas, D. and Ruble, R. (2021). The dynamics of preemptive and follower investments

with overlapping ownership. Journal of Economic Dynamics and Control, 129:104175.

A Appendix

A.1 Additional simulation results

Figure 7(a,b) shows that for high enough levels of the entry cost, a planner that regulates

overlapping ownership (but not entry) may choose positive levels of it or even complete

indexation (𝜆 = 1). Figure 7(c) shows that under DRS more than one firm may enter in

equilibrium even when 𝜆 = 1.

A.2 Some commonly used conditions

Lemma 1 below provides necessary and sufficient conditions for some of our standard

assumptions. The proof is elementary and therefore omitted.

Lemma 1. The following hold:
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Figure 7: Equilibrium and planner outcomes for varying 𝜆

(a) linear demand, CRS: 𝑎 = 2, 𝑏 = 𝑐 = 1, 𝑓 = 0.05 (b) linear demand, CRS: 𝑎 = 2, 𝑏 = 𝑐 = 1, 𝑓 = 0.06

(c) linear demand, quadratic costs (DRS): 𝑎 = 2,
𝑏 = 1, 𝑐 = 5, 𝑓 = 0.05

Note: black lines represent values in equilibrium; blue represent values in the planner’s solution.

(i) ∆(𝑄,𝑄−𝑖) > 0 on 𝐿 for every 𝜆 ∈ [0,1) if and only if 𝐶 ′′(𝑞) ≥ 0 for every 𝑞 < 𝑄.

(ii) 𝐸𝑃 ′(𝑄) < (1 + 𝜆)/𝐻𝑛 for every 𝑛 ∈ [2,+∞) (resp. 𝑛 ∈ [1,2]) and every 𝜆 ∈ [0,1] if

and only if 𝐸𝑃 ′(𝑄) < 2. (resp. 𝐸𝑃 ′(𝑄) < 1).

In the proofs to come, it will be useful to remember that if ∆ > 0 (resp. ∆ < 0), then

(1 + 𝜆+∆/𝑛) /𝐻𝑛 = 1 +𝐻−1
𝑛 − Λ−1

𝑛 𝐶 ′′(𝑞)/𝑃 ′(𝑄)
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(resp. ≥)
≤ (1 + 𝜆+∆/Λ𝑛) /𝐻𝑛 = 1 +𝐻−1

𝑛 + [(1− 𝜆) (1−𝐻𝑛)− 𝐶 ′′(𝑞)/𝑃 ′(𝑄)] /(Λ𝑛𝐻𝑛)

(resp. ≥)
≤ (1 + 𝜆+∆) /𝐻𝑛 = (2− 𝐶 ′′(𝑞)/𝑃 ′(𝑄)) /𝐻𝑛.

Also, 𝐸𝑃 ′(𝑄) < 1+𝜆+Δ(𝑄,𝑄−𝑖)
1−(1−𝜆)(1−𝑠𝑖)

on 𝐿 implies that for any 𝑛 ∈ [1, + ∞) and any 𝑄 < 𝑄,

𝐸𝑃 ′(𝑄) < (1 + 𝜆 + ∆(𝑄, (𝑛− 1)𝑄/𝑛))/𝐻𝑛. Thus, part (ii) of the maintained assump-

tion implies that when ∆ < 0, 𝐸𝑃 ′(𝑄) is also lower than (1 + 𝜆+∆/Λ𝑛) /𝐻𝑛 and

(1 + 𝜆+∆/𝑛) /𝐻𝑛 in the symmetric equilibrium.

A.3 Proofs of section 3

Where clear we may simplify notation (e.g., omitting the subscript 𝑛).

Proof of Proposition 1 Wlog we can constrain attention to quantity profiles 𝑞 ∈{︀
𝑥 ∈ [0,𝑞]𝑛 :

∑︀
𝑖∈ℱ 𝑥𝑖 ≤ 𝑄

}︀
. Also, the best response of firm 𝑖 depends on 𝑞−𝑖 only through

𝑄−𝑖. Denote by 𝑟(𝑄−𝑖) the best response correspondence of a firm (the same for all firms).

If it is a differentiable function, its slope is given by 𝑟′𝑖(𝑄−𝑖) = −1 + ∆(𝑄,𝑄−𝑖)/[1 + 𝜆+

∆(𝑄,𝑄−𝑖)− (𝑠𝑖 + 𝜆(1− 𝑠𝑖))𝐸𝑃 ′(𝑄)], for 𝑞𝑖 = 𝑟(𝑄−𝑖). The proof is then similar to that of

Theorem 2.1 in Amir and Lambson (AL; 2000).44

Case Δ > 0: We first prove statement (a).

Existence of symmetric equilibrium: Firm 𝑖’s problem is equivalent to choosing the

total quantity to be given by the correspondence 𝑅 : [0,𝑄] → [0,𝑄] defined as

𝑅(𝑄−𝑖) := argmax
𝑄∈[𝑄−𝑖,𝑄−𝑖+𝑞]

{𝑃 (𝑄) [𝑄− (1− 𝜆)𝑄−𝑖]− 𝐶(𝑄−𝑄−𝑖)} = 𝑟(𝑄−𝑖) +𝑄−𝑖.

taking 𝑄−𝑖 as given. The maximand above is strictly supermodular since ∆ > 0, so

by Theorem A.1 in AL every selection from 𝑅(𝑄−𝑖) is non-decreasing in 𝑄−𝑖. Thus,

every selection of the correspondence 𝐵 : [0,(𝑛− 1)𝑞] ⇒ [0,(𝑛− 1)𝑞] given by 𝐵(𝑄−𝑖) :=

(𝑛− 1)𝑅(𝑄−𝑖)/𝑛 is also non-decreasing in 𝑄−𝑖. By Tarski’s fixed point theorem (Theorem

A.3 in AL), 𝐵 has a fixed point, which is a symmetric equilibrium.

Non-existence of asymmetric equilibria: Suppose by contradiction that an asymmetric

equilibrium exists, and denote it by ̃︀𝑞. Then, any permutation of ̃︀𝑞 should also be an

equilibrium, and since ̃︀𝑞 is asymmetric there exists a permutation ̂︀𝑞 with a firm 𝑖 such
44The proof of uniqueness under Δ > 0 is not considered in AL but is also an extension of standard

results.
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that ̂︀𝑞𝑖 > ̃︀𝑞𝑖. But ̃︀𝑄 = ̂︀𝑄, so ̂︀𝑄−𝑖 < ̃︀𝑄−𝑖. Thus, 𝑅
(︁ ̂︀𝑄−𝑖

)︁
= 𝑅

(︁ ̃︀𝑄−𝑖

)︁
= ̃︀𝑄 ≥ ̃︀𝑄−𝑖 >̂︀𝑄−𝑖 =⇒ 𝑅

(︁ ̂︀𝑄−𝑖

)︁
> ̂︀𝑄−𝑖, so ̃︀𝑄 = 𝑅

(︁ ̂︀𝑄−𝑖

)︁
makes the first derivative of the firm’s

objective non-negative, that is 𝑃
(︁ ̃︀𝑄)︁ + 𝑃 ′

(︁ ̃︀𝑄)︁ [︁ ̃︀𝑄− (1− 𝜆) ̂︀𝑄−𝑖

]︁
− 𝐶 ′( ̃︀𝑄 − ̂︀𝑄−𝑖) ≥ 0.

Also, since the firm’s action space is not bounded from above, it trivially holds that

𝑃
(︁ ̃︀𝑄)︁+ 𝑃 ′

(︁ ̃︀𝑄)︁ [︁ ̃︀𝑄− (1− 𝜆) ̃︀𝑄−𝑖

]︁
− 𝐶 ′( ̃︀𝑄− ̃︀𝑄−𝑖) ≤ 0. The last two inequalities imply

−(1− 𝜆)𝑃 ′
(︁ ̃︀𝑄)︁− 𝐶 ′( ̃︀𝑄− ̃︀𝑄−𝑖)− 𝐶 ′( ̃︀𝑄− ̂︀𝑄−𝑖)̃︀𝑄−𝑖 − ̂︀𝑄−𝑖

≤ 0. (5)

Last, since every selection from 𝑅(𝑄−𝑖) is non-decreasing in 𝑄−𝑖, it follows from 𝑅
(︁ ̂︀𝑄−𝑖

)︁
=

𝑅
(︁ ̃︀𝑄−𝑖

)︁
= ̃︀𝑄 that 𝑅 (𝑄−𝑖) = ̃︀𝑄 for all 𝑄−𝑖 ∈ [ ̂︀𝑄−𝑖, ̃︀𝑄−𝑖]. Therefore, in (5) we can let̂︀𝑄−𝑖 → ̃︀𝑄−𝑖, which gives ∆( ̃︀𝑄, ̃︀𝑄−𝑖) ≤ 0, a contradiction.

For part (b) it remains to show that at most one symmetric equilibrium exists.

𝐸𝑃 ′ < (1 + 𝜆+∆)/𝐻𝑛 on 𝐿—which holds given that 𝐸𝑃 ′ < (1 + 𝜆+∆/𝑛)/𝐻𝑛 and ∆ > 0

on 𝐿—implies that 𝜕2
(︁
𝜋𝑖 + 𝜆

∑︀
𝑗 ̸=𝑖 𝜋𝑗

)︁⧸︁
(𝜕𝑞𝑖)

2 < 0, so that 𝑟(𝑄−𝑖) is a differentiable

function. At a symmetric quantity profile we have 𝑟′(𝑄−𝑖) = −1 + ∆(𝑄,𝑄−𝑖)/(1 + 𝜆 +

∆(𝑄,𝑄−𝑖)−𝐻𝑛𝐸𝑃 ′(𝑄)). Symmetric equilibria are solutions to 𝑔(𝑞) ≡ 𝑟((𝑛− 1)𝑞)− 𝑞 = 0.

Thus, there will be at most one symmetric equilibrium if 𝑔′ < 0, that is, if for any

𝑞 ∈ [0,𝑄/𝑛),

− 1 + 𝜆−𝐻𝑛𝐸𝑃 ′(𝑛𝑞)

1 + 𝜆+∆(𝑛𝑞,(𝑛− 1)𝑞)−𝐻𝑛𝐸𝑃 ′(𝑛𝑞)
<

1

𝑛− 1
⇐⇒ 𝐸𝑃 ′(𝑛𝑞) <

1 + 𝜆+∆(𝑛𝑞,(𝑛− 1)𝑞)/𝑛

𝐻𝑛

which is true, since by assumption it is true on 𝐿.

Case Δ < 0: We first prove part (a) for 𝑚 = 𝑛. ∆ < 0 and 𝐸𝑃 ′(𝑄) < 2−𝐶′′(𝑄−𝑄−𝑖)/𝑃
′(𝑄)

1−(1−𝜆)(1−𝑠𝑖)

implies that the objective function of each firm is strictly concave in its quantity (in the

part where 𝑃 (𝑄) > 0). Thus, for 𝑄−𝑖 such that 𝑟(𝑄−𝑖) > 0, 𝑟(𝑄−𝑖) is a differentiable

function with slope 𝑟′𝑖(𝑄−𝑖) = −1 + ∆/(2− 𝐶 ′′(𝑞𝑖)/𝑃
′(𝑄)− (𝑠𝑖 + 𝜆(1− 𝑠𝑖))𝐸𝑃 ′(𝑄)) < −1

given ∆ < 0. Thus, again 𝑔′ < 0 since 𝑟′ < −1 < (𝑛−1)−1 for every 𝑛 ≥ 2. Also, 𝑔(0) ≥ 0

and lim𝑞→∞ 𝑔(𝑞) = −∞, so by continuity of 𝑔 there exists a unique symmetric equilibrium.

We now prove part (a) for 𝑚 < 𝑛. Let 𝑞𝑚 be the symmetric equilibrium quantity

produced by each firm when 𝑚 firms are in the market. The 𝑚 firms are clearly best-

responding by producing 𝑞𝑚 each. Also, 𝑟′(𝑄−𝑖) < −1 (when 𝑟(𝑄−𝑖) > 0) implies that

𝑟(𝑚𝑞𝑚) = 𝑟((𝑚− 1)𝑞𝑚 + 𝑞𝑚) ≤ max{𝑟((𝑚− 1)𝑞𝑚)− 𝑞𝑚, 0} = 0, since by definition of 𝑞𝑚,

A4



𝑟((𝑚− 1)𝑞𝑚) = 𝑞𝑚. Thus, the non-producing firms are also best-responding.

To show part (b) assume by contradiction that there is an equilibrium ̃︀𝑞 of a different

type. Then there exist firms 𝑖 and 𝑗 such that ̃︀𝑞𝑖 ≠ ̃︀𝑞𝑗, ̃︀𝑞𝑖 > 0, ̃︀𝑞𝑗 > 0 in that equilibrium.

Wlog let ̃︀𝑞𝑖 > ̃︀𝑞𝑗. Given that 𝑅′(𝑄−𝑖) = 𝑟′(𝑄−𝑖) + 1 < 0 (when 𝑅(𝑄−𝑖) > 𝑄−𝑖) it follows

that 𝑅( ̃︀𝑄−𝑖) = 𝑅( ̃︀𝑄−𝑗) =⇒ ̃︀𝑄−𝑖 = ̃︀𝑄−𝑗 =⇒ ̃︀𝑞𝑖 = ̃︀𝑞𝑗, a contradiction. Q.E.D.

Proof of Corollary 1.1 ∆(𝑄,𝑄−𝑖) = 1− 𝜆+ 𝑐2/𝑏, constant over 𝐿. 𝐸𝑃 ′(𝑄) = 0, also

constant. Last, we have that 1 + 𝜆+∆(𝑄,𝑄−𝑖) = 2 + 𝑐2/𝑏. The result then follows from

Proposition 1. Notice also that 𝑄𝑛 = (𝑎− 𝑐1)/[𝑏(𝐻𝑛 + 1) + 𝑐2/𝑛], which is positive since

𝑎 > 𝑐1 and 𝑐2 > −2𝑏𝑐1/𝑎 > −2𝑏. Π(𝑛,𝜆) = (𝑎− 𝑐1)
2 (𝑏𝑛𝐻𝑛 + 𝑐2/2) / [𝑏𝑛(𝐻𝑛 + 1) + 𝑐2]

2 is

also positive. Last, 𝐶 ′(𝑞𝑛) = [𝑏𝑐1(𝐻𝑛 + 1) + 𝑎𝑐2/𝑛]/[𝑏(𝐻𝑛 + 1) + 𝑐2/𝑛] is positive given

𝑐2 > −2𝑏𝑐1/𝑎, so in equilibrium marginal cost is positive. Q.E.D.

Proof of Proposition 2 (i) From the pricing formula (1) the Implicit Function Theorem

gives 𝑑𝑄/𝑑𝜆 = −(𝑛− 1)𝑄/[𝑛+ Λ− 𝐶 ′′(𝑄/𝑛)/𝑃 ′(𝑄)− Λ𝐸𝑃 ′(𝑄)] < 0. For fixed 𝑛, total

surplus changes with 𝜆 in the same direction as total quantity: 𝑑TS = 𝑃 (𝑄)𝑑𝑄 −∑︀𝑛
𝑖=1 𝐶

′(𝑞)𝑑𝑞 = (𝑃 (𝑄)− 𝐶 ′(𝑞)) 𝑑𝑄. Differentiating Π(𝑛,𝜆) with respect to 𝜆 we get

𝜕Π(𝑛,𝜆)

𝜕𝜆
= 𝑃 ′(𝑄𝑛)

𝑄𝑛

𝑛

𝜕𝑄𝑛

𝜕𝜆
+ (𝑃 (𝑄𝑛)− 𝐶 ′(𝑞𝑛))

𝜕𝑄𝑛

𝜕𝜆

1

𝑛
= 𝑃 ′(𝑄𝑛)

𝑄𝑛

𝑛

𝜕𝑄𝑛

𝜕𝜆

𝑛− Λ𝑛

𝑛
,

which is positive for 𝜆 < 1, where the second equality follows from the pricing formula (1).

(ii) Using the pricing formula (1) we get

𝜕Π(𝑛,𝜆)

𝜕𝑛
= 𝑃 ′(𝑄𝑛)

𝑄𝑛

𝑛

𝜕𝑄𝑛

𝜕𝑛
−𝑄𝑛𝑃

′(𝑄𝑛)𝐻𝑛

𝑛𝜕𝑄𝑛

𝜕𝑛
−𝑄𝑛

𝑛2

∝ −
[︀
(1− 𝜆)

(︀
𝐻−1

𝑛 − 1
)︀
+ 𝑛+ Λ𝑛 −𝐻−1

𝑛 𝐶 ′′ (𝑞𝑛) /𝑃
′ (𝑄𝑛)− Λ𝑛𝐸𝑃 ′ (𝑄𝑛)

]︀
< 0,

where the inequality follows from what we have seen in section A.2.

(iii) 𝑑𝑞/𝑑𝑛 = 𝑑(𝑄/𝑛)/𝑑𝑛 = 𝑛−1𝑑𝑄/𝑑𝑛−𝑄/𝑛2 ∝ −𝑞 [𝑛(1 + 𝜆)− Λ𝐸𝑃 ′(𝑄)].

(iv) From the pricing formula (1) the Implicit Function Theorem gives 𝑑𝑄/𝑑𝑛 =

𝑞∆(𝑄,𝑄−𝑖)/(Λ𝑛(1 + 𝜆+∆/𝑛)/𝐻𝑛). Q.E.D.
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A.4 Proofs of sections 4 and 5

Proof of Proposition 3 The derivative of Ψ(𝑛,𝜆) with respect to 𝑛 is equal to

𝜕Ψ(𝑛,𝜆)

𝜕𝑛
= 𝜆 (Π (𝑛, 𝜆)− Π(𝑛− 1, 𝜆)) + Λ𝑛

𝜕Π(𝑛, 𝜆)

𝜕𝑛
− (Λ𝑛 − 1)

𝜕Π(𝜈, 𝜆)

𝜕𝜈

⃒⃒⃒⃒
𝜈=𝑛−1

∝ 𝐸ΔΠ,𝑛 −

⎛⎜⎝Λ𝑛 − 1

Λ𝑛

+
𝑛− 1

Λ𝑛

𝜕Π(𝜈,𝜆)
𝜕𝜈

⃒⃒⃒
𝜈=𝑛−1

Π(𝑛, 𝜆)− Π(𝑛− 1, 𝜆)

⎞⎟⎠ < 0,

and the result obtains given Proposition 1. Q.E.D.

Proof of Proposition 4 The derivative of Ψ(𝑛,𝜆) with respect to 𝜆 is given by

𝜕Ψ(𝑛,𝜆)

𝜕𝜆
= (𝑛− 1) (Π (𝑛, 𝜆)− Π(𝑛− 1, 𝜆)) + Λ𝑛

𝜕Π(𝑛, 𝜆)

𝜕𝜆
− (Λ𝑛 − 1)

𝜕Π(𝑛− 1, 𝜆)

𝜕𝜆

∝ −
𝜆
(︁

𝜕Π(𝑛,𝜆)
𝜕𝜆

− 𝜕Π(𝑛−1,𝜆)
𝜕𝜆

)︁
Π(𝑛, 𝜆)− Π(𝑛− 1, 𝜆)

− 1

𝜆

𝜆𝜕Π(𝑛,𝜆)
𝜕𝜆

⧸︁
Π(𝑛,𝜆)

Π(𝑛,𝜆)−Π(𝑛−1,𝜆)
Π(𝑛,𝜆)

(𝑛− 1)
− 1.

The result follows by the Implicit Function Theorem given Proposition 3. Q.E.D.

Proof of Corollary 4.1 The total derivative of ̂︀𝑛*(𝜆) at 𝜆 = 0 is

𝑑̂︀𝑛*(𝜆)

𝑑𝜆
= (𝑛− 1)

𝑏
[︀
(𝑛− 1) (𝑏𝑛+ 𝑐2)

2 − (𝑛+ 1 + 𝑐2/𝑏) (𝑏+ 𝑐2/2) (𝑏(2𝑛+ 1) + 2𝑐2)
]︀

2(𝑏+ 𝑐2/2) (𝑏𝑛+ 𝑐2)
2

⃒⃒⃒⃒
⃒
𝑛=̂︀𝑛*(0)

,

where the denominator is positive and the numerator is a third-degree polynomial in 𝑛. In

part (i), 𝑛3 is the unique real root of the polynomial, which has a negative discriminant.

In part (ii), the discriminant is positive, and the result follows with 𝑛3 the highest of the

three real roots of the polynomial equation above. Also,

𝑑𝑄̂︀𝑛*(𝜆)

𝑑𝜆
=

𝜕𝑄𝑛

𝜕𝜆
+

𝜕𝑄𝑛

𝜕𝑛

𝑑̂︀𝑛*(𝜆)

𝑑𝜆
=

𝑄̂︀𝑛*(𝜆)

𝑛+ 1 + 𝑐2/𝑏

[︂
(1 + 𝑐2/𝑏)

𝑑̂︀𝑛*(𝜆)

𝑑𝜆

1

𝑛
− (𝑛− 1)

]︂⃒⃒⃒⃒
𝑛=̂︀𝑛*(0)

and for 𝑛1 ≡ (−2𝑏2 − 5𝑏𝑐2 − 𝑐22)/(2𝑏
2) +

√︀
(6𝑏3𝑐2 + 11𝑏2𝑐22 + 6𝑏𝑐32 + 𝑐42)/𝑏

4/2 the corre-

sponding results follow. For 𝜆 = 0, Ψ(̂︀𝑛*(𝜆),𝜆) = Π(̂︀𝑛*(𝜆),𝜆) = 𝑓 , we get 𝑑TŜ︀𝑛*(𝜆) /𝑑𝜆 ∝

𝑑𝑄̂︀𝑛*(𝜆)/𝑑𝜆− 𝑞̂︀𝑛*(𝜆)𝑑̂︀𝑛*(𝜆)/𝑑𝜆 and for 𝑛2 ≡
(︁
2𝑏− 𝑐2 +

√︀
8𝑏2 + 6𝑏𝑐2 + 𝑐22

)︁
/(2𝑏) the corre-

sponding result follows. It can be checked that 𝑛3 > 𝑛2 > 𝑛1. Q.E.D.
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Proof of Proposition 5 We have that 𝑑̂︀𝑛*(𝜆)/𝑑𝑓 = (𝜕Ψ(𝑛,𝜆) /𝜕𝑛)−1
⃒⃒
𝑛=̂︀𝑛*(𝜆)

, and part

(ii) follows if we take the directional derivative of 𝑑̂︀𝑛*(𝜆)/𝑑𝑓 . Q.E.D.

Proof of Proposition 6 We have 𝜕 TS𝑛 /𝜕𝑛 = Π(𝑛,𝜆) − 𝑓 − Λ𝑛𝑄𝑛𝑃
′(𝑄𝑛)𝜕𝑞𝑛/𝜕𝑛.

Given Ψ(̂︀𝑛*(𝜆),𝜆) = 𝑓 , 𝑑TS𝑛 /𝑑𝑛|𝑛=̂︀𝑛*(𝜆) is equal to (denote Π𝑛(𝑛,𝜆) ≡ 𝜕Π(𝑛,𝜆)/𝜕𝑛)

− 𝜑 (̂︀𝑛*(𝜆),𝜆)𝜆̂︀𝑛*(𝜆)Π𝑛 (̂︀𝑛*(𝜆),𝜆)− Λ̂︀𝑛*(𝜆)𝑄̂︀𝑛*(𝜆)𝑃
′ (︀𝑄̂︀𝑛*(𝜆)

)︀ 𝜕𝑞𝑛
𝜕𝑛

⃒⃒⃒⃒
𝑛=̂︀𝑛*(𝜆)

∝𝐸𝑃 ′
(︀
𝑄̂︀𝑛*(𝜆)

)︀
− ̂︀𝑛*(𝜆)

Λ̂︀𝑛*(𝜆)

{︃
1 + 𝜆

[︃
1− 𝜑

1− 𝜑𝜆

1

Λ̂︀𝑛*(𝜆)

(︃
1− 𝜆−

𝐶 ′′(𝑞̂︀𝑛*(𝜆))

𝑃 ′
(︀
𝑄̂︀𝑛*(𝜆)

)︀)︃]︃}︃ ,

and the result follows from single-peakedness of total surplus in 𝑛. To see why Remark

5.4 holds notice that for 𝜑 (̂︀𝑛*(𝜆),𝜆) = 1 and CRS

𝑑TS(𝑞𝑛)

𝑑𝑛

⃒⃒⃒⃒
𝑛=̂︀𝑛*(𝜆)

∝𝐸𝑃 ′
(︀
𝑄̂︀𝑛*(𝜆)

)︀
− ̂︀𝑛*(𝜆)

Λ̂︀𝑛*(𝜆)

[︂
1 + 𝜆

(︂
1− 1

Λ̂︀𝑛*(𝜆)

)︂]︂
.

All else constant (including ̂︀𝑛*(𝜆)), the expression above is non-increasing in 𝜆, since

𝜕
(︁ ̂︀𝑛*(𝜆)

Λ̂︀𝑛*(𝜆)

[︁
1 + 𝜆

(︁
1− 1

Λ̂︀𝑛*(𝜆)

)︁]︁)︁
𝜕𝜆

∝ −̂︀𝑛* − 1

Λ2̂︀𝑛*

[︂
1 + 𝜆

(︂
1− 1

Λ̂︀𝑛*

)︂]︂
+

(︂
1− 1

Λ̂︀𝑛*
+

𝜆(̂︀𝑛* − 1)

Λ2̂︀𝑛*

)︂
1

Λ̂︀𝑛*

∝ −(̂︀𝑛* − 1)Λ̂︀𝑛* + 𝜆(̂︀𝑛* − 1) = Λ̂︀𝑛* (3− ̂︀𝑛*)− 2 ≤ 0,

where the inequality follows given ̂︀𝑛* ≥ 2. Thus, a sufficient condition for excessive

entry under constant marginal costs is derived if we set 𝜆 = 1 (but not in ̂︀𝑛*(𝜆)).

The condition for excessive entry is relaxed as 𝐶 ′′ decreases, and the remark follows.

For Remark 5.5, notice that ∆ < 0 on 𝐿 implies 𝐶 ′′(𝑞) < 0 for every 𝑞 < 𝑄. By

Proposition 2 𝑄𝑛 is decreasing in 𝑛, and thus, so is consumer surplus. Also, 𝑛Π(𝑛,𝜆) ≡

𝑃 (𝑄𝑛)𝑄𝑛 − 𝑛𝐶(𝑞𝑛) < 𝑃 (𝑄𝑛)𝑄𝑛 − 𝐶(𝑄𝑛) ≤ 𝑃 (𝑞1)𝑞1 − 𝐶(𝑞1) = Π(1,𝜆), where the first

inequality follows from 𝐶 ′′ < 0. Thus, both consumer surplus and industry profits are

maximized for 𝑛 = 1, so 𝑛𝑜(𝜆) = 1. Remark 5.6 follows since by the mean value theorem

𝐶 ′′(̃︀𝑞) = (𝐶 ′(𝑞𝑛)− 𝐶 ′(0))/𝑞𝑛 for some ̃︀𝑞 ∈ [0,𝑞𝑛], and also 𝑃 (𝑄̂︀𝑛*(𝜆)) > 𝐶 ′(𝑞̂︀𝑛*(𝜆)) > 𝐶 ′(0).

To see why Remark 5.8 holds, notice that from the proof of Corollary 1.1 we

have that for 𝜆 = 1, Π(𝑛,1) = (𝑎 − 𝑐1)
2/[2 (2𝑏𝑛+ 𝑐2)], so that for 𝑛 ≥ 2 Ψ(𝑛,1) =

(𝑎 − 𝑐1)
2𝑐2/[2 (2𝑏𝑛+ 𝑐2) (2𝑏(𝑛− 1) + 𝑐2)]. Thus, for 𝑐2 ≤ 0 we get 𝑛*(1) = 1. For
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𝑐2 > 0 we get ̂︀𝑛*(1) =
(︁
𝑏− 𝑐2 +

√︁
(𝑎−𝑐1)2𝑐2

2𝑓
+ 𝑏2

)︁
/(2𝑏). Pricing stage equilibrium

total surplus is TS𝑛 =
∫︀ 𝑄𝑛

0
(𝑃 (𝑋)− 𝑃 (𝑄𝑛)) 𝑑𝑋 + 𝑛 (Π(𝑛,1)− 𝑓) = (𝑎 − 𝑐1)

2(3𝑏 +

𝑐2/𝑛)/[2 (2𝑏+ 𝑐2/𝑛)
2] − 𝑛𝑓 , whose derivative with respect to 𝑛 is equal to 𝑑TS𝑛 /𝑑𝑛 =

(𝑎 − 𝑐1)
2𝑐2 (4𝑏𝑛+ 𝑐2) /[2 (2𝑏𝑛+ 𝑐2)

3] − 𝑓 . Thus, for 𝑐2 ≤ 0 we get 𝑛𝑜(1) = 1. It can

be checked that 𝑑2TS𝑛 /(𝑑𝑛)
2 < 0 for 𝑐2 > 0 and 𝑛 ≥ 1, so TS𝑛 is concave in 𝑛.

For 𝑐2 > 0, evaluating 𝑑TS𝑛 /𝑑𝑛 at 𝑛 = ̂︀𝑛*(1) gives the first part of the remark with

𝑓 := (𝑎−𝑐1)
2(−8𝑏2−2𝑏𝑐2−𝑐22+

√︀
64𝑏4 + 64𝑏3𝑐2 + 20𝑏2𝑐22 + 4𝑏𝑐32 + 𝑐42)/(32𝑏

3) > 0. Q.E.D.
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B Additional material

B.1 Individual firm’s objective function under overlapping ownership

Here we briefly describe settings of common and cross ownership which can give rise to

the Cournot-Edgeworth 𝜆 oligopoly model that we study.

B.1.1 A model of corporate control under common ownership

There is a finite set 𝒥 of investors. For each 𝑗 ∈ 𝒥 , 𝛽𝑗𝑖 denotes investor 𝑗’s share of firm 𝑖,

𝛾𝑗𝑖 captures the extent of her control over firm 𝑖, and 𝑢𝑗(𝑞) :=
∑︀

𝑖∈ℱ 𝛽𝑗𝑖𝜋𝑖(𝑞) is her total

portfolio profit, where 𝜋𝑖 firm 𝑖’s profit function. O’Brien and Salop (2000) assume that

the manager of firm 𝑖 maximizes a weighted average of the shareholders’ portfolio profits;

that is, given 𝑞−𝑖 she maximizes

∑︁
𝑗∈𝒥

𝛾𝑗𝑖𝑢𝑗(𝑞) ∝ 𝜋𝑖(𝑞) +
∑︁

𝑘∈ℱ∖{𝑖}

𝜆𝑖𝑘𝜋𝑘(𝑞),

where 𝜆𝑖𝑘 :=
∑︀

𝑗∈𝐽 𝛾𝑗𝑖𝛽𝑗𝑘

⧸︁∑︀
𝑗∈𝐽 𝛾𝑗𝑖𝛽𝑗𝑖. A common assumption on 𝛾 is proportional

control, that is 𝛾𝑗𝑖 = 𝛽𝑗𝑖 for every 𝑗 ∈ 𝒥 and every 𝑖 ∈ ℱ . For appropriate ownership and

control structures 𝛽 and 𝛾 it will be that 𝜆𝑖𝑘 = 𝜆, fixed for every pair of firms 𝑖,𝑘. One

such ownership and control structure (𝛽,𝛾) is described in section B.1.3.

B.1.2 Firm objectives under cross ownership

Firm objectives under cross ownership are also described in Gilo et al. (2006) and López

and Vives (2019). Assume that we start with each firm 𝑖 being held by shareholders who do

not hold shares of any of the other firms. Then, each firm 𝑖 buys share 𝛼 ∈ [0, 1/(𝑁 − 1))

of every other firm 𝑘 ∈ ℱ ∖ {𝑖} without control rights. In other words, each firm 𝑖 acquires

a claim to share 𝛼 of the total earnings of every other firm. The total earnings of each

firm 𝑖 now include the profit directly generated by firm 𝑖 and firm 𝑖’s earnings from its

claims over the other firms’ total earnings.

We end up with each firm 𝑖 being controlled by its initial shareholders, each of whom

only hold claims to firm 𝑖’s total earnings. The controlling shareholders collectively

hold a claim to share (1− (𝑁 − 1)𝛼) of firm 𝑖’s total earnings. Clearly, all controlling

shareholders of firm 𝑖 agree that firm 𝑖 should seek to maximize its total earnings.
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For every 𝑞, the total earnings ̃︀𝜋𝑖(𝑞) of each firm 𝑖 are then given by the solution to

the system of equations

̃︀𝜋𝑖(𝑞) =

firm 𝑖’s earnings from
the profit directly
generated by firm 𝑖⏞  ⏟  

𝜋𝑖(𝑞) +

firm 𝑖’s earnings from its
claims over each firm 𝑘’s,

𝑘 ̸= 𝑖, total earnings⏞  ⏟  
𝛼
∑︁

𝑘∈ℱ∖{𝑖}

̃︀𝜋𝑘(𝑞) , for each 𝑖 ∈ ℱ .

Solving the system of equations we find that each firm 𝑖’s objective is to maximize

̃︀𝜋𝑖(𝑞) ∝ 𝜋𝑖(𝑞) + 𝜆
∑︁

𝑘∈ℱ∖{𝑖}

𝜋𝑘(𝑞) where 𝜆 := 𝛼/[1− (𝑁 − 2)𝛼] ∈ [0,1).

B.1.3 An example of post-entry overlapping ownership

Post-entry overlapping ownership can for example arise in the form of common ownership

as described below. Let all firms be newly-established and the set of investors 𝒥 be

partitioned into {𝐽0} ∪ ∪𝑖∈ℱ {𝐽𝑖} with |𝐽𝑖| = |𝐽0| = 𝑚 for every 𝑖 ∈ ℱ . Before entry each

firm 𝑖 is (exclusively) held by the set 𝐽𝑖 of entrepreneurs with 𝛽𝑗𝑖 = 1/𝑚 for every 𝑗 ∈ 𝐽𝑖;

there is no common ownership before entry, so when considering entry, the entrepreneurs

of each firm unanimously agree to maximize their own firm’s profit.45 After entry, the set

𝐽0 of investors, who previously held no shares of any firm, buy firm shares. Each investor

𝑗 ∈ 𝐽0 now holds share 𝛽′
𝑗𝑖 = 𝜎/𝑚 of each firm 𝑖 that has entered, and each entrepreneur

𝑗 ∈ 𝐽𝑖 holds share 𝛽′
𝑗𝑖 = (1−𝜎)/𝑚 of her firm for some 𝜎 ∈ [0,1]. That is, after entry each

entrepreneur sells the same amount of shares to the investors, who are now uniformly

invested in all firms in the industry. Consider the O’Brien and Salop (2000) model and

for every firm 𝑖 that has entered let 𝛾′
𝑗𝑖 = ̃︀𝛾/𝑚 be the control each investor 𝑗 ∈ 𝐽0 has

over firm 𝑖 for some ̃︀𝛾 ∈ [0,1], and 𝛾′
𝑗𝑖 = (1− ̃︀𝛾)/𝑚 the control each entrepreneur 𝑗 ∈ 𝐽𝑖

has over her firm 𝑖.46 After entry, the manager of each firm 𝑖 maximizes

𝜋𝑖(𝑞) + 𝜆
∑︁
𝑘 ̸=𝑖

𝜋𝑘(𝑞), where 𝜆 =
̃︀𝛾𝜎̃︀𝛾𝜎 + (1− ̃︀𝛾)(1− 𝜎)

=
1

1 + (̃︀𝛾−1 − 1) (𝜎−1 − 1)
∈ [0,1].

45This relies on the fact that a firm’s entrepreneurs only hold shares of their own firm both before and
after entry. Common ownership develops after entry not through a firm’s entrepreneurs investments in
other firms but because outside investors invest in multiple firms.

46For every other pair of entrepreneur 𝑗 and firm 𝑖, 𝛽′
𝑗𝑖 = 𝛾′

𝑗𝑖 = 0.
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Here 𝜆 is increasing in the common owners’ level of holdings 𝜎 and control ̃︀𝛾. Under

proportional control 𝜎 = ̃︀𝛾, and 𝜆 =
[︁
1 + (𝜎−1 − 1)

2
]︁−1

.

B.2 Pricing-stage equilibria under parametric assumptions

CESL demand is of the form

𝑃 (𝑄) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑎+ 𝑏𝑄1−𝐸 if 𝐸 > 1

max {𝑎− 𝑏 ln𝑄, 0} if 𝐸 = 1

max
{︀
𝑎− 𝑏𝑄1−𝐸, 0

}︀
if 𝐸 < 1

for parameters 𝑎 ≥ 0 and 𝑏 > 0. For 𝐸 = 0 this reduces to linear demand, while for 𝑎 = 0

and 𝐸 > 1 it reduces to constantly elastic demand with elasticity 𝜂 = (𝐸 − 1)−1.

Claim 1 provides the equilibria under parametric assumptions on the demand and cost

functions. The total quantity is decreasing in the level of overlapping ownership, 𝜆.

Claim 1. Under CESL demand and constant returns to scale the total equilibrium

quantity in the pricing stage is

𝑄𝑛 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[︁
𝑏(1−𝐻𝑛(𝐸−1))

𝑐−𝑎

]︁ 1
𝐸−1 if 𝐸 ∈ (1,2) and 𝑐 > 𝑎

𝑒
𝑎−𝑐−𝑏𝐻𝑛

𝑏 if 𝐸 = 1[︁
𝑎−𝑐

𝑏(1+𝐻𝑛(1−𝐸))

]︁ 1
1−𝐸 if 𝐸 < 1 and 𝑎 > 𝑐,

where 𝐻𝑛 := Λ𝑛/𝑛, Λ𝑛 := 1 + 𝜆(𝑛 − 1). Under linear demand and quadratic costs it is

𝑄𝑛 = 𝑎
𝑏(1+𝐻𝑛)+𝑐/𝑛

.

B.3 Stability of pricing stage equilibrium

Proposition 7 examines local asymptotic stability of the pricing stage equilibrium in the

sense of the myopic continuous adjustment process, as described in al Nowaihi and Levine

(1985).

Proposition 7. If ∆ > 0, then the pricing stage equilibrium is locally stable.

Proposition 7’ studies stability with the maintained assumption relaxed.
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Proposition 7’. Assume ∆ > 0 but drop the assumption that 𝐸𝑃 ′(𝑄) < (1 + 𝜆 +

∆(𝑄,𝑄−𝑖)/𝑛)/𝐻𝑛 on 𝐿, so that multiple symmetric equilibria may exist. Then, a pricing

stage equilibrium is locally stable if and only if 𝐸𝑃 ′(𝑄) < (1 + 𝜆+∆(𝑄,𝑄−𝑖)/𝑛) /𝐻𝑛 in

that equilibrium.

Remark B.1. For 𝜆 = 0 we recover the sufficient local (in)stability conditions implied by

Theorems 3, 4 and 5 of al Nowaihi and Levine (1985).47

Under ∆ > 0, when we drop the condition 𝐸𝑃 ′ < (1+𝜆+∆/𝑛)/𝐻𝑛 on 𝐿 guaranteeing

uniqueness, multiple symmetric equilibria may exist, some of which stable and some

unstable. These two sets of equilbria are differentiated by a local version of the dropped

condition. An equilibrium is stable if and only if the dropped condition holds in that

equilibrium.

B.4 Additional comparative statics of pricing stage equilibrium

Let 𝑃 and 𝐶 be three-times differentiable. Denote by 𝐸𝑃 ′′(𝑄) := 𝑃 ′′′(𝑄)𝑄/𝑃 ′′(𝑄) the

elasticity of the curvature of inverse demand.

Proposition 8. The following hold:

(i) If ∆ > 0 and also for every 𝑄 < 𝑄, 𝐸𝑃 ′(𝑄) < 2, 𝐸𝑃 ′(𝑄) [𝐸𝑃 ′(𝑄) + 𝐸𝑃 ′′(𝑄)] ≥ −2

and for every 𝑞 < 𝑞, 𝐶 ′′(𝑞),𝐶 ′′′(𝑞) ≥ 0,48 then (𝜕𝑄𝑛)
2/(𝜕𝜆𝜕𝑛) < 0.

(ii) 𝜕2𝑞𝑛/(𝜕𝜆𝜕𝑛) can be negative or positive (and change sign as 𝜆 and/or 𝑛 changes).

For example, for CRS and CESL demand

sgn

{︂
𝜕2𝑞𝑛
𝜕𝜆𝜕𝑛

}︂
= sgn {𝑛+ 𝜆(𝑛− 1)− 3− (𝐻𝑛(𝑛− 1)− 1)𝐸} .

Under the assumptions of part (i), the negative effect of overlapping ownership on

the total quantity is strongest in industries with a large number of firms, which would

otherwise be the most competitive ones.
47al Nowaihi and Levine (1985) deal with a possibly asymmetric equilibrium; they provide analogous

conditions where expressions such as Δ vary across firms.
48If 𝑃 ′′(𝑄) = 0, cancel 𝑃 ′′ in 𝐸𝑃 ′(𝑄) with the one in 𝐸𝑃 ′′(𝑄). Under CESL demand,

𝐸𝑃 ′(𝑄) [𝐸𝑃 ′(𝑄) + 𝐸𝑃 ′′(𝑄)] ≥ −2 holds if and only if 𝐸 ≤ 2.
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Now we study how aggregate industry profits depend on the number of firms.

𝜇𝑛 := 1− 𝜕𝑄𝑛

𝜕𝑛

𝑛

𝑄𝑛

1−𝐻𝑛

𝜂(𝑄𝑛)−𝐻𝑛

.

Proposition 9. Let 𝜆 < 1. Then, the following statements hold:

(i) if 𝜇𝑛 ≤ 0, aggregate industry profits are decreasing in 𝑛,

(ii) if 𝜇𝑛 > 0, aggregate industry profits are decreasing (resp. increasing) in 𝑛 if

𝐸𝐶(𝑞𝑛)
( resp. >)

< 𝜇−1
𝑛 ,

(iii) if 𝐶 ′′(𝑞) < 0 for every 𝑄 ∈ [0,𝑄𝑛], then monopoly maximizes aggregate industry

profits, Π(1,𝜆) > 𝑛Π(𝑛,𝜆).

Remark B.2. If ∆ < 0, then 𝜕𝑄𝑛/𝜕𝑛 > 0, so 𝜇𝑛 < 1, and thus, aggregate industry

profits are decreasing in 𝑛 if 𝐸𝐶(𝑞𝑛) ≤ 1. If for example 𝐶 ′′ < 0 globally (consistent with

∆ < 0), then indeed 𝐸𝐶(𝑞𝑛) < 1.

Remark B.3. If 𝜆 = 1 and 𝐶 ′′(𝑞) > 0 for every 𝑞 ∈ [0,𝑞𝑛], aggregate industry profits are

increasing in 𝑛.

Consider the extreme case of 𝜆 = 1 and notice the following. Condition ∆ > 0

requires decreasing returns to scale, so that aggregate gross profits increase with 𝑛 (i.e.,

𝑛Π(𝑛,1) > (𝑛− 1)Π(𝑛− 1,1) for any 𝑛) due to savings in variable costs as production is

distributed across more firms, even though the total quantity increases (see Proposition

2), and thus price decreases with the number of firms. Intuitively, aggregate gross profits

being increasing in 𝑛 for 𝜆 = 1 is tied to uniqueness of the (symmetric) equilibrium in the

pricing stage. Since firms jointly maximize aggregate profits, the latter should increase

with 𝑛 for firms to strictly prefer to spread production evenly. On the other hand, under

constant returns to scale aggregate profits are constant in 𝑛; increasing the number of

firms simply increases the ways in which the firms can jointly produce the fixed level of

total output that maximizes joint profits.49 Last, under increasing returns to scale it is an

equilibrium for all production to be concentrated in a single firm.

49As argued already, in this case the are infinitely many equilibria of the pricing stage, all with the
same total quantity.
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Claim 2. Under linear demand and quadratic costs

𝜕 [𝑛Π(𝑛,𝜆)]

𝜕𝑛
=

𝑐

2𝑏𝑛
− 𝑏(1− 𝜆) + 𝑐

𝑏(𝑛+ Λ𝑛) + 𝑐
(1−𝐻𝑛) with

𝜕2 [𝑛Π(𝑛,𝜆)]

𝜕𝜆𝜕𝑛
> 0.

(i) for 𝜆 = 0, sgn {𝜕 [𝑛Π(𝑛,0)] /𝜕𝑛} = sgn {𝑐− 𝑏(𝑛− 1)},

(ii) for 𝜆 = 1, 𝜕 [𝑛Π(𝑛,1)] /𝜕𝑛 > 0,

(iii) if 𝑐 > 𝑏(𝑛− 1), then 𝜕 [𝑛Π(𝑛,𝜆)] /𝜕𝑛 > 0 for every 𝜆 ∈ [0,1],

(iv) if 𝑐 < 𝑏(𝑛− 1), then there exists 𝜆* ∈ (0,1) such that 𝜕 [𝑛Π(𝑛,𝜆)] /𝜕𝑛
( resp. <)

> 0 if

and only if 𝜆
( resp. <)

> 𝜆*.

In the decreasing returns to scale case of Claim 2 we see that 𝜆 and 𝑛 are complements

in increasing aggregate industry profits. Particularly, for 𝜆 high enough aggregate industry

profits are increasing in the number of firms. This is because with 𝜆 high, entry does not

reduce the price as much (see point (iii-b) of Proposition 2), so the cost-saving effect of

entry under decreasing returns to scale dominates.

B.5 Concavity of total surplus in the number of firms

Lemma 2. TS𝑛 is globally strictly concave in 𝑛 if for every 𝑛

𝜕𝑄𝑛

𝜕𝑛

𝑛

𝑄𝑛

[︃
1− 𝜆−𝐻𝑛

(︃(︂
𝜕𝑄𝑛

𝜕𝑛

𝑛

𝑄𝑛

− 1

)︂
(1− 𝐸𝑃 ′(𝑄𝑛)) +

𝜕2𝑄𝑛

(𝜕𝑛)2

(︂
𝜕𝑄𝑛

𝜕𝑛

)︂−1

𝑛− 1

)︃]︃
>

1− 𝜆

𝑛
.

Under constant marginal costs and 𝐸𝑃 ′(𝑄𝑛) < 2 for every 𝑛, this is true if 𝐸 ′
𝑃 ′(𝑄) ≡

𝜕𝐸𝑃 ′(𝑄)/𝜕𝑄 is not too high; particularly, 𝐸 ′
𝑃 ′ ≤ 0 is sufficient, and thus so is CESL

demand.

Remark B.4. More generally, all else constant, the condition of Lemma 2 is satisfied if

the elasticity of the slope of 𝑄𝑛 with respect to 𝑛, 𝜕2𝑄𝑛

(𝜕𝑛)2

(︀
𝜕𝑄𝑛

𝜕𝑛

)︀−1
𝑛, is not too high. Also,

remember that 𝜕𝑄𝑛

𝜕𝑛
𝑛
𝑄𝑛

∈ (0,1) under the assumptions of Proposition 2(iii-a), so all else

constant, in that case the condition is satisfied if 𝐸𝑃 ′(𝑄) is not too high.

B.6 Numerical results showing that 𝜑 is close to 1

The numerical results of Figure 8 verify that 𝜑 (𝑛,𝜆) is indeed close to 1, especially for

𝑛 ≥ 3.
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Figure 8: 𝜑(𝑛,𝜆) under linear demand and quadratic costs

(a) 𝑏 = 1, 𝑐 = 1 (b) 𝑏 = 2, 𝑐 = 1 (c) 𝑏 = 1, 𝑐 = 2

Note: it can be checked that 𝜑(𝑛,𝜆) is invariant to the demand parameter 𝑎.

B.7 Derivation of Numerical Results

Under CESL demand and constant returns to scale, given Claim 1 we find that

Π(𝑛,𝜆) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
𝑛

[︂
𝑎+ 𝑏

[︁
𝑏(1−𝐻𝑛(𝐸−1))

𝑐−𝑎

]︁ 1−𝐸
𝐸−1 − 𝑐

]︂ [︁
𝑏(1−𝐻𝑛(𝐸−1))

𝑐−𝑎

]︁ 1
𝐸−1 if 𝐸 ∈ (1,2) and 𝑐 > 𝑎

1
𝑛

[︁
𝑎− 𝑏 ln

(︁
𝑒

𝑎−𝑐−𝑏𝐻𝑛
𝑏

)︁
− 𝑐
]︁
𝑒

𝑎−𝑐−𝑏𝐻𝑛
𝑏 if 𝐸 = 1

1
𝑛

[︂
𝑎− 𝑏

[︁
𝑎−𝑐

𝑏(1+𝐻𝑛(1−𝐸))

]︁ 1−𝐸
1−𝐸 − 𝑐

]︂ [︁
𝑎−𝑐

𝑏(1+𝐻𝑛(1−𝐸))

]︁ 1
1−𝐸 if 𝐸 < 1 and 𝑎 > 𝑐,

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐻𝑛(𝐸−1)𝑏

1
𝐸−1

𝑛

[︁
1−𝐻𝑛(𝐸−1)

𝑐−𝑎

]︁ 2−𝐸
𝐸−1 if 𝐸 ∈ (1,2) and 𝑐 > 𝑎

𝑏𝐻𝑛

𝑛
𝑒

𝑎−𝑐−𝑏𝐻𝑛
𝑏 if 𝐸 = 1

𝐻𝑛(1−𝐸)

𝑛𝑏
1

1−𝐸

[︁
𝑎−𝑐

1+𝐻𝑛(1−𝐸)

]︁ 2−𝐸
1−𝐸 if 𝐸 < 1 and 𝑎 > 𝑐,

Derivation of Numerical Result 1 Parameters 𝑎, 𝑏 and 𝑐 only affect the magnitudes

of 𝑑̂︀𝑛*(𝜆)/𝑑𝜆 and 𝑑𝑄̂︀𝑛*(𝜆)/𝑑𝜆, and not their signs. The result then obtains in a way

analogous to the one described in the Derivation of Numerical Result 2. ■

Derivation of Numerical Result 2 It is easy to see that the signs of derivatives of

Ψ(𝑛,𝜆) are independent of 𝑎, 𝑏 and 𝑐. Thus, we can wlog set (i) 𝑎 = 𝑏 = 1 and 𝑐 = 2 for

the case 𝐸 ∈ (1,2), and (ii) 𝑎 = 2, 𝑏 = 𝑐 = 1 for the case 𝐸 < 1.

For 𝐸 > 1 we run the following R code:

# load packages #

l i b r a r y ( Deriv )

l i b r a r y ( optimx )

# de f i n e f unc t i on s #

Lambda = func t i on (n , lambda ) {1 + lambda ∗(n−1)}
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H = func t i on (n , lambda ) {(1 + lambda ∗(n−1))/n}

Pi = func t i on (n , lambda ,E, a , b , c ) { H(n , lambda )∗ (E−1)∗b^(1/(E−1))∗

( (1−H(n , lambda )∗ (E−1))/( c−a ) )^((2−E)/(E−1))/n }

Psi = func t i on (n , lambda ,E, a , b , c ) { Pi (n , lambda ,E, a , b , c)−lambda ∗(n−1)∗

( Pi (n−1,lambda ,E, a , b , c)−Pi (n , lambda ,E, a , b , c ) ) }

# symbo l i c a l l y d i f f e r e n t i a t e Psi #

Deriv_wrt_n_Psi = Deriv ( Psi , " n")

Deriv_wrt_nlambda_Psi = Deriv (Deriv_wrt_n_Psi , " lambda ")

# de f i n e func t i on that c r e a t e s g r id o f s t a r t i n g po in t s f o r opt imiza t i on #

gr id = func t i on ( density_n ,min_n ,max_n, density_l , min_l , max_l ,

density_E ,min_E,max_E) {

output = matrix ( nrow = ( density_n+1)∗( dens i ty_l +1)∗( density_E+1) , nco l = 3)

row_number = 1

f o r ( i in seq ( from = min_n , to = max_n, by = (max_n−min_n)/ density_n ) ) {

f o r ( j in seq ( from = min_l , to = max_l , by = (max_l−min_l )/ dens i ty_l ) ) {

f o r ( k in seq ( from = min_E, to = max_E, by = (max_E−min_E)/ density_E ) ) {

output [ row_number , ] = c ( i , j , k )

row_number = row_number + 1

}

}

}

return ( output )

}

# minimize c r o s s d e r i v a t i v e o f Ps i from mul t ip l e s t a r t i n g po in t s #

minima = mu l t i s t a r t ( parmat = gr id ( 15 , 2 , 7 , 1 5 , 0 , 1 , 3 0 , 1 . 0 01 , 1 . 7 ) ,

fn = func t i on (x ) {Deriv_wrt_nlambda_Psi ( x [ 1 ] , x [ 2 ] , x [ 3 ] , 1 , 1 , 2 ) } ,

method = c ("L−BFGS−B") , lower = c (2 , 0 , 1 . 0 0 1 ) , upper = c ( 7 , 1 , 1 . 7 ) )
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The code returns that

min
(𝑛,𝜆,𝐸)∈[2,7]×[0,1]×[1.001,1.7]

Ψ(𝑛,𝜆)

𝜕𝜆𝜕𝑛
≈ 2.31 · 10−6 > 0,

which is reached for 𝑛 = 7, 𝜆 = 0 and 𝐸 = 1.001.

In the case of 𝐸 < 1 we similarly find that

min
(𝑛,𝜆,𝐸)∈[2,8]×[0,1]×[−1000,0.999]

Ψ(𝑛,𝜆)

𝜕𝜆𝜕𝑛
≈ 1.11 · 10−7 > 0,

which is reached for 𝑛 = 8, 𝜆 = 0 and 𝐸 = 0.999. In additional simulations, allowing 𝐸 to

be even lower than −1000 does not change the result. ■

B.8 Free entry under pre-entry overlapping ownership and the presence of

maverick firms

This section presents a model of free entry with pre-entry overlapping ownership under

the presence of maverick firms.

For simplicity, model the maverick firms as a competitive fringe that in the first stage

(where oligopolists enter) submit an aggregate supply schedule. Namely, there is a set

ℱ𝑚 of infinitesimal firms. Each firm 𝑖 ∈ ℱ𝑚 chooses to either be inactive or produce one

(infinitesimal) unit of the good at cost 𝜒(𝑖).50 Thus, the aggregate supply function by the

maverick firms in the third stage 𝑆 : R+ → R+ is given by 𝑆(𝑝) :=
∫︀
𝑖∈ℱ𝑚

1 (𝜒(𝑖) ≤ 𝑝) 𝑑𝑖.

𝑆 : R+ → R+ with 𝑆(𝑝) = 0 for every 𝑝 ∈ [0,𝑝] and 𝑆 ′(𝑝) > 0 for every 𝑝 > 𝑝 where

𝑝 ≥ 0. 𝑆(𝑝) gives the total supply of the maverick firms as a function of the market price

𝑝. Then, the price 𝑝 > 0 in the competitive equilibrium among the maverick firms will

be implicitly given by 𝑃−1(𝑝) = 𝑄+ 𝑆(𝑝), where 𝑄 the total quantity produced by the

oligopolists.51 This means that in the second stage the oligopolists are essentially faced

with inverse demand ̃︀𝑃 : R+ → R+ given by

̃︀𝑃 (𝑄) =

⎧⎪⎨⎪⎩𝑃 (𝑄+ 𝜔−1(𝑄)) ∈
(︀
𝑝, 𝑃 (𝑄)

)︀
if 𝑃 (𝑄) > 𝑝

𝑃 (𝑄) if 𝑃 (𝑄) ≤ 𝑝

50This cost can be thought to include any applicable entry costs. Since maverick firms are infinitesimal
and each supply an infinitesimal quantity, their entry cost is also infinitesimal.

51We assume that 𝑆(𝑝) > 𝑃−1(𝑝) for 𝑝 large enough.
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where 𝜔 : R++ → R+ is given by 𝜔(𝑦) := 𝑃−1 ∘ 𝑆−1(𝑦)− 𝑦.52 𝜔−1(𝑄) gives the quantity

supplied in the competitive equilibrium among the maverick firms when the oligopolists

produce 𝑄. For example, in the case of (i) linear demand 𝑃 (𝑄) = max{𝑎 − 𝑏𝑄,0},

(ii) linear maverick aggregate supply schedule 𝑆(𝑝) = max{(𝑝 − 𝑝)/𝑏𝑚, 0} with 𝑏𝑚 > 0

and 𝑝 ≥ 0, and (iii) CRS (for the oligopolists), 𝐶(𝑞) = 𝑐𝑞, with 𝑎 > 𝑐 ≥ 𝑝,53 for any

𝑄 ∈ [0, (𝑎− 𝑐)/𝑏], ̃︀𝑃 is given by54

̃︀𝑃 (𝑄) =

<𝑎⏞  ⏟  
𝑎−

𝑎− 𝑝

1 + 𝑏𝑚/𝑏
−

<𝑏⏞  ⏟  
𝑏

1 + 𝑏/𝑏𝑚
𝑄.

The (prospect of) entry by maverick firms essentially changes the demand faced by

the commonly-owned firms by depressing it and making it more elastic. If in the paper

wherever 𝑃 we read ̃︀𝑃 , the results on the effects of overlapping ownership on entry and

the price continue to hold (with the number of firms 𝑛 not counting maverick firm entry).

A comparison of Figure 9 with Figure 2(a) in the paper (the two figures use the same

parametrization but in the former maverick firms are added) shows entry to be less

sensitive to overlapping ownership due to the presence of the maverick firms, as argued in

the paper.

Figure 9: Equilibrium with pre-entry overlapping ownership under the presence of maverick
firms for varying 𝜆

Note: lines represent values in equilibrium; linear demand, CRS: 𝑎 = 2, 𝑏 = 𝑐 = 1, 𝑓 = 0.01; linear
maverick aggregate supply schedule: 𝑏𝑚 = 𝑝 = 1.

Last, the total surplus ̃︁TS(𝑞) now includes the maverick firms’ surplus, where 𝑞 still

is the quantity profile of the oligopolists. Denote by ̃︁TS𝑛 the pricing stage equilibrium
52To see this substitute 𝑝 = 𝑃

(︀
𝑄+ 𝜔−1(𝑄)

)︀
in 𝑃−1(𝑝) = 𝑄+ 𝑆(𝑝), which gives

𝑄+ 𝜔−1(𝑄) = 𝑄+ 𝑆 ∘ 𝑃
(︀
𝑄+ 𝜔−1(𝑄)

)︀
⇐⇒ 𝑃−1 ∘ 𝑆−1 ∘ 𝜔−1(𝑄)− 𝜔−1(𝑄) = 𝑄,

which is true by definition of 𝜔.
53For 𝑐 = 𝑝, the most efficient maverick firms is as efficient as the oligopolists.
54The inverse demand ̃︀𝑃 for higher 𝑄 does not play a role since the commonly-owned firms will never

produce more than (𝑎− 𝑐)/𝑏. To derive ̃︀𝑃 , solve for it in (𝑎− ̃︀𝑃 (𝑄))/𝑏 = 𝑄+ ( ̃︀𝑃 (𝑄)− 𝑝)/𝑏𝑚.
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total surplus when 𝑛 commonly-owned firms enter. Equation (4) also applies in the

case with maverick firms but with ̃︀Ξ(𝑛,𝜆) := (𝑛− 1)
(︁̃︀Π(𝑛− 1, 𝜆)− ̃︀Π(𝑛, 𝜆)

)︁
, ̃︀Π(𝑛,𝜆) :=̃︀𝑃 (𝑄𝑛)𝑞𝑛 − 𝐶(𝑞𝑛) and ̃︀𝑃 replacing Ξ, Π and 𝑃 .55 𝑄𝑛, 𝑞𝑛 are still the quantities produced

by the commonly-owned firms in the pricing stage equilibrium where 𝑛 of them enter.̂︀𝑛*(𝜆) is now pinned down by ̃︀Π(̂︀𝑛*(𝜆),𝜆)− 𝜆̃︀Ξ(̂︀𝑛*(𝜆),𝜆) = 𝑓 .

Provided ̃︀𝑃 (𝑄) ≥ 𝑝 or equivalently 𝑃 (𝑄) ≥ 𝑝,56 total surplus now includes the maverick

firms’ surplus and is thus given by

̃︁TS(𝑞) :=
consumer surplus⏞  ⏟  ∫︁ 𝑄+𝑆( ̃︀𝑃 (𝑄))

0

(︁
𝑃 (𝑋)− ̃︀𝑃 (𝑄)

)︁
𝑑𝑋 +

maverick firms’ surplus⏞  ⏟  ∫︁ ̃︀𝑃 (𝑄)

𝑝

𝑆(𝑝)𝑑𝑝 +

commonly-owned firms’ profits⏞  ⏟  ̃︀𝑃 (𝑄)𝑄−
𝑛∑︁

𝑖=1

𝐶(𝑞𝑖)− 𝑛𝑓

=TS(𝑞) +

∫︁ 𝑄+𝑆( ̃︀𝑃 (𝑄))

𝑄

𝑃 (𝑋)𝑑𝑋 − 𝑆
(︁ ̃︀𝑃 (𝑄)

)︁ ̃︀𝑃 (𝑄)⏟  ⏞  
≥0; consumer surplus “due to” maverick firms’ production

+

∫︁ ̃︀𝑃 (𝑄)

𝑝

𝑆(𝑝)𝑑𝑝⏟  ⏞  
≥0; maverick firms’ surplus

where 𝑞 still the quantity profile of the oligopolists and TS(𝑞) ≡
∫︀ 𝑄

0
𝑃 (𝑋)𝑑𝑋−

∑︀𝑛
𝑖=1 𝐶(𝑞𝑖)−

𝑛𝑓 the total surplus without maverick firms. For any fixed quantity profile of the

oligopolists, total surplus is higher when the maverick firms are present (and produce)

compared to when they are not. We have then that

𝑑̃︁TS𝑛

𝑑𝑛
=𝑃 (𝑄𝑛)

(︂
𝑛
𝜕𝑞𝑛
𝜕𝑛

+ 𝑞𝑛

)︂
− 𝐶(𝑞𝑛)− 𝑛𝐶 ′(𝑞𝑛)

𝜕𝑞𝑛
𝜕𝑛

− 𝑓

+

⎡⎢⎣
(︁
1 + 𝑆 ′( ̃︀𝑃 (𝑄𝑛)) ̃︀𝑃 ′(𝑄𝑛)

)︁
𝑃
(︁
𝑄𝑛 + 𝑆( ̃︀𝑃 (𝑄𝑛))

)︁
− 𝑃 (𝑄𝑛)

−𝑆 ′( ̃︀𝑃 (𝑄𝑛)) ̃︀𝑃 ′(𝑄𝑛) ̃︀𝑃 (𝑄𝑛)− 𝑆( ̃︀𝑃 (𝑄𝑛)) ̃︀𝑃 ′(𝑄𝑛) + 𝑆( ̃︀𝑃 (𝑄𝑛)) ̃︀𝑃 ′(𝑄𝑛)

⎤⎥⎦ 𝜕𝑄𝑛

𝜕𝑛

=̃︀Π(𝑛,𝜆)− 𝑓 − (1 + 𝜆(𝑛− 1))𝑄𝑛
̃︀𝑃 ′(𝑄𝑛)

𝜕𝑞𝑛
𝜕𝑛

,

where ̃︁TS𝑛 is the pricing stage equilibrium total surplus when 𝑛 commonly-owned firms

enter, ̃︀Π(𝑛,𝜆) := ̃︀𝑃 (𝑄𝑛)𝑞𝑛 − 𝐶(𝑞𝑛), and 𝑄𝑛, 𝑞𝑛 are still the quantities produced by the

commonly-owned firms in the pricing stage equilibrium where 𝑛 of them enter.

Whether there is excessive or insufficient entry by commonly-owned firms will depend

on the same forces identified in the previous section but with adjusted magnitude since 𝑃

is replaced by ̃︀𝑃 . Notice that excessive or insufficient entry is based on a planner that
55Refer to Appendix B for a detailed derivation.
56Otherwise, wherever ̃︀𝑃 (𝑄) substitute 𝑝, and the equation reduces to ̃︁TS(𝑞) = TS(𝑞).

O11



controls the entry of oligopolists and allows them and the maverick firms to produce

freely. Importantly, given the production decisions of the oligopolists, the maverick firms’

production level maximizes total surplus since the maverick firms are perfect competitors.

B.9 Free entry under post-entry overlapping ownership

In the last section overlapping ownership develops before entry, thus directly affecting the

incentives of firms to enter. In this section we study the case where potential entrants

have no prior overlapping ownership, but after they enter the market and before they

pick quantities in the second stage they develop overlapping ownership, so that they have

an Edgeworth coefficient of effective sympathy 𝜆 ∈ [0,1]. Now, the only channel through

which overlapping ownership affects entry is by increasing profits in the post-entry game.

Firms expect this and therefore entry increases with overlapping ownership.

This can be interpreted as a long–run equilibrium whereby start-up firms (or already

existing firms but without overlapping ownership) enter the industry and then develop

overlapping ownership through time. Appendix B.1 describes explicitly how post-entry

overlapping ownership can arise. Also, given that the extent to which overlapping

ownership affects corporate conduct is an open empirical question, this section can also

be interpreted as studying pre-entry overlapping ownership when it affects pricing but

does not cause firms to internalize their entry externality.

The exogeneity of 𝜆 is important with post-entry overlapping ownership, since the

incentives of firms to allow for ownership ties after entry are not modeled. For instance, if

instead the amount of shares that investors buy from the entrepreneurs depended on the

extent of entry—since the latter affects profits, then 𝜆 would be a function of 𝑛. Although

the exogeneity of 𝜆 is restrictive, if firms become publicly traded after entry (at least

in the long–run), they indeed have limited control over their ownership ties, since for

instance investment funds are free to buy shares of all firms.
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B.9.1 The entry stage

Each firm only looks at own profit to decide whether to enter as there is no overlapping

ownership when it does so.57 𝑞𝑛 is a free entry equilibrium production profile if and only if

Π(𝑛,𝜆) ≥ 𝑓 > Π(𝑛+ 1,𝜆)

as in Mankiw and Whinston (1986). If overlapping ownership develops only after firms

enter, it affects the incentives of firms to enter only through its effect on product market

outcomes. We assume that there exists 𝑛 such that Π(𝑛,𝜆) < 𝑓 for any 𝜆.

B.9.2 Existence and uniqueness of equilibrium

Proposition 10 studies existence and uniqueness of a free entry equilibrium.

Proposition 10. Π(𝑛,𝜆) is decreasing in 𝑛 and a unique free entry equilibrium exists.

In equilibrium, firms enter until profits have fallen so much that if an additional firm

enters, gross profit will no longer cover the entry cost. ̂︀𝑛*(𝜆) is uniquely pinned down by

Π(̂︀𝑛*(𝜆),𝜆) = 𝑓 and 𝑛*(𝜆) = max {𝑛 ∈ N : Π (𝑛,𝜆) ≥ 𝑓} = ⌊̂︀𝑛*(𝜆)⌋.

B.9.3 Overlapping ownership effects

Proposition 11 studies the effects of overlapping ownership.

Proposition 11. Ignore the integer constraint on 𝑛 (so that entry is given by ̂︀𝑛*(𝜆)).

Then

(i) the number of firms entering is increasing in 𝜆,

(ii) individual quantity, total quantity, and total surplus are decreasing in 𝜆,

(iii) if 𝐶 ′′ ≥ 0, then the MHHI is increasing in 𝜆.

Remark B.5. There exists a set of thresholds ℒ := {𝜆1, 𝜆2, . . . ,𝜆𝑘}, 𝜆1 < 𝜆2 < · · · < 𝜆𝑘,

such that

(a) for every 𝜆 ∈ ℒ, Π(𝑛*(𝜆),𝜆) = 𝑓 , and 𝑛*(𝜆) = ̂︀𝑛*(𝜆),
57Formally, if a firm does not enter, its payoff is 0; if it does, it is (1 + 𝜆(𝑛− 1)) (Π (𝑛,𝜆)− 𝑓). Thus, it

is optimal for an 𝑛-th firm to enter if and only if Π(𝑛,𝜆) ≥ 𝑓 .
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(b) for 𝜆 between two consecutive thresholds 𝑛*(𝜆) remains constant and everything

behaves as in the Cournot game with a fixed number of firms.

When we take into account the integer constraint, the number of firms is a step

function of in 𝜆, and individual quantity is decreasing with jumps down. Total quantity

has a decreasing trend with jumps up (resp. down) for the values of 𝜆 at which an extra

firm enters under ∆ > 0 (resp. ∆ < 0). Also, total surplus tends to decrease with 𝜆.58

Importantly, even when there is free entry of firms—so that increases in 𝜆 lead to the

entry of new firms as incumbents suppress their quantities, if the entering firms develop

overlapping ownership after entering (up to the level the incumbents have), consumer and

total surplus tend to decrease with 𝜆, as in the symmetric case with a fixed number of

firms. Also, if one looks at HHI, it will seem as if competition rises as 𝜆 increases, which

can even be the case with MHHI, although the latter will increase with 𝜆 if we slightly

strengthen our assumptions. Last, for appropriate levels of 𝜆 a small increase in 𝜆 can

spur the entry of an extra firm causing the total quantity to rise.

The fact that the price increases with 𝜆 is to be expected. Remember that an increase

in 𝜆 is met with an increase in 𝑛 so that the zero profit condition Π(̂︀𝑛*(𝜆),𝜆) = 𝑓 is

satisfied. When the Cournot market is quasi-anticompetitive (∆ < 0), both the increase

in 𝜆 and the increase in 𝑛 cause price to increase. When the Cournot market is quasi-

competitive (∆ > 0), the increase in 𝜆 tends to increase price, while the increase in 𝑛

tends to decrease it. The former effect dominates. For example, assume non-DRS and

by contradiction that after an increase in 𝜆 enough additional firms enter the market to

keep the price at its level before the increase in 𝜆 (or even make it lower). Then, after the

increase in 𝜆 (i) each firm has a lower share of the market, (ii) the price has not increased,

and (iii) the average (variable) cost of production has not decreased (due to non-DRS and

individual quantity having decreased). Thus, individual profit has decreased, violating
58To compare total surplus under the integer constraint on 𝑛, TS𝑛*(𝜆), to its value when we ignore the

integer constraint, TŜ︀𝑛*(𝜆), notice the following. For 𝜆 between two consecutive thresholds, 𝜆 ∈ (𝜆𝑘,𝜆𝑘+1),
it holds that ̂︀𝑛*(𝜆) > 𝑛*(𝜆). Thus, given that total surplus is single-peaked in 𝑛, if there is (weakly)
excessive entry under the integer constraint, ignoring the integer constraint exacerbates excess entry.
Therefore, between two 𝜆 thresholds TŜ︀𝑛*(𝜆) < TS𝑛*(𝜆), and for 𝜆 equal to a thresholds TS𝑛*(𝜆) has
a jump down. But if under the integer constraint entry is insufficient by 1 firm (which is possible),
𝑛*(𝜆) = 𝑛𝑜(𝜆)− 1, then the above does not follow.
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the zero profit condition. The result still holds under DRS, since under ∆ > 0,

⃒⃒⃒⃒ +⏞  ⏟  
𝜕Π(𝑛,𝜆) /𝜕𝜆

𝜕Π(𝑛,𝜆) /𝜕𝑛⏟  ⏞  
−

⃒⃒⃒⃒
=

⃒⃒⃒⃒
⃒⃒⃒

−⏞  ⏟  
(1−𝐻𝑛)

𝜕𝑄𝑛

𝜕𝜆

(1−𝐻𝑛)
𝜕𝑄𝑛

𝜕𝑛⏟  ⏞  
+

+𝐻𝑛
𝑄𝑛

𝑛⏟  ⏞  
+

⃒⃒⃒⃒
⃒⃒⃒ < ⃒⃒⃒⃒ 𝜕𝑄𝑛/𝜕𝜆

𝜕𝑄𝑛/𝜕𝑛

⃒⃒⃒⃒
=

⃒⃒⃒⃒ +⏞  ⏟  
𝑑𝑃 (𝑄𝑛) /𝑑𝜆

𝑑𝑃 (𝑄𝑛) /𝑑𝑛⏟  ⏞  
−

⃒⃒⃒⃒
.

This means that for individual profit to stay unchanged after an increase in 𝜆, fewer firms

need to enter compared to the number of firms that need to enter for the price to remain

unchanged after the increase in 𝜆.

The mechanism behind the effect of 𝜆 on entry is akin to the impact of collusion on

entry in the dynamic stochastic oligopoly model of Fershtman and Pakes (2000), where

firms freely enter, set prices and invest in quality. In their model, for example, a potential

entrant only looks at own profit to decide whether to enter foreseeing the possibility of

future collusion with an incumbent monopolist. This possibility increases entry incentives

(i.e. it increases the threshold of quality that the incumbent needs to achieve to deter

entry) compared to the equilibrium without collusion. This in turn causes the incumbent

monopolist to invest more in quality when future collusion is possible. Overall, the

collusive equilibrium features on average higher prices but also more entry and higher

qualities and consumer surplus.

B.9.4 Entry cost effect on entry

Proposition 12 studies the effect of the entry cost on entry, as well as how this effect

depends on the extent of overlapping ownership. It mirrors Proposition 5 with the role of

internalized profit Ψ(𝑛,𝜆) now assumed by profit Π(𝑛,𝜆).

Proposition 12. Ignore the integer constraint on 𝑛 (so that entry is given by ̂︀𝑛*(𝜆)).

Then

(i) entry is decreasing in the entry cost,

(ii) if 𝜆 increases and other parameters 𝑥 (e.g., demand, cost parameters) change infinites-

imally so that ̂︀𝑛*(𝜆) stays fixed and 𝜕2Π(𝑛,𝜆)/(𝜕𝑥𝜕𝑛) = 0 (e.g., (𝑓,𝜆) infinitesimally

changes in direction v := (−(𝑑̂︀𝑛*(𝜆)/𝑑𝜆)/(𝑑̂︀𝑛*(𝜆)/𝑑𝑓),1)), then |𝑑̂︀𝑛*(𝜆)/𝑑𝑓 | changes

in direction given by sgn
{︁
𝜕2Π(𝑛,𝜆) /(𝜕𝜆𝜕𝑛)|𝑛=̂︀𝑛*(𝜆)

}︁
.
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As long as individual profit is decreasing in 𝑛, the results of Proposition 12 are not

specific to Cournot competition. Part (ii) says that if an increase in 𝜆 makes individual

profit in the pricing stage equilibrium more (resp. less) strongly decreasing in the number

of firms, then an increase in the entry cost needs to be met with a smaller (resp. larger)

increase in the number of firms for the zero profit entry condition to continue to hold.

Figure 10 explains the reasoning behind this result. There are initially 𝑛* = 3 firms in

equilibrium, which can be a result of 𝜆 = 0 and 𝑓 = 𝑓1, or 𝜆 = 1/2 and 𝑓 = 𝑓2 > 𝑓1. Also,

for 𝑛 ≤ 3, an increase of 𝜆 from 0 to 1/2 makes profit less strongly decreasing in 𝑛 (i.e.,

𝜕2Π(𝑛,𝜆) /(𝜕𝜆𝜕𝑛) > 0). Thus, an increase in the entry cost by 𝜀 will decrease entry by

more when 𝜆 = 1/2 (and initially 𝑓 = 𝑓2) compared to when 𝜆 = 0 (and initially 𝑓 = 𝑓1).

Figure 10: Entry cost effect on entry mediated by 𝜆 under linear demand and CRS

0 1 2 4 5 6
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0.2
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𝑛* = 3
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Π
(𝑛
,𝜆
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𝜆 = 0
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Note: 𝑎 = 2, 𝑏 = 1, 𝑐 = 1. The black and blue solid lines represent Π(𝑛,0) and Π(𝑛,1/2), respectively.
The black and blue dashed lines are tangent to the corresponding solid lines at 𝑛 = 𝑛*.

Claim 3 provides sufficient conditions for the cross derivative of Π(𝑛,𝜆) to be negative

(resp. positive), which by Proposition 12 implies that overlapping ownership alleviates

(resp. exacerbates) the negative effect of the entry cost on entry.

Claim 3. Assume CRS.

(i) If 𝜕𝐸𝑃 ′(𝑄)/𝜕𝑄 ≥ 0, 𝐸𝑃 ′(𝑄𝑛) ∈ [0,1] and 𝑛 ≥ 5+𝐸𝑃 ′(𝑄𝑛), then 𝜕2Π (𝑛,𝜆) /(𝜕𝜆𝜕𝑛) <

0 for every 𝜆 ∈ (0,1).
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(ii) If 𝜕𝐸𝑃 ′(𝑄)/𝜕𝑄 ≤ 0, 𝐸𝑃 ′(𝑄𝑛) ≤ 0 and 𝑛 ≤ 6/ (2− 𝐸𝑃 ′(𝑄𝑛)), then 𝜕2Π (𝑛,𝜆) /(𝜕𝜆𝜕𝑛) >

0 for every 𝜆 ∈ (0,1).

Remark B.6. Appendix B provides a more detailed result on 𝜕2Π(𝑛,𝜆) /(𝜕𝜆𝜕𝑛).

Claim 3 encompasses CESL demand. Therefore, under CESL demand with 𝐸 ∈ [0,1]

and CRS, in markets with not too low entry (𝑛 ≥ 6 is sufficient), overlapping ownership

makes entry less strongly decreasing in the entry cost. This means that as long as it

does not induce firms to internalize the entry externality, overlapping ownership could

alleviate the negative macroeconomic implications of rising entry costs documented by

Gutiérrez et al. (2021) in the U.S. over the past 20 years. The sufficient condition of part

(ii) requires 𝑛 ≤ 3, as is the case in Figure 10.

The conditions in part (i) of Claim 3 overlap with those of Numerical result 2,

which deals with the case of pre-entry overlapping ownership. Thus, under the same

parametrization, whether overlapping ownership exacerbates or alleviates the negative

effect of the entry cost on entry will depend on the form of overlapping ownership. If

overlapping ownership is present prior to entry thus making firms internalize the entry

externality, then it exacerbates the effect. If it develops after entry, it alleviates the effect.

B.9.5 Equilibrium entry versus the socially optimal level of entry

The derivative of equilibrium total surplus with respect to 𝑛 is given by

𝑑TS𝑛

𝑑𝑛
= 𝑃 (𝑄𝑛)

(︂
𝑛
𝜕𝑞𝑛
𝜕𝑛

+ 𝑞𝑛

)︂
− 𝐶(𝑞𝑛)− 𝑛𝐶 ′(𝑞𝑛)

𝜕𝑞𝑛
𝜕𝑛

− 𝑓

= Π(𝑛,𝜆)− 𝑓 + 𝑛 (𝑃 (𝑄𝑛)− 𝐶 ′(𝑞𝑛))
𝜕𝑞𝑛
𝜕𝑛

,

and therefore

𝑑TS𝑛

𝑑𝑛

⃒⃒⃒⃒
𝑛=̂︀𝑛*(𝜆)

=

=0⏞  ⏟  
Π(̂︀𝑛*(𝜆),𝜆)− 𝑓 + 𝑛 (𝑃 (𝑄𝑛)− 𝐶 ′(𝑞𝑛))

𝜕𝑞𝑛
𝜕𝑛

⃒⃒⃒⃒
𝑛=̂︀𝑛*(𝜆)

∝ 𝜕𝑞𝑛
𝜕𝑛

⃒⃒⃒⃒
𝑛=̂︀𝑛*(𝜆)

,

so that with TS𝑛 single-peaked in 𝑛, under business-stealing (resp. business-enhancing)

competition entry is excessive (resp. insufficient). The results of Mankiw and Whinston

(1986) and Amir et al. (2014) generalize to the case of post-entry overlapping ownership.

Proposition 13 shows that indeed with business-stealing competition and under the integer

constraint, entry is never insufficient by more than one firm.
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Proposition 13. The following statements hold:

(i) if ∆ > 0 and 𝐸𝑃 ′(𝑄) < 2 on 𝐿, then 𝑛*(𝜆) ≥ 𝑛𝑜(𝜆)− 1,

(ii) if ∆ < 0, then 𝑛*(𝜆) ≥ 𝑛𝑜(𝜆) = 1.

Remark B.7. Under a consumer surplus standard

(i) if ∆ > 0, then 𝑛𝑜(𝜆) = ∞ (since 𝑄𝑛 is increasing in 𝑛), so 𝑛*(𝜆) < 𝑛𝑜(𝜆),

(ii) if ∆ < 0, then 𝑛𝑜(𝜆) = 1 (since 𝑄𝑛 is decreasing in 𝑛), so 𝑛*(𝜆) ≥ 𝑛𝑜(𝜆).

Under a consumer surplus standard, entry is insufficient (resp. excessive) when returns

to scale are at most mildly increasing (resp. sufficiently increasing).

B.10 Results with (possible) multiplicity of equilibria

This section provides results with the maintained assumption ∆ > 0 on 𝐿 but dropping

the assumption that 𝐸 ′
𝑃 < (1 + 𝜆+∆/𝑛)/𝐻𝑛 on 𝐿. The second-order condition (SOC) of

the firm’s problem, that is 𝐸𝑃 ′ < (1 + 𝜆+∆) /𝐻𝑛, will still be assumed to hold strictly

in any symmetric pricing stage equilibrium. Then, the Cournot game equilibrium set may

consist of multiple symmetric equilibria. Propositions under this relaxed version of the

maintained assumption will be marked with an apostrophe (’).

B.10.1 Pricing stage equilibrium

Proposition 2’ studies the comparative statics of pricing stage equilibria.

Proposition 2’. Let ∆ > 0 on 𝐿. Then, at extremal equilibria:59

(i) total and individual quantity, and total surplus (resp. individual profit) are non-

increasing (resp. non-decreasing) in 𝜆,

(ii) individual profit is non-increasing in 𝑛,

(iii) total quantity is non-decreasing in 𝑛.
59By extremal equilibria we mean the equilibrium with minimum quantity among all equilibria and the

equilibrium with maximum quantity among all equilibria.
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Under ∆ > 0, when we drop the condition 𝐸𝑃 ′ < (1+𝜆+∆/𝑛)/𝐻𝑛 on 𝐿 guaranteeing

uniqueness, the results of Proposition 2 still hold weakly for extremal equilibria. They

also hold strictly but only locally around stable equilibria.60 As observed in AL, a discrete

change (e.g., in the integer number 𝑛 of firms) may even lead to a change in the number

of equilibria rendering it hard to make meaningful comparisons between non-extremal

equilibra.

B.10.2 Free entry under post-entry overlapping ownership

Proposition 10’ studies existence of a free entry equilibrium.

Proposition 10’. Let ∆ > 0 on 𝐿. Then, at extremal equilibria profit is non-increasing

in 𝑛 and a free entry equilibrium where in the pricing stage firms play an extremal

equilibrium exists.

If for example there is multiplicity of pricing stage equilibria for every 𝑛, there will

exist at least two free entry equilibria: one where the minimum pricing stage equilibrium

is played and one where the maximum pricing stage equilibrium is played.61

Proposition 13’ compares equilibrium entry to the socially optimal level of entry

considering also the case of business-enhancing competition. To economize on notation,

we are still using 𝑞𝑛, 𝑛*(𝜆) and 𝑛𝑜(𝜆) to denote equilibrium values in a specific extremal

equilibrium even though multiple equilibria may exist.

Proposition 13’. Let ∆ > 0 on 𝐿. Let the same type of extremal equilibrium (i.e.,

minimum or maximum) be played in the pricing stage of the free entry equilibrium and

the planner’s solution. Then,

(i) if 𝑞𝑛𝑜(𝜆)−1 ≥ 𝑞𝑛𝑜(𝜆), then 𝑛*(𝜆) ≥ 𝑛𝑜(𝜆)− 1.

(ii) if 𝑞𝑛𝑜(𝜆)+1 ≥ 𝑞𝑛𝑜(𝜆), then 𝑛*(𝜆) ≤ 𝑛𝑜(𝜆).

Remark B.8. Proposition 13’ and part (ii) of Proposition 13 extend the results of Amir

et al. (2014) to the case of post-entry overlapping ownership.
60Namely, parts (i)-(iv) of Proposition 2 hold locally in any stable equilibrium (with 𝑛 treated as a

continuous variable in parts (ii)-(iv)).
61Observe that extremal equilibria correspond to extremal equilibrium profits. Namely, the minimum

(resp. maximum) equilibrium quantity corresponds to the maximum (resp. minimum) equilibrium profit.
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Under ∆ > 0, when competition is locally business-stealing, equilibrium entry is not

insufficient by more than one firm as in the case without overlapping ownership. On the

other hand, if competition is locally business-enhancing, entry is not excessive.

B.11 Free entry with pre-entry overlapping ownership: a more tractable

framework

In this section we make the model of free entry with pre-entry overlapping ownership

more tractable by ignoring the integer constraint on 𝑛. The way we do this is not just by

letting (2) hold with equality. Instead, now each “infinitesimal” firm considers whether

to enter or not examining a differential version of (3).62 Consider firm 𝑖 of “size” 𝜀 > 0

and let 𝑛 ∈ R+ be the number of other firms entering. Firm 𝑖’s payoff if it enters is

(𝜀+ 𝜆𝑛) (Π(𝑛+ 𝜀,𝜆)− 𝑓), while if it does not, it is 𝜆𝑛 (Π(𝑛,𝜆)− 𝑓). The difference is

𝜀Π(𝑛+ 𝜀,𝜆) + 𝜆𝑛 [Π(𝑛+ 𝜀,𝜆)− Π(𝑛,𝜆)]− 𝜀𝑓.

Notice that for 𝜀 = 1 we recover the case with an integer number of firms. Dividing this

expression by 𝜀 and letting 𝜀 → 0 gives

Π(𝑛,𝜆) + 𝜆𝑛
𝜕Π(𝑛,𝜆)

𝜕𝑛
− 𝑓.

Therefore, 𝑞𝑛 is a free entry equilibrium if

own profit
from entry⏞  ⏟  
Π(𝑛,𝜆) +𝜆

entry externality
on other firms⏞  ⏟  
𝑛
𝜕Π(𝑛,𝜆)

𝜕𝑛
=

entry
cost⏞ ⏟ 
𝑓 and (6)

(1 + 𝜆)
𝜕Π(𝑛,𝜆)

𝜕𝑛
+ 𝜆𝑛

𝜕2Π(𝑛,𝜆)

(𝜕𝑛)2
< 0. (7)

Naturally, we only consider the free entry equilibrium and planner’s solution with 𝑛 ∈ R+;

we denote the number of firms in the two solutions by 𝑛*(𝜆) and 𝑛𝑜(𝜆), respectively.

The entry externality is now measured by 𝑛𝜕Π(𝑛,𝜆)/𝜕𝑛. (6) says that the marginal firm

entering is exactly indifferent between entering or not. (7) guarantees that an extra

infinitesimal firm does not want to enter, and given that 𝜕Π(𝑛,𝜆)/𝜕𝑛 < 0, can equivalently
62Of course, the firm is infinitesimal only for the purpose of the algebra. The firm understands the

(marginal) effect of its entry on market outcomes, and in the pricing stage firms still complete á la Cournot
but with the symmetric equilibrium solution extended to 𝑛 ∈ R++.
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be written as

1 + 𝜆− 𝜆𝐸𝜕Π/𝜕𝑛,𝑛(𝑛,𝜆) > 0, where 𝐸𝜕Π/𝜕𝑛,𝑛(𝑛,𝜆) := −
𝜕2Π(𝑛,𝜆)
(𝜕𝑛)2

𝜕Π(𝑛,𝜆)
𝜕𝑛

𝑛

is the elasticity of the slope of individual profit with respect to 𝑛. Also, given that

𝜕Π(𝑛,𝜆)/𝜕𝑛 < 0, 𝜆 > 0 implies through (6) that the entering firms make positive net

profits in equilibrium. For 𝜆 = 0, (6) reduces to the standard zero profit condition.

Provided that (7) holds for every 𝑛, the (unique) equilibrium level of entry 𝑛*(𝜆) is

pinned down by

Π(𝑛*(𝜆),𝜆) + 𝜆𝑛*(𝜆)
𝜕Π(𝑛,𝜆)

𝜕𝑛

⃒⃒⃒⃒
𝑛=𝑛*(𝜆)

= 𝑓.

Assume that Π(1,𝜆) + 𝜆𝜕Π(𝑛,𝜆)/𝜕𝑛|𝑛=1 > 𝑓 so that more than 1 firm enters, and

lim
𝑛→∞

[Π(𝑛,𝜆) + 𝜆𝜕Π(𝑛,𝜆)/𝜕𝑛] < 𝑓.

Proposition 14 guarantees that the left-hand side of (6) is decreasing in 𝑛, thus ensuring

existence of a unique equilibrium.

Proposition 14. If for every 𝑛 such that Π(𝑛,𝜆) + 𝜆𝜕Π(𝑛,𝜆)/𝜕𝑛 ≥ 𝑓 it holds that

1 + 𝜆− 𝜆𝐸𝜕Π/𝜕𝑛,𝑛(𝑛,𝜆) > 0, then a unique Cournot equilibrium with free entry exists.

Proposition 15. Fix a value for 𝜆 and consider the unique symmetric Cournot equilibrium

with free entry, where 𝜕Π(𝑛,𝜆)/𝜕𝑛|𝑛=𝑛*(𝜆) < 0 and 1 + 𝜆− 𝜆𝐸𝜕Π/𝜕𝑛,𝑛(𝑛
*(𝜆),𝜆) > 0.

(i) The number of firms locally changes with 𝜆 with direction given by63

sgn

{︂
𝑑𝑛*(𝜆)

𝑑𝜆

}︂
= sgn

{︂ change in magnitude
of entry externality⏞  ⏟  

𝐸𝜕Π/𝜕𝑛,𝜆 (𝑛
*(𝜆),𝜆)+

increase in own
profit from entry⏞  ⏟  

1

𝜆

𝐸Π,𝜆 (𝑛
*(𝜆),𝜆)

𝐸Π,𝑛 (𝑛*(𝜆),𝜆)
−

increase in internalization
of entry externality⏞ ⏟ 

1

}︂
.

(ii) The total quantity changes with 𝜆 with direction given by

sgn

{︂
𝑑𝑄𝑛*(𝜆)

𝑑𝜆

}︂
= sgn

⎧⎨⎩𝐸𝜕Π/𝜕𝑛,𝜆 (𝑛
*(𝜆),𝜆) + 1

𝜆

𝐸Π,𝜆(𝑛
*(𝜆),𝜆)

𝐸Π,𝑛(𝑛*(𝜆),𝜆)
− 1

1 + 𝜆− 𝜆𝐸𝜕Π/𝜕𝑛,𝑛 (𝑛*(𝜆),𝜆)

∆(𝑄𝑛*(𝜆), (𝑛− 1) 𝑞𝑛*(𝜆))

𝑛*(𝜆)− 1
− 1

⎫⎬⎭
63For 𝜆 = 0 cancel the 𝜆 in the second term with the one in 𝐸Π,𝜆(𝑛,𝜆).
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where

𝐸𝜕Π/𝜕𝑛,𝜆(𝑛,𝜆) := −
𝜕2Π(𝑛,𝜆)
𝜕𝜆𝜕𝑛

𝜕Π(𝑛,𝜆)
𝜕𝑛

𝜆, 𝐸Π,𝑛(𝑛,𝜆) := −
𝜕Π(𝑛,𝜆)

𝜕𝑛

Π(𝑛,𝜆)
𝑛 > 0, 𝐸Π,𝜆(𝑛,𝜆) :=

𝜕Π(𝑛,𝜆)
𝜕𝜆

Π(𝑛,𝜆)
𝜆 > 0

are, respectively, the elasticity with respect to 𝜆 of the slope of individual profit with

respect to 𝑛, the elasticity of profit with respect to 𝑛, and the elasticity of profit with

respect to 𝜆.

Corollary 15.1. In addition to the assumptions of Proposition 15, assume constant

returns to scale. Then

sgn

{︂
𝑑𝑛*(𝜆)

𝑑𝜆

}︂
= sgn

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︂
𝑛− 1 + 2𝜆− Λ𝑛 (2𝑛− Λ𝑛𝐸𝑃 ′ (𝑄𝑛))

𝑛− Λ𝑛

)︂
(𝑛+ Λ𝑛 − Λ𝑛𝐸𝑃 ′ (𝑄𝑛))

+𝜆(2𝑛− Λ𝑛) (2− 𝐸𝑃 ′ (𝑄𝑛))−
𝜆Λ𝑛(𝑛− Λ𝑛)𝑄𝑛𝐸

′
𝑃 ′ (𝑄𝑛)

𝑛+ Λ𝑛 − Λ𝑛𝐸𝑃 ′ (𝑄𝑛)

⃒⃒⃒⃒
⃒⃒⃒⃒
𝑛=𝑛*(𝜆)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

(i) for 𝜆 = 0, given 𝐸𝑃 ′(𝑄𝑛*(0)) < 2, 𝑑𝑛*(𝜆)/𝑑𝜆
( resp. >)

< 0 if and only if 𝑛*(0)
( resp. >)

<

2 +
√︀

3− 𝐸𝑃 ′(𝑄𝑛*(0)).

(ii) If 𝐸 ′
𝑃 ′(𝑄𝑛*(𝜆)) ≤ 0 and 𝐸𝑃 ′

(︀
𝑄𝑛*(𝜆)

)︀
> [2𝑛− (𝐻−1

𝑛 − 1) (𝑛− 1 + 2𝜆)] /Λ𝑛, then

𝑑𝑛*(𝜆)/𝑑𝜆 > 0.

(iii) If 𝐸𝑃 ′
(︀
𝑄𝑛*(𝜆)

)︀
< max {2, [2𝑛− (𝐻−1

𝑛 − 1) (𝑛+ 1 + 2𝜆)] /Λ𝑛} and 𝐸 ′
𝑃 ′(𝑄𝑛*(𝜆)) ≥ 0,

then 𝑑𝑛*(𝜆)/𝑑𝜆 < 0.

(iv) If lim𝜆→1− 𝐸𝑃 ′(𝑄𝑛*(𝜆)) < 2 (and 𝐸 ′
𝑃 ′ bounded), then 𝑑𝑛*(𝜆)/𝑑𝜆 < 0 for 𝜆 close to 1.

(v) Under linear demand

sgn

{︂
𝑑𝑛*(𝜆)

𝑑𝜆

}︂
= sgn

{︃(︂
𝑛− 1 + 2𝜆− 2𝑛Λ𝑛

𝑛− Λ𝑛

)︂
(𝑛+ Λ𝑛) + 2𝜆(2𝑛− Λ𝑛)

⃒⃒⃒⃒
𝑛=𝑛*(𝜆)

}︃
.

(vi) If 𝐸𝜕Π/𝜕𝑛,𝑛(𝑛
*(𝜆),𝜆) ≤ 2, 𝐸𝑃 ′(𝑄𝑛*(𝜆)) < 2, 𝐸 ′

𝑃 ′(𝑄𝑛*(𝜆)) ≥ 0 and 𝑛*(𝜆) ≥ 2, then the

total quantity decreases with 𝜆.

Claim 4. Under linear demand and constant marginal costs 𝐸𝜕Π/𝜕𝑛,𝑛(𝑛,𝜆) ≤ 2 for every

𝜆 ∈ [0,1] and 𝑛 ≥ 1.
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Corollary 15.1 shows that under reasonable assumptions overlapping ownership can

spur entry. Proposition 16 shows that the effect of overlapping ownership on the magnitude

of the entry externality is ambiguous in our setting. Proposition 17 shows that with

pre-entry overlapping ownership both possibilities of excessive and insufficient entry are

possible.

Proposition 16. Assume that ∆ > 0 and 𝐸𝑃 ′(𝑄𝑛) < 1 + Λ𝑛

𝑛−Λ𝑛

⧸︁(︁
𝐸𝑄𝑛,𝑛(𝑛,𝜆) +

Λ𝑛

𝑛−Λ𝑛

)︁
for 𝑛 = 𝑛*(𝜆). The direction of the change (due to the change in 𝜆) in the magnitude of

the entry externality, sgn
{︀
𝐸𝜕Π/𝜕𝑛,𝜆(𝑛,𝜆)

}︀
, is given by

sgn

⎧⎪⎪⎪⎨⎪⎪⎪⎩

+⏞  ⏟  
𝐸𝑄𝑛,𝜆(𝑛,𝜆)

𝐸𝑄𝑛,𝑛(𝑛,𝜆)
−

− under Prop. 2(ii)⏞  ⏟  
𝐸𝜕𝑄𝑛/𝜕𝑛,𝜆(𝑛,𝜆)+

+⏞  ⏟  
𝑛− 1

𝑛− Λ𝑛

[︀
(𝐸𝑄𝑛,𝑛(𝑛,𝜆))

−1 − 1
]︀

[︁
𝐸𝑄𝑛,𝑛(𝑛,𝜆) +

Λ𝑛

𝑛−Λ𝑛

]︁ [︂
1 +

Λ𝑛
𝑛−Λ𝑛

𝐸𝑄𝑛,𝑛(𝑛,𝜆)+
Λ𝑛

𝑛−Λ𝑛

− 𝐸𝑃 ′(𝑄𝑛)

]︂
⃒⃒⃒⃒
⃒⃒⃒⃒
𝑛=𝑛*(𝜆)

⎫⎪⎪⎬⎪⎪⎭
evaluated at 𝑛 = 𝑛*(𝜆), where

𝐸𝜕𝑄𝑛/𝜕𝑛,𝜆(𝑛,𝜆) :=
𝜕2𝑄𝑛

𝜕𝜆𝜕𝑛
𝜕𝑄𝑛

𝜕𝑛

𝜆, 𝐸𝑄𝑛,𝑛(𝑛,𝜆) :=
𝜕𝑄𝑛

𝜕𝑛

𝑛

𝑄𝑛

> 0, 𝐸𝑄𝑛,𝜆(𝑛,𝜆) := −𝜕𝑄𝑛

𝜕𝜆

𝜆

𝑄𝑛

> 0.

Under constant marginal costs

sgn
{︀
𝐸𝜕Π/𝜕𝑛,𝜆(𝑛,𝜆)

}︀
= sgn

⎧⎪⎪⎨⎪⎪⎩
2Λ2

𝑛 (𝐸𝑃 ′(𝑄𝑛))
2 +

[︀
𝑛Λ𝑛(𝑛− Λ𝑛 − 1)− 2𝑛2 − Λ2

𝑛

]︀
𝐸𝑃 ′(𝑄𝑛)

−𝑛(𝑛− Λ𝑛) (𝑛+ Λ𝑛 − 6)− Λ𝑛(𝑛− Λ𝑛)
2𝑄𝑛𝐸

′
𝑃 ′ (𝑄𝑛)

𝑛+ Λ𝑛 − Λ𝑛𝐸𝑃 ′ (𝑄𝑛)

⃒⃒⃒⃒
⃒⃒⃒
𝑛=𝑛*(𝜆)

⎫⎪⎪⎬⎪⎪⎭ ,

which can be negative or positive. For linear demand, sgn
{︀
𝐸𝜕Π/𝜕𝑛,𝜆(𝑛,𝜆)

}︀
= sgn {6− (𝑛+ Λ𝑛)}.

Proposition 17. Consider the Cournot model with free entry and pre-entry overlapping

ownership. Assume that TS(𝑞𝑛) is globally concave in 𝑛, and 𝜆 < 1. Then in equilibrium

there is excessive (insufficient) entry if and only if

𝐸𝑃 ′
(︀
𝑄𝑛*(𝜆)

)︀ ( resp. >)
< 𝐻−1

𝑛

{︂
1 + 𝜆

(︂
1− ∆(𝑄𝑛, (𝑛− 1) 𝑞𝑛)

(1− 𝜆) (1 + 𝜆(𝑛− 1))

)︂}︂⃒⃒⃒⃒
𝑛=𝑛*(𝜆)

.

The results of this section very closely resemble the ones we obtain under the integer

constraint. Therefore, the gain in tractability from dropping the constraint as described

above comes at a minimal cost.
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C Proofs of additional results

Where clear we may simplify notation, for example omitting the subscript 𝑛,𝜆 for equilib-

rium objects. We may also write for example 𝑄𝑛 instead of 𝑄𝑛*(𝜆), 𝑛 instead of 𝑛*(𝜆). Also,

we write Π𝑛(𝑛,𝜆) ≡ 𝜕Π(𝑛,𝜆)/𝜕𝑛, Π𝜆(𝑛,𝜆) ≡ 𝜕Π(𝑛,𝜆)/𝜕𝜆, Π𝑛𝜆(𝑛,𝜆) ≡ 𝜕2Π(𝑛,𝜆)/(𝜕𝑛𝜕𝜆),

Π𝑛𝑛(𝑛,𝜆) ≡ 𝜕2Π(𝑛,𝜆)/(𝜕𝑛)2.

C.1 Proof of section B.2

Proof of Claim 1 Under CESL demand and constant marginal costs the pricing formula

𝑃 (𝑄𝑛)− 𝐶 ′(𝑞𝑛) = −𝐻𝑛𝑄𝑛𝑃
′ (𝑄𝑛) gives

𝑎+ 𝑏(𝑄𝑛)
1−𝐸 − 𝑐 = 𝐻𝑛𝑏(𝐸 − 1)(𝑄𝑛)

1−𝐸 if 𝐸 > 1

𝑎− 𝑏 ln𝑄𝑛 − 𝑐 = 𝐻𝑛𝑏 if 𝐸 = 1

𝑎− 𝑏(𝑄𝑛)
1−𝐸 − 𝑐 = 𝐻𝑛𝑏(1− 𝐸)(𝑄𝑛)

1−𝐸 if 𝐸 < 1

and the result follows. In the case 𝐸 > 1, 𝐸 < 2 and 𝑐 > 𝑎 guarantee that there is an

interior equilibrium. Notice that if 𝑎 > 𝑐, then the profit per unit 𝑃 (𝑄)−𝐴𝐶(𝑞) ≥ 𝑎−𝑐 > 0

is positive and bounded away from zero for every 𝑄 ≥ 𝑞 ≥ 0, and thus there is no

equilibrium. In the case 𝐸 < 1, if 𝑎 ≤ 𝑐, then in the unique equilibrium 𝑄𝑛 = 0.

For linear demand and quadratic costs the pricing formula 𝑃 (𝑄𝑛)−𝐶 ′(𝑞𝑛) = −𝐻𝑛𝑄𝑛𝑃
′ (𝑄𝑛)

gives 𝑎− 𝑏𝑄𝑛 − 𝑐 (𝑄𝑛/𝑛) = 𝐻𝑛𝑏𝑄𝑛, and the result follows. Q.E.D.

C.2 Proofs of section B.3

Proof of Propositions 7 and 7’ For simplicity, we use the notation 𝑄𝑛 and 𝑞𝑛 to

refer to values in a specific equilibrium even if that equilibrium is not unique.

Let ̃︀𝜋𝑖 (𝑞) := 𝜋𝑖 (𝑞) + 𝜆
∑︀

𝑗 ̸=𝑖 𝜋𝑗 (𝑞). A linearization of the adjustment process around

an equilibrium production profile 𝑞𝑛 gives

⎡⎢⎢⎢⎢⎢⎢⎣
𝑞1

𝑞2
...

𝑞𝑛

⎤⎥⎥⎥⎥⎥⎥⎦ =

=:𝐴⏞  ⏟  ⎡⎢⎢⎢⎢⎢⎢⎣
𝑘1

𝜕2̃︀𝜋1(𝑞)
(𝜕𝑞1)2

𝑘1
𝜕2̃︀𝜋1(𝑞)
𝜕𝑞1𝜕𝑞2

· · · 𝑘1
𝜕2̃︀𝜋1(𝑞)
𝜕𝑞1𝜕𝑞𝑛

𝑘2
𝜕2̃︀𝜋2(𝑞)
𝜕𝑞2𝜕𝑞1

𝑘2
𝜕2̃︀𝜋2(𝑞)
(𝜕𝑞2)2

· · · 𝑘2
𝜕2̃︀𝜋2(𝑞)
𝜕𝑞2𝜕𝑞𝑛

...
... · · · ...

𝑘𝑛
𝜕2̃︀𝜋𝑛(𝑞)
𝜕𝑞𝑛𝜕𝑞1

𝑘𝑛
𝜕2̃︀𝜋𝑛(𝑞)
𝜕𝑞𝑛𝜕𝑞2

· · · 𝑘𝑛
𝜕2̃︀𝜋𝑛(𝑞)
(𝜕𝑞𝑛)2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝑞1 − 𝑞𝑛

𝑞2 − 𝑞𝑛
...

𝑞𝑛 − 𝑞𝑛

⎤⎥⎥⎥⎥⎥⎥⎦ ,
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where for 𝑖 ̸= 𝑗

𝜕2̃︀𝜋𝑖 (𝑞)

𝜕𝑞𝑖𝜕𝑞𝑗
= 𝑃 ′(𝑄) (1 + 𝜆− 𝐸𝑃 ′(𝑄) ((1− 𝜆)𝑠𝑖 + 𝜆)) ,

𝜕2̃︀𝜋𝑖 (𝑞)

(𝜕𝑞𝑖)2
= 𝑃 ′(𝑄)

(︂
2− 𝐶 ′′

𝑖 (𝑞𝑖)

𝑃 ′(𝑄)
− 𝐸𝑃 ′(𝑄) ((1− 𝜆)𝑠𝑖 + 𝜆)

)︂
< 0

are evaluated at the equilibrium production profile 𝑞𝑛. The second derivative with respect

to 𝑞𝑖 evaluated at 𝑞𝑛 is negative given that 𝐸𝑃 ′(𝑄𝑛) < (1 + 𝜆+∆(𝑄𝑛,(𝑛− 1)𝑞𝑛)) /𝐻𝑛.

Notice that 𝜕2̃︀𝜋𝑖(𝑞)
𝜕𝑞𝑖𝜕𝑞𝑗

does not depend on the identity of firm 𝑗 as long as 𝑖 ̸= 𝑗, so that

the off-diagonal elements in each row are equal. From Theorem 2(i) in al Nowaihi and

Levine (1985)—which also follows from Hosomatsu (1969)—it follows that all eigenvalues

of 𝐴 are real.

Also, we have that 𝜕2̃︀𝜋𝑖 (𝑞) /(𝜕𝑞𝑖𝜕𝑞𝑗)|𝑞=𝑞𝑛
= 𝑃 ′(𝑄𝑛) (1 + 𝜆−𝐻𝑛𝐸𝑃 ′(𝑄𝑛)). We distin-

guish two cases.

Case 1: If 𝐸𝑃 ′(𝑄𝑛) ≤ (1 + 𝜆)/𝐻𝑛, then that combined with ∆(𝑄𝑛,(𝑛 − 1)𝑞𝑛) > 0

imply

𝜕2̃︀𝜋𝑖 (𝑞)

(𝜕𝑞𝑖)2

⃒⃒⃒⃒
𝑞=𝑞𝑛

<
𝜕2̃︀𝜋𝑖 (𝑞)

𝜕𝑞𝑖𝜕𝑞𝑗

⃒⃒⃒⃒
𝑞=𝑞𝑛

≤ 0,

for every 𝑖 ̸= 𝑗, and it follows from Theorem 2(ii-a) in al Nowaihi and Levine (1985)—also

in Hosomatsu (1969)— that all eigenvalues of 𝐴 are negative. From standard stability

theory we then have that the equilibrium is locally stable.

Case 2: For 𝐸𝑃 ′(𝑄𝑛) > (1 + 𝜆)/𝐻𝑛 we get 𝜕2̃︀𝜋𝑖 (𝑞) /(𝜕𝑞𝑖𝜕𝑞𝑗)|𝑞=𝑞𝑛
> 0, and it follows

from Theorem 2(ii-b) in al Nowaihi and Levine (1985) that all eigenvalues of 𝐴 are negative

it and only if

𝑛∑︁
𝑖=1

𝜕2̃︀𝜋𝑖(𝑞)
𝜕𝑞𝑖𝜕𝑞𝑗

⃒⃒⃒
𝑞=𝑞𝑛

𝜕2̃︀𝜋𝑖(𝑞)
𝜕𝑞𝑖𝜕𝑞𝑗

⃒⃒⃒
𝑞=𝑞𝑛

− 𝜕2̃︀𝜋𝑖(𝑞)
(𝜕𝑞𝑖)2

⃒⃒⃒
𝑞=𝑞𝑛

< 1, or equivalently

−𝑛
1 + 𝜆−𝐻𝑛𝐸𝑃 ′(𝑄𝑛)

1− 𝜆− 𝐶′′(𝑞𝑛)
𝑃 ′(𝑄𝑛)

< 1 ⇐⇒ − [1 + 𝜆−𝐻𝑛𝐸𝑃 ′(𝑄𝑛)] < ∆(𝑄𝑛,(𝑛− 1)𝑞𝑛)/𝑛,

Again the result follows from standard stability theory. Q.E.D.
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C.3 Proofs of section B.4

Proof of Proposition 8 sgn
{︁

𝑑2𝑄
𝑑𝜆𝑑𝑛

}︁
is equal to

= − sgn

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[︂
𝑄+ (𝑛− 1)

𝑑𝑄

𝑑𝑛

]︂
[𝑛+ Λ− 𝐶 ′′(𝑄/𝑛)/𝑃 ′(𝑄)− Λ𝐸𝑃 ′(𝑄)]− (𝑛− 1)𝑄×[︃

1 + 𝜆−
𝐶 ′′′(𝑄/𝑛)

(︀
𝑑𝑄
𝑑𝑛

− 𝑄
𝑛

)︀ 𝑃 ′(𝑄)
𝑛

− 𝐶 ′′(𝑄/𝑛)𝑃 ′′(𝑄)𝑑𝑄
𝑑𝑛

(𝑃 ′(𝑄))2
− 𝜆𝐸𝑃 ′(𝑄)− Λ𝐸 ′

𝑃 ′(𝑄)
𝑑𝑄

𝑑𝑛

]︃
⎫⎪⎪⎪⎬⎪⎪⎪⎭

= − sgn

⎧⎪⎪⎨⎪⎪⎩
𝑛

𝑛− 1
[2− 𝐸𝑃 ′(𝑄)] +

𝑑𝑄

𝑑𝑛

𝑛

𝑄
[𝑛+ Λ+ Λ𝐸𝑃 ′(𝑄) [𝐸𝑃 ′(𝑄) + 𝐸𝑃 ′′(𝑄)]]

+

(︂
𝑑𝑄

𝑑𝑛

𝑛

𝑄
− 1

)︂
𝐶 ′′′(𝑄/𝑛)𝑄/𝑛

𝑃 ′(𝑄)
− 𝐶 ′′(𝑄/𝑛)

𝑃 ′(𝑄)

[︂
𝑛

𝑛− 1
+

𝑑𝑄

𝑑𝑛

𝑛

𝑄
(1− 𝐸𝑃 ′(𝑄))

]︂
⎫⎪⎪⎬⎪⎪⎭ .

If also 𝐶 ′′, 𝐶 ′′′ ≥ 0 and 𝐸𝑃 ′(𝑄) [𝐸𝑃 ′(𝑄) + 𝐸𝑃 ′′(𝑄)] ≥ −2, then sgn {𝑑2𝑄/(𝑑𝜆𝑑𝑛)} = −

given that 𝑛 ≥ and 𝐸𝑃 ′(𝑄) < 2; the latter two imply 𝑑𝑄
𝑑𝑛

𝑛
𝑄
∈ (0,1).

Also,

𝑑2𝑞

𝑑𝜆𝑑𝑛
=

𝑑
(︀
𝑑𝑞
𝑑𝜆

)︀
𝑑𝑛

=
𝑑
[︀(︀

𝑑𝑄
𝑑𝜆

)︀
1
𝑛

]︀
𝑑𝑛

=
1

𝑛

[︂
𝑑2𝑄

𝑑𝜆𝑑𝑛
− 1

𝑛

𝑑𝑄

𝑑𝜆

]︂

∝ 1

𝑛

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−𝑄(𝑛− 1)

𝑛

⎡⎢⎢⎣
(︂
𝑑𝑄

𝑑𝑛

𝑛

𝑄
− 1

)︂
𝐶 ′′′(𝑞)𝑞

𝑃 ′(𝑄)
− 𝐶 ′′(𝑞)

𝑃 ′(𝑄)

[︂
𝑛

𝑛− 1
+

𝑑𝑄

𝑑𝑛

𝑛

𝑄
(1− 𝐸𝑃 ′(𝑄))

]︂
+

𝑛

𝑛− 1
[2− 𝐸𝑃 ′(𝑄)] +

𝑑𝑄

𝑑𝑛

𝑛

𝑄
[𝑛+ Λ+ Λ𝐸𝑃 ′(𝑄) [𝐸𝑃 ′(𝑄) + 𝐸𝑃 ′′(𝑄)]]

⎤⎥⎥⎦
−(𝑛+ Λ− 𝐶 ′′(𝑞)/𝑃 ′(𝑄)− Λ𝐸𝑃 ′(𝑄))2

𝑛

𝑑𝑄

𝑑𝜆

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
∝−

(︂
𝑑𝑄

𝑑𝑛

𝑛

𝑄
− 1

)︂
𝐶 ′′′(𝑞)𝑞

𝑃 ′(𝑄)
+

𝐶 ′′(𝑞)

𝑃 ′(𝑄)

[︂
1

𝑛− 1
+

𝑑𝑄

𝑑𝑛

𝑛

𝑄
(1− 𝐸𝑃 ′(𝑄))

]︂
− 𝑛

𝑛− 1
[2− 𝐸𝑃 ′(𝑄)]

− 𝑑𝑄

𝑑𝑛

𝑛

𝑄
[𝑛+ Λ+ Λ𝐸𝑃 ′(𝑄) [𝐸𝑃 ′(𝑄) + 𝐸𝑃 ′′(𝑄)]] + 𝑛+ Λ− Λ𝐸𝑃 ′(𝑄).

Under CESL demand, for 𝑄 < 𝑄 the elasticity 𝐸𝑃 ′′(𝑄) of the curvature is then given by

𝐸𝑃 ′′(𝑄) ≡ 𝑄𝑃 ′′′(𝑄)

𝑃 ′′(𝑄)
=

⎧⎪⎨⎪⎩
𝑄𝑏(𝐸+1)𝐸(1−𝐸)𝑄−(𝐸+2)

−𝑏𝐸(1−𝐸)𝑄−(𝐸+1) = −(𝐸 + 1) if 𝐸 ̸= 1

−𝑄2𝑏/𝑄3

𝑏/𝑄2 = −2 if 𝐸 = 1

,

so 𝐸𝑃 ′′(𝑄) = −(𝐸 + 1). Thus, if marginal costs are linear and demand is CESL, we get

𝑑2𝑞

𝑑𝜆𝑑𝑛
∝ 𝑛(𝑛− 3)

𝑛− 1
+ Λ−

(︂
Λ− 𝑛

𝑛− 1

)︂
𝐸 − 1− 𝜆

𝑛+ Λ− Λ𝐸
[𝑛+ Λ− Λ𝐸]

∝ 𝑛− 3 + 𝜆(𝑛− 1)−
(︂
Λ(𝑛− 1)

𝑛
− 1

)︂
𝐸 = 𝑛+ Λ− 4−

(︂
Λ(𝑛− 1)

𝑛
− 1

)︂
𝐸.
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Q.E.D.

Proof of Proposition 9 (i-ii) Given what we see in the proof of Proposition 10, for

aggregate industry profits we have that

𝜕 [𝑛Π(𝑛,𝜆)]

𝜕𝑛
= 𝑃 (𝑄𝑛)

𝑄𝑛

𝑛
− 𝐶(𝑞𝑛) + 𝑛𝑃 ′(𝑄𝑛)

(︂
𝑄𝑛

𝑛

)︂2 [︂
𝜕𝑄𝑛

𝜕𝑛

𝑛

𝑄𝑛

(1−𝐻𝑛) +𝐻𝑛

]︂
∝ −

[︃
𝜕𝑄𝑛

𝜕𝑛

𝑛

𝑄𝑛

(1−𝐻𝑛)− 𝜂(𝑄𝑛)
𝑃 (𝑄𝑛)− 𝐶 ′(𝑞𝑛) + 𝐶 ′(𝑞𝑛)

𝐸𝐶(𝑞𝑛)−1
𝐸𝐶(𝑞𝑛)

𝑃 (𝑄𝑛)
+𝐻𝑛

]︃
(1)
= −

[︂
𝜕𝑄𝑛

𝜕𝑛

𝑛

𝑄𝑛

(1−𝐻𝑛)− 𝜂(𝑄𝑛)

(︂
1− 𝐻𝑛

𝜂(𝑄𝑛)

)︂
𝐸𝐶(𝑞𝑛)− 1

𝐸𝐶(𝑞𝑛)

]︂
∝ 𝐸𝐶(𝑞𝑛)

(︂
1− 𝜕𝑄𝑛

𝜕𝑛

𝑛

𝑄𝑛

1−𝐻𝑛

𝜂(𝑄𝑛)−𝐻𝑛

)︂
− 1,

where 𝐻𝑛 < 𝜂(𝑄𝑛) from the pricing formula (1).

(iii) We have that

𝑛Π(𝑛,𝜆) ≡ 𝑃 (𝑄𝑛)𝑄𝑛 − 𝑛𝐶(𝑞𝑛)
𝐶′′<0
< 𝑃 (𝑄𝑛)𝑄𝑛 − 𝐶(𝑄𝑛) ≤ 𝑃 (𝑞1)𝑞1 − 𝐶(𝑞1) = Π(1,𝜆),

where the last inequality follows by definition of 𝑞1 being the monopolist’s optimal quantity.

To see why Remark B.3 holds notice that for 𝜆 = 1

𝜕 [𝑛Π(𝑛,𝜆)]

𝜕𝑛
= 𝑃 (𝑄𝑛)

𝑄𝑛

𝑛
− 𝐶(𝑞𝑛) + 𝑛𝑃 ′(𝑄𝑛)

(︂
𝑄𝑛

𝑛

)︂2

𝐶′′>0
> 𝑃 (𝑄𝑛)

𝑄𝑛

𝑛
− 𝐶 ′(𝑞𝑛)𝑞𝑛 + 𝑃 ′(𝑄𝑛)

𝑄2
𝑛

𝑛
∝ 𝑃 (𝑄𝑛)− 𝐶 ′(𝑞𝑛)

𝑃 (𝑄𝑛)
− 1

𝜂(𝑄𝑛)

(1)
= 0.

Q.E.D.

Proof of Claim 2 From Claim 1 it follows that

(𝑄𝑛, 𝑃 (𝑄𝑛)) =

(︂
𝑎

𝑏 (1 +𝐻𝑛) + 𝑐/𝑛
, 𝑎

(︂
1− 𝑏

𝑏 (1 +𝐻𝑛) + 𝑐/𝑛

)︂)︂

and

𝜕 [𝑛Π(𝑛,𝜆)]

𝜕𝑛
=𝑃 (𝑄𝑛)

𝑄𝑛

𝑛
− 𝐶(𝑞𝑛) + 𝑛𝑃 ′(𝑄𝑛)

(︂
𝑄𝑛

𝑛

)︂2 [︂
𝜕𝑄𝑛

𝜕𝑛

𝑛

𝑄𝑛

(1−𝐻𝑛) +𝐻𝑛

]︂
∝ =

𝑐

2𝑛
− 𝑏(1− 𝜆) + 𝑐

𝑛+ Λ+ 𝑐/𝑏
(1−𝐻𝑛) ,
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and the rest follow. Q.E.D.

C.4 Proof of section B.5

Proof of Lemma 2 We have seen that the first derivative of equilibrium total surplus

with respect to 𝑛 is given by

𝑑TS𝑛

𝑑𝑛
= Π(𝑛,𝜆)− 𝑓 − Λ𝑛𝑄𝑛𝑃

′(𝑄𝑛)
𝜕𝑄𝑛

𝜕𝑛
− 𝑞𝑛

𝑛
,

so if we denote Π𝑛(𝑛,𝜆) ≡ 𝜕Π(𝑛,𝜆)/𝜕𝑛, the second derivative is given by

𝑑2TS𝑛

(𝑑𝑛)2
=Π𝑛(𝑛,𝜆)− 𝜆𝑄𝑛𝑃

′(𝑄𝑛)
𝜕𝑄𝑛

𝜕𝑛
− 𝑞𝑛

𝑛
− Λ𝑛

𝜕𝑄𝑛

𝜕𝑛
𝑃 ′(𝑄𝑛)

𝜕𝑄𝑛

𝜕𝑛
− 𝑞𝑛

𝑛

− Λ𝑛𝑄𝑛𝑃
′′(𝑄𝑛)

𝜕𝑄𝑛

𝜕𝑛

𝜕𝑄𝑛

𝜕𝑛
− 𝑞𝑛

𝑛
− Λ𝑛𝑄𝑛𝑃

′(𝑄𝑛)

(︁
𝜕2𝑄𝑛

(𝜕𝑛)2
− 𝑑𝑞𝑛

𝜕𝑛

)︁
𝑛− 𝜕𝑄𝑛

𝜕𝑛
+ 𝑞𝑛

𝑛2

∝− 𝜕𝑄𝑛

𝜕𝑛

𝑛

𝑄𝑛

[︃
1− 𝜆−𝐻𝑛

(︃(︂
𝜕𝑄𝑛

𝜕𝑛

𝑛

𝑄𝑛

− 1

)︂
(1− 𝐸𝑃 ′(𝑄𝑛)) +

𝜕2𝑄𝑛

(𝜕𝑛)2

(︂
𝜕𝑄𝑛

𝜕𝑛

)︂−1

𝑛− 1

)︃]︃
+

1− 𝜆

𝑛
.

Under constant marginal costs

𝜕𝑄𝑛

𝜕𝑛
=

1− 𝜆

𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛)

𝑄𝑛

𝑛
=⇒

𝜕2𝑄𝑛

(𝜕𝑛)2
= (1− 𝜆)

(︃
−
1 + 𝜆− 𝜆𝐸𝑃 ′ (𝑄𝑛)− Λ𝐸 ′

𝑃 ′ (𝑄𝑛)
𝜕𝑄𝑛

𝜕𝑛

(𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛))
2

𝑄𝑛

𝑛
+

𝜕𝑄𝑛
𝜕𝑛

𝑛−𝑄𝑛

𝑛2

𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛)

)︃
,

𝜕2𝑄𝑛

(𝜕𝑛)2

(︂
𝜕𝑄𝑛

𝜕𝑛

)︂−1

𝑛 = −𝑛
1 + 𝜆− 𝜆𝐸𝑃 ′ (𝑄𝑛)− Λ𝐸 ′

𝑃 ′ (𝑄𝑛)
𝜕𝑄𝑛

𝜕𝑛

𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛)
+

𝜕𝑄𝑛

𝜕𝑛

𝑛

𝑄𝑛

− 1

so that

𝑑2TS𝑛

(𝑑𝑛)2
∝−

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕𝑄𝑛

𝜕𝑛

𝑛

𝑄𝑛

⎡⎢⎢⎢⎣1− 𝜆−𝐻𝑛

⎛⎜⎜⎜⎝
(︂
𝜕𝑄𝑛

𝜕𝑛

𝑛

𝑄𝑛

− 1

)︂
(2− 𝐸𝑃 ′(𝑄𝑛))

−𝑛
1 + 𝜆− 𝜆𝐸𝑃 ′ (𝑄𝑛)− Λ𝐸 ′

𝑃 ′ (𝑄𝑛)
𝜕𝑄𝑛

𝜕𝑛

𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛)
− 1

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦− 1− 𝜆

𝑛

⎫⎪⎪⎪⎬⎪⎪⎪⎭

∝−

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑛(1− 𝜆) (𝑛+ Λ𝑛 − Λ𝑛𝐸𝑃 ′ (𝑄𝑛))− (𝑛+ Λ𝑛 − Λ𝑛𝐸𝑃 ′ (𝑄𝑛))

2

−Λ𝑛

⎛⎜⎝ − (𝑛+ Λ𝑛 − (1− 𝜆)− Λ𝑛𝐸𝑃 ′ (𝑄𝑛)) (2− 𝐸𝑃 ′(𝑄𝑛))

−𝑛

(︂
1 + 𝜆− 𝜆𝐸𝑃 ′ (𝑄𝑛)− Λ𝑛𝐸

′
𝑃 ′ (𝑄𝑛)

𝜕𝑄𝑛

𝜕𝑛

)︂
− (𝑛+ Λ𝑛 − Λ𝑛𝐸𝑃 ′ (𝑄𝑛))

⎞⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.
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The partial derivative of the expression in the brackets with respect to 𝐸𝑃 ′(𝑄𝑛) is given

by

− Λ𝑛(1− 𝜆) + 2Λ (𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛))

− Λ (Λ (2− 𝐸𝑃 ′(𝑄𝑛)) + 𝑛+ Λ− (1− 𝜆)− Λ𝐸𝑃 ′ (𝑄𝑛) + Λ− (1− 𝜆) + Λ)

∝𝜆𝑛− (3Λ− 2(1− 𝜆)) = − (2Λ− (1− 𝜆)) < 0,

so that, given 𝐸𝑃 ′(𝑄𝑛) < 2, for 𝑑2TS𝑛 /(𝑑𝑛)
2 to be negative it is sufficient that

𝑛(1− 𝜆) (𝑛+ Λ− 2Λ)− (𝑛+ Λ− 2Λ)2

−Λ

(︂
−𝑛

(︂
1 + 𝜆− 2𝜆− Λ𝐸 ′

𝑃 ′ (𝑄𝑛)
𝜕𝑄𝑛

𝜕𝑛

)︂
− (𝑛+ Λ− 2Λ)

)︂
≥ 0 ⇐⇒

1− 𝜆− Λ

𝑛
𝐸 ′

𝑃 ′(𝑄𝑛)𝑄𝑛
𝜕𝑄𝑛

𝜕𝑛

𝑛

𝑄𝑛

≥ −(Λ + 1− 𝜆) (𝑛− Λ)

Λ𝑛
,

which is true for 𝐸 ′
𝑃 ′ not too high. Q.E.D.

C.5 Proofs of sections B.9 and B.10

Where clear we may simplify notation, and write for example 𝑛 instead of 𝑛*(𝜆).

Proof of Proposition 2’ (i) Consider 𝑅(𝑄−𝑖) as defined in the proof of Proposition 1.

For any 𝑄−𝑖 the maximand satisfies 𝜕2 {𝑃 (𝑄) [𝑄− (1− 𝜆)𝑄−𝑖]− 𝐶(𝑄−𝑄−𝑖)} /(𝜕𝜆𝜕𝑄) =

𝑃 ′(𝑄)𝑄−𝑖 ≤ 0. Thus, by Topkis’ Monotonicity Theorem (e.g., see Vives, 1999), for any

fixed 𝑄−𝑖, 𝑅(𝑄−𝑖) is non-increasing in 𝜆 in the strong set order, and thus, so is 𝐵(𝑄−𝑖)

as defined in the proof of Proposition 1. It follows then (e.g., see Chapter 2, Vives, 1999)

that the extreme fixed points of 𝐵(𝑄−𝑖) (i.e., the total quantity produced by 𝑛− 1 firms

in extremal equilibria) are non-increasing in 𝜆, and the result follows.

(ii) Let 𝑞𝑛 denote the individual quantity in an extremal equilibrium with 𝑛 firms. We

have then that 𝜋(𝑞𝑛) = 𝑞𝑛𝑃 (𝑞𝑛+(𝑛−1)𝑞𝑛)−𝐶(𝑞𝑛) ≥ 𝑞𝑛+1𝑃 (𝑞𝑛+1+(𝑛−1)𝑞𝑛)−𝐶(𝑞𝑛+1) ≥

𝑞𝑛+1𝑃 (𝑞𝑛+1 +𝑛𝑞𝑛+1)−𝐶(𝑞𝑛+1) = 𝜋(𝑞𝑛+1), where the first inequality follows from 𝑞𝑛 being

a best response of an individual firm, and the second inequality follows from the fact that

(𝑛− 1)𝑞𝑛 ≤ 𝑛𝑞𝑛+1 by part (iii) below.

(iii) For any fixed 𝑄−𝑖, 𝐵(𝑄−𝑖) is non-decreasing in 𝑛, so the total quantity produced

by 𝑛 − 1 firms in an extremal equilibrium is non-decreasing in 𝑛 (e.g., see Chapter 2,
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Vives, 1999). We have also seen in the proof of Proposition 1 that when ∆ > 0, 𝑅(𝑄−𝑖) is

non-decreasing in 𝑄−𝑖 and the result follows. Q.E.D.

Proof of Proposition 10 Given that Π(𝑛,𝜆) is decreasing in 𝑛 by Proposition 2, the

result follows given that Π(𝑛,𝜆) < 𝑓 for 𝑛 large. Q.E.D.

Proof of Proposition 10’ Given that individual profit in extremal equilibria is non-

increasing in 𝑛 by Proposition 2’ the result follows since Π(𝑛,𝜆) < 𝑓 for 𝑛 large. Q.E.D.

Proof of Proposition 11 Given Π (̂︀𝑛*(𝜆), 𝜆) = 𝑓 , the Implicit Function Theorem gives

𝑑̂︀𝑛*(𝜆)

𝑑𝜆
=

(𝑛− 1)(𝐻−1
𝑛 − 1)

1 +𝐻𝑛 + Λ−1
𝑛 [(1− 𝜆)(1−𝐻𝑛)− 𝐶 ′′ (𝑞𝑛) /𝑃 ′ (𝑄𝑛)]−𝐻𝑛𝐸𝑃 ′ (𝑄𝑛)

> 0,

where the inequality follows from what we have seen in section A.2.

(ii) The total derivative of the total quantity is then proportional to

𝑑𝑄̂︀𝑛*(𝜆)

𝑑𝜆
∝ 𝜕𝑄𝑛

𝜕𝜆

Λ𝑛(1 + 𝜆) + 1− 𝜆− 𝐶 ′′ (𝑞𝑛) /𝑃
′ (𝑄𝑛)− Λ2

𝑛𝐸𝑃 ′ (𝑄𝑛) /𝑛

(𝑛− 1)(𝑛− Λ𝑛)
+

𝜕𝑄𝑛

𝜕𝑛

=

𝑄𝑛

⎡⎣− (︀Λ𝑛(1 + 𝜆) + ∆− Λ2
𝑛𝐸𝑃 ′ (𝑄𝑛) /𝑛

)︀
+(𝑛− Λ𝑛)∆/𝑛

⎤⎦
(𝑛− Λ𝑛) (𝑛+ Λ𝑛 − 𝐶 ′′ (𝑞𝑛) /𝑃 ′ (𝑄𝑛)− Λ𝑛𝐸𝑃 ′ (𝑄𝑛))

= − Λ𝑛𝑄𝑛

𝑛(𝑛− Λ𝑛)
< 0,

so total quantity decreases with 𝜆, and thus so does individual quantity since the number

of firms increases with 𝜆. The total derivative of the total surplus is

𝑑TŜ︀𝑛*(𝜆)

𝑑𝜆
= 𝑃 (𝑄𝑛)

𝑑𝑄̂︀𝑛*(𝜆)

𝑑𝜆
− 𝑑̂︀𝑛*(𝜆)

𝑑𝜆
𝐶(𝑞𝑛)− 𝑛𝐶 ′(𝑞𝑛)

(︂
𝑑𝑄̂︀𝑛*(𝜆)/𝑑𝜆

𝑛
− 𝑞𝑛

𝑛

𝑑̂︀𝑛*(𝜆)

𝑑𝜆

)︂
− 𝑑̂︀𝑛*(𝜆)

𝑑𝜆
𝑓

=
𝑑𝑄̂︀𝑛*(𝜆)

𝑑𝜆
(𝑃 (𝑄𝑛)− 𝐶 ′(𝑞𝑛))− (𝑃 (𝑄𝑛)− 𝐶 ′(𝑞𝑛)) 𝑞𝑛

𝑑̂︀𝑛*(𝜆)

𝑑𝜆
< 0.

where the second equality follows from Π(̂︀𝑛*(𝜆),𝜆) = 𝑓 .

(iii) Last, the total derivative of MHHI* = 𝐻𝑛* is

𝑑MHHI
(︀
𝑞̂︀𝑛*(𝜆)

)︀
𝑑𝜆

=
𝑛− 1

𝑛
+

(︂
𝜆

𝑛
− Λ𝑛

𝑛2

)︂
𝑑̂︀𝑛*(𝜆)

𝑑𝜆
∝ 𝑛− 1

𝑛

(︂
𝑑̂︀𝑛*(𝜆)

𝑑𝜆

)︂−1

+
𝜆𝑛− Λ𝑛

𝑛2

∝

[︁
1 + 𝜆+∆(𝑄𝑛,(𝑛− 1)𝑞𝑛)/𝑛+

(︁
1
𝑛
− 1

Λ𝑛

)︁
𝐶′′(𝑞𝑛)
𝑃 ′(𝑄𝑛)

]︁
/𝐻𝑛 − 𝐸𝑃 ′ (𝑄𝑛)

𝑛(𝑛− Λ𝑛)
> 0,
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where the inequality is implied by 𝐶 ′′ ≥ 0 combined with the maintained assumption (ii)

that requires 𝐸𝑃 ′(𝑄𝑛) < (1 + 𝜆+∆(𝑄𝑛,(𝑛− 1)𝑞𝑛)/𝑛) /𝐻𝑛. Q.E.D.

Proof of Proposition 12 We have that 𝑑̂︀𝑛*(𝜆)/𝑑𝑓 = (𝜕Π(𝑛,𝜆) /𝜕𝑛)−1
⃒⃒
𝑛=̂︀𝑛*(𝜆)

, and

part (ii) follows if we take the directional derivative of 𝑑̂︀𝑛*(𝜆)/𝑑𝑓 . Q.E.D.

Proof of Claim 3 We have 𝜕Π(𝑛,𝜆) /𝜕𝑛 = 𝑃 ′(𝑄𝑛)𝑞
2
𝑛

[︁
𝜕𝑄𝑛

𝜕𝑛
𝑛
𝑄𝑛

(1−𝐻𝑛) +𝐻𝑛

]︁
< 0, so

𝜕2Π(𝑛,𝜆)

𝜕𝑛𝜕𝜆
∝

⎧⎪⎪⎨⎪⎪⎩
[︂
− (1− 𝐸𝑃 ′(𝑄𝑛))

𝜕𝑄𝑛

𝜕𝑛

𝑛

𝑄𝑛

− (2− 𝐸𝑃 ′(𝑄𝑛))
Λ𝑛

𝑛− Λ𝑛

]︂
𝜕𝑄𝑛

𝜕𝜆

1

𝑄𝑛

−𝜕2𝑄𝑛

𝜕𝑛𝜕𝜆

𝑛

𝑄𝑛

− 𝑛− 1

𝑛− Λ𝑛

(︂
1− 𝜕𝑄𝑛

𝜕𝑛

𝑛

𝑄𝑛

)︂
⎫⎪⎪⎬⎪⎪⎭ .

Denote 𝐸 ′
𝑃 ′(𝑄) ≡ 𝜕𝐸𝑃 ′(𝑄)/𝜕𝑄. Under constant marginal costs

𝜕2𝑄𝑛

𝜕𝑛𝜕𝜆
=

⎧⎪⎪⎨⎪⎪⎩
(︂
−𝑄𝑛 + (1− 𝜆)

𝜕𝑄𝑛

𝜕𝜆

)︂
(𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛))

−(1− 𝜆)𝑄𝑛

[︂
𝑛− 1− (𝑛− 1)𝐸𝑃 ′ (𝑄𝑛)− Λ𝐸 ′

𝑃 ′ (𝑄𝑛)
𝜕𝑄𝑛

𝜕𝜆

]︂
⎫⎪⎪⎬⎪⎪⎭

(𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛))
2

1

𝑛
, so that

𝜕2Π(𝑛,𝜆)

𝜕𝑛𝜕𝜆
∝

⎧⎪⎨⎪⎩
2Λ2 (𝐸𝑃 ′(𝑄𝑛))

2 +
[︀
𝑛Λ(𝑛− Λ− 1)− 2𝑛2 − Λ2

]︀
𝐸𝑃 ′(𝑄𝑛)

−𝑛(𝑛− Λ) (𝑛+ Λ− 6)− Λ(𝑛− Λ)2𝑄𝑛𝐸
′
𝑃 ′ (𝑄𝑛)

𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛)

⎫⎪⎬⎪⎭
< 𝐸𝑃 ′(𝑄𝑛)

[︀
2Λ2𝐸𝑃 ′(𝑄𝑛)− 𝑛Λ− 2𝑛2 − Λ2

]︀
≤ 0,

where the first (resp. second) inequality follows from 𝑛 ≥ 5 + 𝐸𝑃 ′(𝑄𝑛), 𝜆 ∈ (0,1),

𝐸𝑃 ′(𝑄𝑛) ≤ 1, 𝐸 ′
𝑃 ′ ≥ 0 (resp. 0 ≤ 𝐸𝑃 ′(𝑄𝑛) ≤ 1). Similarly follows part (ii). Q.E.D.

Proof of Proposition 13 Part (i): If 𝑛𝑜(𝜆) ≤ 2, we are done since 𝑛*(𝜆) ≥ 1 given

that monopoly profit is positive. For 𝑛𝑜(𝜆) ≥ 3 keep in mind that 𝐸𝑃 ′(𝑄) < 2 on 𝐿

implies that for every 𝑛 ∈ [2,+∞), 𝐸𝑃 ′(𝑄) < (1 + 𝜆)/𝐻𝑛 on 𝐿. The proof follows the

proof of part (a) of Proposition 1 in Amir et al. (ACK; 2014). By definition, TS𝑛𝑜(𝜆) ≥

TS𝑛𝑜(𝜆)−1, which implies
∫︀ 𝑄𝑛𝑜(𝜆)

𝑄𝑛𝑜(𝜆)−1
𝑃 (𝑋)𝑑𝑋 − 𝑛𝑜(𝜆)𝐶

(︀
𝑞𝑛𝑜(𝜆)

)︀
+ (𝑛𝑜(𝜆)− 1)𝐶

(︀
𝑞𝑛𝑜(𝜆)−1

)︀
≥

𝑓 , which then gives Π(𝑛𝑜(𝜆)− 1, 𝜆) − 𝑓 ≥ 𝑃
(︀
𝑄𝑛𝑜(𝜆)−1

)︀
𝑞𝑛𝑜(𝜆)−1 −

∫︀ 𝑄𝑛𝑜(𝜆)

𝑄𝑛𝑜(𝜆)−1
𝑃 (𝑋)𝑑𝑋 +

𝑛𝑜(𝜆)
(︀
𝐶
(︀
𝑞𝑛𝑜(𝜆)

)︀
− 𝐶

(︀
𝑞𝑛𝑜(𝜆)−1

)︀)︀
, which given 𝑃 ′ < 0 and that in the Cournot game total
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quantity is increasing in 𝑛, implies

Π(𝑛𝑜(𝜆)− 1, 𝜆)− 𝑓 > 𝑃
(︀
𝑄𝑛𝑜(𝜆)−1

)︀ (︀
𝑞𝑛𝑜(𝜆)−1 +𝑄𝑛𝑜(𝜆)−1 −𝑄𝑛𝑜(𝜆)

)︀
+𝑛𝑜(𝜆)

(︀
𝐶
(︀
𝑞𝑛𝑜(𝜆)

)︀
− 𝐶

(︀
𝑞𝑛𝑜(𝜆)−1

)︀)︀
=⇒

Π(𝑛𝑜(𝜆)− 1, 𝜆)− 𝑓 > 𝑛𝑜(𝜆)
(︀
𝑃
(︀
𝑄𝑛𝑜(𝜆)−1

)︀
− 𝐶 ′ (̃︀𝑞))︀ (︀𝑞𝑛𝑜(𝜆)−1 − 𝑞𝑛𝑜(𝜆)

)︀
,

for some ̃︀𝑞 ∈ [︀𝑞𝑛𝑜(𝜆)−1 − 𝑞𝑛𝑜(𝜆)

]︀
, where the implication follows by the mean value theorem.

As 𝑅(𝑄−𝑖) is non-decreasing in 𝑄−𝑖, it follows as in the proof in ACK that there exists̃︀𝑄−𝑖 ∈
[︀
(𝑛𝑜(𝜆)− 2)𝑞𝑛𝑜(𝜆)−1, (𝑛

𝑜(𝜆)− 1)𝑞𝑛𝑜(𝜆)

]︀
such that ̃︀𝑞 ∈ 𝑟

(︁ ̃︀𝑄−𝑖

)︁
with 𝑅

(︁ ̃︀𝑄−𝑖

)︁
≥

𝑄𝑛𝑜(𝜆)−1 and 𝑃
(︁
𝑅( ̃︀𝑄−𝑖)

)︁
≥ 𝐶 ′(̃︀𝑞), so that 𝑃

(︀
𝑄𝑛𝑜(𝜆)−1

)︀
≥ 𝑃

(︁
𝑅( ̃︀𝑄−𝑖)

)︁
≥ 𝐶 ′(̃︀𝑞).

Given 𝐸𝑃 ′ < (1 + 𝜆)/𝐻𝑛, Proposition 2 implies that 𝑞𝑛𝑜(𝜆)−1 > 𝑞𝑛𝑜(𝜆), which combined

with the above gives Π (𝑛𝑜(𝜆)− 1, 𝜆)− 𝑓 ≥ 0. Also, by Proposition 2 Π(𝑛,𝜆) is decreasing

in 𝑛, so it must be 𝑛*(𝜆) ≥ 𝑛𝑜(𝜆)− 1 for the entry condition to be satisfied.

Part (ii): Since Π(1,𝜆) > 𝑓 , 𝑛*(𝜆) ≥ 1. Also, ∆ < 0 on 𝐿 implies that 𝐶 ′′(𝑞) < 0 for

every 𝑞 < 𝑄. By Proposition 2 𝑄𝑛 is decreasing in 𝑛, and thus, so is consumer surplus.

Also, 𝑛Π(𝑛,𝜆) ≡ 𝑃 (𝑄𝑛)𝑄𝑛 − 𝑛𝐶(𝑞𝑛) < 𝑃 (𝑄𝑛)𝑄𝑛 − 𝐶(𝑄𝑛) ≤ 𝑃 (𝑞1)𝑞1 − 𝐶(𝑞1) = Π(1,𝜆),

where the first inequality follows from 𝐶 ′′ < 0. Thus, both consumer surplus and industry

profits are maximized for 𝑛 = 1, so 𝑛𝑜(𝜆) = 1. Q.E.D.

Proof of Proposition 13’ For simplicity, we use the notation 𝑄𝑛, 𝑞𝑛, TS𝑛 and Π(𝑛,𝜆)

to refer to values in a specific equilibrium even if that equilibrium is not unique.

(i) The proof works like that of part (i) of Proposition 13. The only differences are that

(a) in the Cournot game the total quantity in extremal equilibria is non-decreasing in 𝑛

(instead of increasing in 𝑛), (b) 𝑞𝑛𝑜(𝜆)−1 ≥ 𝑞𝑛𝑜(𝜆) by assumption (instead of 𝑞𝑛𝑜(𝜆)−1 > 𝑞𝑛𝑜(𝜆)

implied by conditions on the primitives), and (c) Π(𝑛,𝜆) is non-increasing in 𝑛 in extremal

equilibria (instead of decreasing). Still, the weak inequality Π (𝑛𝑜(𝜆)− 1, 𝜆)− 𝑓 ≥ 0 must

hold and given that Π(𝑛,𝜆) is non-increasing in 𝑛, it must be that 𝑛*(𝜆) ≥ 𝑛𝑜(𝜆)− 1.

(ii) The proof follows the one of part (b) of Proposition 1 in ACK. Since 𝑃 is decreasing,

𝑞𝑛𝑜(𝜆)+1𝑃
(︀
𝑄𝑛𝑜(𝜆)+1

)︀
<

∫︁ (𝑛𝑜(𝜆)+1)𝑞𝑛𝑜(𝜆)+1

𝑛𝑜(𝜆)𝑞𝑛𝑜(𝜆)+1

𝑃 (𝑄)𝑑𝑄. (8)

Also, notice that 𝑉𝑛(𝑞) :=
∫︀ 𝑛𝑞

0
𝑃 (𝑄)𝑑𝑄− 𝑛𝐶(𝑞) is concave in 𝑞 (for every fixed 𝑛), since
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𝑉 ′
𝑛(𝑞) = 𝑛 (𝑃 (𝑛𝑞)− 𝐶 ′(𝑞)), so that

𝑉 ′′
𝑛 (𝑞) = 𝑛𝑃 ′(𝑛𝑞)

(︂
𝑛− 𝐶 ′′(𝑞)

𝑃 ′(𝑛𝑞)

)︂
= 𝑛𝑃 ′(𝑛𝑞) (∆(𝑛𝑞,(𝑛− 1)𝑞) + 𝑛− 1 + 𝜆) < 0.

Since 𝑉𝑛(𝑞) is concave in 𝑛, it follows that for any 𝑛 and 𝑞,𝑞′ such that 𝑞′ ≥ 𝑞 it holds that

𝑉𝑛(𝑞)− 𝑉𝑛(𝑞
′) ≤ 𝑉 ′

𝑛(𝑞)(𝑞 − 𝑞′) = 𝑛 (𝑃 (𝑛𝑞′)− 𝐶 ′(𝑞′)) (𝑞 − 𝑞′). (9)

By definition TS𝑛𝑜(𝜆) ≥ TS𝑛𝑜(𝜆)+1, which implies that Π(𝑛𝑜(𝜆) + 1, 𝜆)− 𝑓 is less than or

equal to

𝑃
(︀
𝑄𝑛𝑜(𝜆)+1

)︀
𝑞𝑛𝑜(𝜆)+1 −

∫︁ 𝑄𝑛𝑜(𝜆)+1

𝑄𝑛𝑜(𝜆)

𝑃 (𝑋)𝑑𝑋 + 𝑛𝑜(𝜆)
(︀
𝐶
(︀
𝑞𝑛𝑜(𝜆)+1

)︀
− 𝐶

(︀
𝑞𝑛𝑜(𝜆)

)︀)︀
<

∫︁ 𝑄𝑛𝑜(𝜆)

0

𝑃 (𝑄)𝑑𝑄− 𝑛𝑜(𝜆)𝐶
(︀
𝑞𝑛𝑜(𝜆)

)︀
−
[︂∫︁ 𝑄𝑛𝑜(𝜆)+1

0

𝑃 (𝑄)𝑑𝑄− 𝑛𝑜(𝜆)𝐶
(︀
𝑞𝑛𝑜(𝜆)+1

)︀]︂
=𝑉𝑛𝑜(𝜆)

(︀
𝑞𝑛𝑜(𝜆)

)︀
− 𝑉𝑛𝑜(𝜆)

(︀
𝑞𝑛𝑜(𝜆)+1

)︀
≤𝑛𝑜(𝜆)

(︀
𝑃
(︀
𝑛𝑜(𝜆)𝑞𝑛𝑜(𝜆)+1

)︀
− 𝐶 ′ (︀𝑞𝑛𝑜(𝜆)+1

)︀)︀ (︀
𝑞𝑛𝑜(𝜆) − 𝑞𝑛𝑜(𝜆)+1

)︀
≤ 0,

where the first inequality follows from (8), the second inequality follows from (9), 𝑞𝑛𝑜(𝜆)+1 ≥

𝑞𝑛𝑜(𝜆), and the last inequality follows from 𝑞𝑛𝑜(𝜆)+1 ≥ 𝑞𝑛𝑜(𝜆)+1 and 𝑃
(︀
𝑛𝑜(𝜆)𝑞𝑛𝑜(𝜆)+1

)︀
≥

𝑃
(︀
𝑄𝑛𝑜(𝜆)+1

)︀
≥ 𝐶 ′ (︀𝑞𝑛𝑜(𝜆)+1

)︀
by the pricing formula (1). Thus, Π(𝑛𝑜(𝜆) + 1, 𝜆) < 𝑓 , and

given that Π(𝑛,𝜆) is non-increasing in 𝑛, 𝑛*(𝜆) ≤ 𝑛𝑜(𝜆). Q.E.D.

C.6 Proofs of section B.11

Proof of Proposition 14 The LHS of (6) is globally decreasing, so (6) has a unique

solution given that for 𝑛 = 0 the LHS is at least as high as 𝑓 and for 𝑛 → ∞ it is lower

than 𝑓 . Also, (7) is immediately satisfied. Q.E.D.

Proof of Proposition 15 and Corollary 15.1 Totally differentiating (6) with respect

to 𝜆 we get

Π𝑛(𝑛
*(𝜆),𝜆)

(︂
𝑛*(𝜆) + (1 + 𝜆)

𝑑𝑛*(𝜆)

𝑑𝜆

)︂
+Π𝜆(𝑛

*(𝜆),𝜆)

+𝜆𝑛*(𝜆)

(︂
Π𝑛𝑛(𝑛

*(𝜆),𝜆)
𝑑𝑛*(𝜆)

𝑑𝜆
+Π𝑛𝜆(𝑛

*(𝜆),𝜆)

)︂
= 0,
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which gives

𝑑𝑛*(𝜆)

𝑑𝜆
= −𝑛*(𝜆) (Π𝑛(𝑛

*(𝜆),𝜆) + 𝜆Π𝑛𝜆(𝑛
*(𝜆),𝜆)) + Π𝜆(𝑛

*(𝜆),𝜆)

(1 + 𝜆)Π𝑛(𝑛*(𝜆),𝜆) + 𝜆𝑛*(𝜆)Π𝑛𝑛(𝑛*(𝜆),𝜆)

= −
𝑛*(𝜆)

(︂
1 + Π𝜆(𝑛

*(𝜆),𝜆)
Π(𝑛*(𝜆),𝜆)

(︁
Π𝑛(𝑛*(𝜆),𝜆)
Π(𝑛*(𝜆),𝜆)

𝑛*(𝜆)
)︁−1

− 𝐸𝜕Π/𝜕𝑛,𝜆 (𝑛
*(𝜆),𝜆)

)︂
1 + 𝜆− 𝜆𝐸𝜕Π/𝜕𝑛,𝑛 (𝑛*(𝜆),𝜆)

.

Given what we see in the proof of Claim 3, 𝐸𝜕Π/𝜕𝑛,𝜆 (𝑛,𝜆)− Π𝜆(𝑛,𝜆)
Π𝑛(𝑛,𝜆)

1
𝑛
− 1 is equal to

−
[︂
𝜆 (1− 𝐸𝑃 ′(𝑄𝑛))

𝜕𝑄𝑛

𝜕𝑛
𝑛
𝑄𝑛

+ 𝜆 (2− 𝐸𝑃 ′(𝑄𝑛))
Λ𝑛

𝑛−Λ𝑛
+ 1

]︂
𝜕𝑄𝑛

𝜕𝜆
1
𝑄𝑛

− 𝜕2𝑄𝑛

𝜕𝑛𝜕𝜆
𝜆𝑛
𝑄𝑛

+ 2Λ𝑛−𝑛−1
𝑛−Λ𝑛

𝜕𝑄𝑛

𝜕𝑛
𝑛
𝑄𝑛

− 2Λ𝑛−1
𝑛−Λ𝑛

𝜕𝑄𝑛

𝜕𝑛
𝑛
𝑄𝑛

+ Λ𝑛

𝑛−Λ𝑛

,

where for constant marginal costs

𝜕𝑄𝑛

𝜕𝑛
=

1− 𝜆

𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛)

𝑄𝑛

𝑛

𝐶 linear
=====⇒

𝜕2𝑄𝑛

𝜕𝑛𝜕𝜆
=

⎧⎪⎪⎨⎪⎪⎩
(︂
−𝑄𝑛 + (1− 𝜆)

𝜕𝑄𝑛

𝜕𝜆

)︂
(𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛))

−(1− 𝜆)𝑄𝑛

[︂
𝑛− 1− (𝑛− 1)𝐸𝑃 ′ (𝑄𝑛)− Λ𝐸 ′

𝑃 ′ (𝑄𝑛)
𝜕𝑄𝑛

𝜕𝜆

]︂
⎫⎪⎪⎬⎪⎪⎭

(𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛))
2

1

𝑛
,

𝜕2𝑄𝑛

(𝜕𝑛)2
=

⎧⎪⎪⎨⎪⎪⎩(1− 𝜆)𝑄𝑛

𝑛

⎡⎢⎢⎣−
(︂
1 + 𝜆− 𝜆𝐸𝑃 ′(𝑄𝑛)− Λ𝐸 ′

𝑃 ′(𝑄𝑛)
𝜕𝑄𝑛

𝜕𝑛

)︂
+
𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛)

𝑛

(︂
𝜕𝑄𝑛

𝜕𝑛

𝑛

𝑄𝑛

− 1

)︂
⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

(𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛))
2 =⇒

𝜕2𝑄𝑛

(𝜕𝑛)2
=

𝜕𝑄𝑛

𝜕𝑛

⎡⎢⎢⎣
𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛)

𝑛

(︂
𝜕𝑄𝑛

𝜕𝑛

𝑛

𝑄𝑛

− 1

)︂
−
(︂
1 + 𝜆− 𝜆𝐸𝑃 ′(𝑄𝑛)− Λ𝐸 ′

𝑃 ′(𝑄𝑛)
𝜕𝑄𝑛

𝜕𝑛

)︂
⎤⎥⎥⎦

𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛)

so that 𝐸𝜕Π/𝜕𝑛,𝜆 (𝑛,𝜆)− Π𝜆(𝑛,𝜆)
Π𝑛(𝑛,𝜆)

1
𝑛
− 1 has the same sign as

[︂
𝜆 (1− 𝐸𝑃 ′(𝑄𝑛))

1− 𝜆

𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛)
+ 𝜆 (2− 𝐸𝑃 ′(𝑄𝑛))

Λ

𝑛− Λ
+ 1

]︂
𝑛− 1

𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛)
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+ 𝜆

⎧⎪⎪⎨⎪⎪⎩
(︂
1 + (1− 𝜆)

𝑛− 1

𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛)

)︂
(𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛))

+(1− 𝜆)

[︂
(𝑛− 1) (1− 𝐸𝑃 ′ (𝑄𝑛))−

Λ(𝑛− 1)𝑄𝑛𝐸
′
𝑃 ′ (𝑄𝑛)

𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛)

]︂
⎫⎪⎪⎬⎪⎪⎭

(𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛))
2

+
2Λ− 𝑛− 1

𝑛− Λ

1− 𝜆

𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛)
− 2Λ− 1

𝑛− Λ

∝
(︂
𝑛− 1 + 2𝜆− Λ (2𝑛− Λ𝐸𝑃 ′ (𝑄𝑛))

𝑛− Λ

)︂
(𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛)) + 𝜆(2𝑛− Λ) (2− 𝐸𝑃 ′ (𝑄𝑛))

− 𝜆Λ(𝑛− Λ)𝑄𝑛𝐸
′
𝑃 ′ (𝑄𝑛)

𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛)
,

which is positive if 𝐸 ′
𝑃 ′ ≤ 0 and 𝐸𝑃 ′ (𝑄𝑛) > [2𝑛− (𝑛/Λ− 1) (𝑛− 1 + 2𝜆)] /Λ. On the

other hand, given 𝐸𝑃 ′ (𝑄𝑛) < 2, 2(𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛)) > 𝜆(2𝑛− Λ) (2− 𝐸𝑃 ′ (𝑄𝑛)), so if

𝐸 ′
𝑃 ′ ≥ 0 and 𝐸𝑃 ′ (𝑄𝑛) < [2𝑛− (𝑛/Λ− 1) (𝑛+ 1 + 2𝜆)] /Λ, then the expression is negative.

If 𝑑𝑛*(𝜆)/𝑑𝜆 ≤ 0, then 𝑄𝑛*(𝜆) clearly decreases with 𝜆. If 𝑑𝑛*(𝜆)/𝑑𝜆 > 0, then in

equilibrium

𝐸𝜕Π/𝜕𝑛,𝜆 (𝑛,𝜆)−
Π𝜆(𝑛,𝜆)

Π𝑛(𝑛,𝜆)

1

𝑛
− 1 > 0

and the directional derivative of the total quantity when (𝜆,𝑛) changes in direction

v := (1,𝑑𝑛*(𝜆)/𝑑𝜆) is

∇v𝑄𝑛 =
𝜕𝑄𝑛

𝜕𝜆
+

𝜕𝑄𝑛

𝜕𝑛

𝑑𝑛*(𝜆)

𝑑𝜆

=
𝜕𝑄𝑛

𝜕𝜆
−

𝑛*(𝜆)
(︁
1 + Π𝜆(𝑛

*(𝜆),𝜆)
Π𝑛(𝑛*(𝜆),𝜆)

1
𝑛*(𝜆)

− 𝐸𝜕Π/𝜕𝑛,𝜆 (𝑛
*(𝜆),𝜆)

)︁
1 + 𝜆− 𝜆𝐸𝜕Π/𝜕𝑛,𝑛 (𝑛*(𝜆),𝜆)

𝜕𝑄𝑛

𝜕𝑛

∝
𝐸𝜕Π/𝜕𝑛,𝜆 (𝑛,𝜆)− Π𝜆(𝑛,𝜆)

Π𝑛(𝑛,𝜆)
1
𝑛
− 1

1 + 𝜆− 𝜆𝐸𝜕Π/𝜕𝑛,𝑛 (𝑛,𝜆)

1− 𝜆− 𝐶 ′′ (𝑞) /𝑃 ′ (𝑄)

𝑛− 1
− 1,

so that under constant marginal costs, 𝐸𝜕Π/𝜕𝑛,𝑛 (𝑛,𝜆) ≤ 2, 𝐸𝑃 ′(𝑄)′ ≥ 0 and 𝐸𝑃 ′(𝑄) < 2,

sgn {∇v𝑄𝑛} ≤ sgn

{︂
𝐸𝜕Π/𝜕𝑛,𝜆 (𝑛,𝜆)−

Π𝜆(𝑛,𝜆)

Π𝑛(𝑛,𝜆)

1

𝑛
− 1− (𝑛− 1)

}︂

=sgn

⎧⎪⎪⎨⎪⎪⎩
(︂
𝜆(𝑛− 1) + 2𝜆− Λ (2𝑛+ (𝑛− 1)(𝑛+ Λ)− 𝑛Λ𝐸𝑃 ′ (𝑄𝑛))

𝑛− Λ

)︂
×

(𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛)) + 𝜆(2𝑛− Λ) (2− 𝐸𝑃 ′ (𝑄𝑛))−
𝜆Λ(𝑛− Λ)𝑄𝑛𝐸

′
𝑃 ′ (𝑄𝑛)

𝑛+ Λ− Λ𝐸𝑃 ′ (𝑄𝑛)

⎫⎪⎪⎬⎪⎪⎭
≤ sgn

{︂
2 + 𝜆(𝑛− 1) + 2𝜆− Λ (2𝑛+ (𝑛− 1)(𝑛+ Λ)− 𝑛Λ𝐸𝑃 ′ (𝑄𝑛))

𝑛− Λ

}︂
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< sgn

{︂
2 + 𝜆(𝑛− 1) + 2𝜆− Λ (2𝑛+ (𝑛− 1)(𝑛+ Λ)− 2𝑛Λ)

𝑛− Λ

}︂
=sgn

{︂
2 + 𝜆(𝑛− 1) + 2𝜆− Λ(𝑛− Λ) (𝑛+ 1)

𝑛− Λ

}︂
= sgn {1 + 2𝜆− Λ𝑛} ,

which is non-positive given 𝑛 ≥ 2. Q.E.D.

Proof of Claim 4 Under constant marginal costs and linear demand

𝑄𝑛 =
𝑛(𝑎− 𝑐)

𝑏(𝑛+ Λ)
, Π(𝑛,𝜆) =

(︂
𝑎− 𝑛(𝑎− 𝑐)

𝑛+ Λ
− 𝑐

)︂
𝑎− 𝑐

𝑏(𝑛+ Λ)
=

Λ(𝑎− 𝑐)2

𝑏(𝑛+ Λ)2
,

𝜕Π(𝑛,𝜆)

𝜕𝑛
=

(𝑎− 𝑐)2 (𝜆(𝑛+ Λ)2 − 2(𝑛+ Λ)(1 + 𝜆)Λ)

𝑏(𝑛+ Λ)4
= −(𝑎− 𝑐)2 (2Λ− 𝜆(𝑛− Λ))

𝑏(𝑛+ Λ)3
,

𝜕2Π(𝑛,𝜆)

(𝜕𝑛)2
=

(𝑎− 𝑐)2 {−𝜆(1 + 𝜆)(𝑛+ Λ)3 − 3(1 + 𝜆)(𝑛+ Λ)2 [𝜆(𝑛− Λ)− 2Λ]}
𝑏(𝑛+ Λ)6

=
2(𝑎− 𝑐)2(1 + 𝜆) [2Λ− 𝜆(𝑛− Λ) + 1− 𝜆]

𝑏(𝑛+ Λ)4
,

𝐸𝜕Π/𝜕𝑛,𝑛(𝑛,𝜆) =
2[𝑛+ Λ− (1− 𝜆)] [2Λ− 𝜆(𝑛− Λ) + 1− 𝜆]

(𝑛+ Λ) [2Λ− 𝜆(𝑛− Λ)]

= 2

(︂
1− 1− 𝜆

𝑛+ Λ

)︂(︂
1 +

1− 𝜆

2Λ− 𝜆(𝑛− Λ)

)︂
,

Thus, under linear demand and constant marginal costs, 𝐸𝜕Π/𝜕𝑛,𝑛(𝑛,𝜆) is decreasing in 𝑛,

and thus bounded from above by

2

(︂
1− 1− 𝜆

2

)︂(︂
1 +

1− 𝜆

2− 𝜆(1− 1)

)︂
= 2

[︃
1−

(︂
1− 𝜆

2

)︂2
]︃
≤ 2.

Q.E.D.

Proof of Proposition 16 See the proof of Claim 3. Q.E.D.

Proof of Proposition 17 We have seen that the derivative of equilibrium total surplus

(in the Cournot game with a fixed number of firms) with respect to 𝑛 is given by

𝑑TS(𝑞𝑛)

𝑑𝑛
= Π(𝑛,𝜆)− 𝑓 − Λ𝑛𝑄𝑛𝑃

′(𝑄𝑛)
𝜕𝑞𝑛
𝜕𝑛

.
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Given (6) we then have that

𝑑TS(𝑞𝑛)

𝑑𝑛

⃒⃒⃒⃒
𝑛=𝑛*(𝜆)

=− 𝜆𝑛*(𝜆)Π𝑛 (𝑛
*(𝜆),𝜆)− Λ𝑛*(𝜆)𝑄𝑛*(𝜆)𝑃

′ (︀𝑄𝑛*(𝜆)

)︀ 𝜕𝑞𝑛
𝜕𝑛

⃒⃒⃒⃒
𝑛=𝑛*(𝜆)

and the result follows as in the proof of Proposition 6. Q.E.D.
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