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What is a network time series?

Network N nodes, index i = 1,... N <= adjacency matrix A = (a;;) € RV*Y

aij =1, if i — j (e.g. user i follows j),

ai; = 0, otherwise

Undirected graphs are allowed (i <> j), A = A’.

A nonrandom (e.g. social networks, space points, transportation).

Let Yi= (Yig...Yig...Yau) €RY fort =1,2...,7T.
High-dimensional (continuous or count)

Network time series: Mult. t.s. + Network structure

Target: Assess the network effect on Y, over time.

Model Y by vector autoregressive model (VAR) = parameters O(N?) > T.
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Nonlinear Network Autoregression

{Y+} multiv. count time series, Ay = E(Y¢|F¢—1) € RY, F = o(Ys,s <t).
Nonlinear Poisson Network Autoregression

Y = Ni(A), Ao = f(Yio1,W,00,0?) (1)

W =diag {n;"',...,ny'} A carrying network information.

N
ni = ;_, aij out-degree

f(-) satisfies suitable smoothness conditions

o 0 my x 1 vector of linear model parameters.

0 0@ my x 1 vector of nonlinear parameters.

{IN.} is a sequence of N-variate copula-Poisson processes. (Fokianos et al., 2020)
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Start. value Ao = (A1,0,...,AN0),

2]

From copula C(u1,...,un;p) generate U; = (U1, ..., Uny) for
= 172, . .,K. Ui;l ~ Unif(07 1).
Introduce the transformation

log Ui,l

Zi,l = - A'O )
1y

i=1,2,...,N.
where Z;; ~ Exp(Xio), 1 =1,2,..., K.

If Z;1 > 1, set Y; 0 =0, otherwise

K
Yi’gzmaX{K: > Zi gl}, i=1,2,...,N.

=1

Then Yo = (Yi,0,...,Yn,0) is (cond.) marginal Poisson: Y; o|Ao ~ Pois(\ip).

Use model (1), A1 = f(Yo, W,01) 03)

Back to step 1 to obtain Y1, and so on.
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@ Poisson-type joint distribution Y¢|F:—1 problematic,

o Complicated closed form — inference theoretically cumbersome.

o Numerically challenging.

o Implies strong constraints (e.g. covariances positive, constant correlations).

@ Avoid complex Poisson-type joint distribution

e Easy conceptual construction.

Keeping the Poisson process property marginally.

Avoid identifiability problem (Sklar, 1959)

Copula is imposed on continuous random variables.

For further details see Fokianos (2022).

For continuous r.v. set Y; = A¢ + &,, where &+ ~ [ID(O,O'Q), Vi, t.
(Analogous results established)
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Element-wise components of (1):
)\i,t:fi(Xi,tfl, i,t—13 0(1> (9(2)) 7::1,...,]\77

where f;(-) is the i" component of f(-).

. —1 N
Lagged network mean: Xi¢—1 =n; > .0, aijYje—1.

o Linear Network Autoregression (NAR), Zhu et al. (2017) (continuous r.v.)
and Armillotta and Fokianos (2021) (counts)

Ait = Po+ L1 Xip—1+ B2Yii—1,

1 network effect: average impact of node ¢'s connections X ;1
B2 autoregressive effect: impact of past (Y;,:—1)
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Nonlinear models

Why linear models?

@ Evidence of significant usefulness of nonlinear model (e.g. modelling
economic/financial time series, existence of different states of the world or
regimes (Zivot and Wang, 2006, Ch. 18))

e Government agencies, research institutes and central banks may typically employ
nonlinear models (Terdsvirta et al., 2010, p. 16).

@ In social network analysis nonlinear behaviours are often encountered; e.g.
“superstars” with huge number of followers having an exponentially higher
impact on other users’ behaviour with respect to the “standard” user (Zhu
et al., 2017).
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Nonlinear examples

o Intercept drift NAR (ID-NAR), v > 0, linearity v =0

Bo
it = oo Xt Yit-1,
it 0+ Xe1) + 1 Xit—1 + B2Yie—1

@ Smooth Transition NAR (ST-NAR), v > 0 smoothing par., lin. « =0

Xie = Bo+ (B1+ anP(*'YX?,t—l))Xi,tfl + B2Yii—1,

o Threshold NAR (T-NAR), lin. ap = a1 = a2 =0
Xit =Bo+ P1Xii—1+ B2Yii—1+ (o +anXijp—1 + a2Yip—1) (X1 <),
I(-) indicator function, + is the threshold par.

Many others... (go back)
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Define f(-, W,0) = f(-).

(1) Set F = 1 W + poln, pa, u2 >0 and

[f(Yio1) = F(Y{_) oo S FI Y1 — Y|

vec ?

Consider model (1). Suppose (I) holds with g1 + p2 < 1. Then, when N — oo,
there exists a unique strictly stationary solution {Y: € NV, te Z} to the
Nonlinear Poisson NAR model. Moreover, maxi<;<co E |Yi,t|r <Cr<oo,Vr>1.

Def. stationarity with increasing dimension (Zhu et al., 2017).

NAR: 51 + 82 < 1
ID-NAR: max {f1, 80y — b1} + B2 < 1
ST-NAR: 51 + B2+ a< 1
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Quasi maximum likelihood inference

For parameters 8 € ® C R, quasi log-likelihood:

Ine(8) = 323 (Vi log 2 (6) = Ae(0) ) )

t=1 i=1

Copula structure C(..., p) not included. (2) allows inference.

8l 9
SnT(0) = 9l (80) Z snt(0

*InT(00)

HN:EP 9000

:| , Byn=E [SNt(GO)SEVt(OU)]

@ N can be large in applications = Interest in the asymptotics with N — co.
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Assumptions

Define W* =W + W', £, =Y, — \; and 3¢ = E|£,&)]

vec’

(A) © is compact and 6 € (Int.®). At 6, the conditions of Thm. 1 hold.

(B) Fori=1,...,N, fi(zi,y,0) >C >0. Forg=1,...,m

Ofi(wi,yi,0)  Ofi(zf,yi,0) . .
- < i T i = Yil
20, 20, < cig|m — @7 | + e2q |y — i |

with 3° (c1g + c24) < 0. Analogous conditions for second and third order. (II)

(C) Consider {1,..., N} are states of an irreducible and aperiodic Markov chain,
with W be its transition probability matrix, and w = (71,...,7n5)" € RY the
stationary distribution. Moreover:

0 Amax(Ze) N 72 = 0as N — oo.

0 Amax(W*) = O(log N) and Amax(Z¢) = O((log N)%), § > 1.
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D) Some regularity conditions allowing H = limy oo N 'Hpy < oo.
g Y g

(E) {¢, €NV, t € Z,N € N} is a-mixing; i.e. when J — oo

a(J)= sup sup |P(ANB) —P(A)P(B)] -0

N N
teZ,NeN AerN L BeFN ;o

FN =0 1<i<N,s<t), Fljoo=0(&s: 1<i<N,s>t+J).

(F) (Weak dependence) There exists a non negative, non increasing sequence
{entnor. oo st 2252, pn =2 < oo and, fori<j,

|Corr(Yie, Yie | Fe—1)| < pj—i -

Analogous conditions for second and third corr.

(Not unique) N~* ijzl |Corr(Yi e, Yyt | Fim1)| < e
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Double asymptotic regime

Assumption (C)-(F) is needed, e.g. \j+ = fo, foralli=1,..., N,
no assumptions = N 'By = O(N).

Consider model (1). Assume (A)-(F) hold. Then, as {N,Tn} — oo, the equation
Sn7(8) = 0, has a unique solution, 8, s.t. 8 2> 8 and
VNT(6 — 60) % N(O,H 'BH™ ).

where {N,Tn} — oo is shorthand for N — co and T — oo.

If Ty = AN, for some A > 0 and Assumption (E) is such that the mixing

coefficients satisfy a(J)!~Y" = O(J37¢), for some r > 2 and some € > 0, then,

as {N,Tn} — oo, Theorem 2 holds with strong consistency, i.e. 0 22 9,.
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Why testing for linearity?

@ (Evidence) Provide evidence to the researcher.

@ (Model selection) Theory might give indication of nonlinearity, but no clue on
the type of nonlinearity. Linearity tests give guidance.

© (Consistent inference) Nonlinear models nesting the linear model suffer from
identifiability issues, when the “true” model is linear but instead a nonlinear
model is estimated. Inference will be inconsistent. (link)

@ (Practical usefulness) In practice, testing linearity convenient before attempting
estimation of complex nonlinear models.

@ (General inspection) Not only to provide alternative specifications but can be

used as a general tool; e.g. for detecting latent variables, change point testing,
checking adequacy of Box-Cox transformations, etc.

“Thus linearity testing has to precede any nonlinear modelling and estimation”
(Terasvirta et al., 2010, Sec. 5.1,5.5).
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Testing linearity

Ho: 6% = 082> vs. Hy:0® % 9(()2), componentwise .
where under Hy, the linear NAR model is restored. Sy7(0) = (sﬁj}(a), sf,)T(e))/
Quasi-score test statistic:
LMyt = S/(0)Swnr(8) '830(8),

where 3 n7(8) suitable estimator for covariance matrix X = Var[Sg\?)T(é)}.

Theorem 4

Suppose conditions of Theorem 2 hold. Then, under Hy,

LMyt S %2, {N,Tn} > 0.
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Non identifiable parameters

Suppose the nonlinear function f(-) in (1) is
A=B8+GY 1+ h(Yi1,v)a 3)

G = 1 W + B2In. Testing linearity

Ho:a=0 vs. H;:a#0, componentwise.
Parameters «y non identifiable under the null Hp.

Sn7(v), LMn7(7) depend on v = Standard theory not applicable. (Davies, 1987)

(I1) Assumption (B) holds with all constants not depending on v € I, where I’
compact. Additional moment conditions.

Nonlin. NAR 17 /26



Testing linearity: non identifiable parameters

Theorem 5

Consider model (3) and the test Ho : & =0 vs. Hy : & # 0. Suppose conditions
of Theorem 2 and (II) hold. Then, under Hy, as {N,Tn} — oo, Snr(y) = S(7)
and LMyr(vy) = LM(vy) where

LM(y) = 8" ()Z7 (v, 18 (7).
is a chi-square process.

Define gnr = g(LMNT(7)), e-8- gnT = sup.,er LMNT(7) -

gyt = g =g(LM(7v)), {N,Tn}— oo.

@ In general, asymp. distribution of g(LM (7)) cannot be tabulated.
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Implementation of p-values

Bound for p-values (Davies, 1987)

[S
(S

)2”
) b
where M is the maximum of the test statistic LM n7(7), computed by the available

sample and I'r = (yr,71,...,V,yv) is a grid of values for I = [yz,yu]. V is the
approximated total variation

) exp(—

P [sup (LM (7)) = M} <P(xE > M)+ VMEE! - )

YElR

[SIESIN]

1

1 1
V= \LMW) LME(m)

1 1

- \LMETWU) LM ()

@ Simple and fast.

@ Only a bound = conservative test.

© Only for scalar ~.

@ Requires differentiability of LM () w.r.t. v (Threshold NAR)
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Bootstrap on stochastic permutations (Hansen, 1996)
o {vp:t=1,...,T} ~N(0,1) forb=1,...,B
° Skr(v) =i, svi(8,7) x v
° LM}(IT("/) and g?VT = SUP~cr LMRIT('Y)

° pﬁT =B 25:1 I(Q?VT > gNT)

Theorem 6

Assume the conditions of Theorems 3 and 5 hold. Then, as {N,Tn} — oo and
B — oo, pR7 = p.

Does not suffer from 2-4 but time consuming when N is large.
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Application: Chicago crime data

Monthly number of burglaries on the south side of Chicago from 2010-2015. Counts
registered for N = 552 blocks. (Clark and Dixon, 2021)

i

Eo R
JF

sy

h#%+
4

-

Figure 1: Census block groups in South Chicago.

Undirected network, edge between block ¢ and j is set if locations share (at least) a
border.
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Table 1: Chicago burglaries counts. Linearity is tested against:

ID-NAR model, with x% asymptotic test;

ST-NAR model, p-values computed by (DV') Davies bound (4), bootstrap sup test (p%5.);
T-NAR model (only bootstrap). Boot. replications J = 299.

Models Bo 31 32
NAR 0.455 0.322 0.284
Std. (0.022) (0.013) (0.008)

B

Models X3 DV PNT
ID-NAR 8.999 - -
ST-NAR - 0.038 0.515
T-NAR : ] 0.498

Conclude for nonlinear shift in intercept but no clear evidence of regime switching.
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New useful nonlinear models allowing to measure impact of networks on
multivariate time series (counts and cont.).

Very general, for f(-) smooth.
Minimal stationarity conditions (N — o).
QMLE nonlinear NAR models with double asymptotics N — oo, Tn — o0.

Testing linearity of NAR model parameters, standard and non identifiable case
(double asymp.)

Provide tools to compute p-values.
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Further developments

o Overdispersion, zero inflation. = Beyond the Poisson: Negative Binomial, etc.
Improve efficiency of estimators.

Other ways to compute p-values.

Suggestions are welcome!
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o M. Armillotta and K. Fokianos: Poisson Network Autoregression, 2021+.

o M. Armillotta and K. Fokianos. Testing Linearity for Network Autoregressive
Models, 2022.

@ M. Armillotta, M. Tsagris and K. Fokianos. The R-package PNAR for modelling
count network time series, 2022.

o M. Tsagris, M. Armillotta, K. Fokianos. R Package ‘PNAR’, 2022.

https://cran.r-project.org/web/packages/PNAR/index.html

Email: m.armillotta@vu.nl

Many thanks for your invitation and attention!
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