Weighting Votes, Rule Complexity and Information Aggregation

> Laurent Bouton Aniol Llorente-Saguer Antonin Mace Dimitrios Xefteris

- Voting is pervasive in our society
- In most cases, voting is dichotomous: voters can only fully vote for one of the alternatives or fully abstain

- Voting is pervasive in our society
- In most cases, voting is dichotomous: voters can only fully vote for one of the alternatives or fully abstain
- This prevents voters from conveying what they want or know
 - Aggregation of preferences: tyranny of majority
 - Aggregation of information: loss of information

- Voting is pervasive in our society
- In most cases, voting is dichotomous: voters can only fully vote for one of the alternatives or fully abstain
- This prevents voters from conveying what they want or know
 - Aggregation of preferences: tyranny of majority
 - Aggregation of information: loss of information
- Richer ballot space is seen as a solution
 - Storable vote, qualitative voting, quadratic voting, etc.

- Voting is pervasive in our society
- In most cases, voting is dichotomous: voters can only fully vote for one of the alternatives or fully abstain
- This prevents voters from conveying what they want or know
 - Aggregation of preferences: tyranny of majority
 - Aggregation of information: loss of information
- Richer ballot space is seen as a solution
 - Storable vote, qualitative voting, quadratic voting, etc.
- This paper: Richer ballot space in the laboratory
 - Focus on information aggregation

- What is the challenge with information aggregation?
- Voters with different quality of information

- What is the challenge with information aggregation?
- Voters with different quality of information
 - Some members might decide to abstain → their information will be lost (T. J. Feddersen and Pesendorfer 1996; Battaglini, Morton, and T. R. Palfrey 2010)

- What is the challenge with information aggregation?
- Voters with different quality of information
 - Some members might decide to abstain → their information will be lost (T. J. Feddersen and Pesendorfer 1996; Battaglini, Morton, and T. R. Palfrey 2010)
 - Q Rules allocates the same weight to all members that vote

- Nitzan and Paroush 1982 shows how attaching optimal weights, majority can efficiently aggregate information
 - Basic idea: give better weight to more informed voters

- Nitzan and Paroush 1982 shows how attaching optimal weights, majority can efficiently aggregate information
 - Basic idea: give better weight to more informed voters
- Challenges to implement these weights
 - Ex ante we might not know who has better information

- Nitzan and Paroush 1982 shows how attaching optimal weights, majority can efficiently aggregate information
 - Basic idea: give better weight to more informed voters
- Challenges to implement these weights
 - Ex ante we might not know who has better information
 - Ø Misalignment of preferences in some of the issues

- Nitzan and Paroush 1982 shows how attaching optimal weights, majority can efficiently aggregate information
 - Basic idea: give better weight to more informed voters
- Challenges to implement these weights
 - Ex ante we might not know who has better information
 - 2 Misalignment of preferences in some of the issues
- What if we allowed members to *endogenously* allocate a weight to their vote?

- Nitzan and Paroush 1982 shows how attaching optimal weights, majority can efficiently aggregate information
 - Basic idea: give better weight to more informed voters
- Challenges to implement these weights
 - Ex ante we might not know who has better information
 - Ø Misalignment of preferences in some of the issues
- What if we allowed members to *endogenously* allocate a weight to their vote?
 - $\bullet\,$ Weighing your vote \Rightarrow choosing 'how pivotal' you want to be
 - \uparrow weight = \uparrow likelihood of changing the election outcome

• Bouton, Llorente-Saguer, Macé, and Xefteris 2021 shows that in setting with **aligned preferences** (common values), voters can perfectly aggregate information in equilibrium

- Bouton, Llorente-Saguer, Macé, and Xefteris 2021 shows that in setting with aligned preferences (common values), voters can perfectly aggregate information in equilibrium
 - Choose the optimal weights from Nitzan and Paroush 1982

- Bouton, Llorente-Saguer, Macé, and Xefteris 2021 shows that in setting with aligned preferences (common values), voters can perfectly aggregate information in equilibrium
 - Choose the optimal weights from Nitzan and Paroush 1982
 - Robust to general information structures, number of players, information technology of other players, ...
- In the case of **private values**, Núñez and Laslier 2014 show that allocating votes doesn't change the equilibrium outcomes

- Bouton, Llorente-Saguer, Macé, and Xefteris 2021 shows that in setting with aligned preferences (common values), voters can perfectly aggregate information in equilibrium
 - Choose the optimal weights from Nitzan and Paroush 1982
 - Robust to general information structures, number of players, information technology of other players, ...
- In the case of **private values**, Núñez and Laslier 2014 show that allocating votes doesn't change the equilibrium outcomes
- Implication: Allowing voters to endogenously choose the weights to their votes might be a Pareto improvement

- The desirable properties of this additional flexibility might be overturned by the complexity of the setting
 - The theory ignores cognitive costs
 - Many pivotal events, that depend on the weight
 - Computationally much more demanding than simple mechanisms

- The desirable properties of this additional flexibility might be overturned by the complexity of the setting
 - The theory ignores cognitive costs
 - Many pivotal events, that depend on the weight
 - Computationally much more demanding than simple mechanisms
- This paper: laboratory experiment
 - First experiment with divisible votes
 - ② Comparison of continuous voting with simple majority
 - Test several comparative statics of the model
 - Elicit preferences over mechanisms

Literature Review

- Information aggregation in Elections
 - **Theory:** Austen-Smith and Banks 1996; T. Feddersen and Pesendorfer 1997; Myerson 1998; Krishna and Morgan 2011; Bouton and Castanheira 2012; Bhattacharya 2013; Barelli, Bhattacharya, and Siga 2019
 - Experiments: Ladha, Miller, and Oppenheimer 1996; Guarnaschelli, McKelvey, and T. R. Palfrey 2000; Bhattacharya, Duffy, and Kim 2014; Bouton, Llorente-Saguer, and Malherbe 2017

Literature Review

- Information aggregation in Elections
 - **Theory:** Austen-Smith and Banks 1996; T. Feddersen and Pesendorfer 1997; Myerson 1998; Krishna and Morgan 2011; Bouton and Castanheira 2012; Bhattacharya 2013; Barelli, Bhattacharya, and Siga 2019
 - Experiments: Ladha, Miller, and Oppenheimer 1996; Guarnaschelli, McKelvey, and T. R. Palfrey 2000; Bhattacharya, Duffy, and Kim 2014; Bouton, Llorente-Saguer, and Malherbe 2017
- Strategic Abstention
 - **Theory**: T. J. Feddersen and Pesendorfer 1996; McMurray 2013; Oliveros 2013; Herrera, Llorente-Saguer, and McMurray 2019b
 - Experiments: Battaglini, Morton, and T. R. Palfrey 2010; Morton and Tyran 2011; Mengel and Rivas 2017; Herrera, Llorente-Saguer, and McMurray 2019a

Literature Review

- Preference Intensities
 - Theory: Casella 2005; Hortala-Vallve 2012; Casella, Llorente-Saguer, and T. R. Palfrey 2012; Núñez and Laslier 2014; Goeree and Zhang 2017; Lalley and Weyl 2018; Drexl and Kleiner 2018; H. P. Grüner and Tröger 2019; Casella and T. Palfrey 2019; Eguia and Xefteris 2021
 - Experiments: Casella, Gelman, and T. R. Palfrey 2006; Hortala-Vallve and Llorente-Saguer 2010; Cárdenas, Mantilla, and Zárate 2014; Engelmann and H. Grüner 2017; Goeree and Zhang 2017; Casella and Sanchez 2022

The model

- n > 2 voters must decide between two alternatives, A or B
- Unobserved state of the world denoted by $\omega \in \{\alpha, \beta\}$
 - Commonly known prior $\Pr(\alpha)$

- n > 2 voters must decide between two alternatives, A or B
- Unobserved state of the world denoted by $\omega \in {\alpha, \beta}$
 - Commonly known prior $\Pr(\alpha)$
- State contingent preferences:

$$u(A|\alpha) = u(B|\beta) = 1$$
$$u(B|\alpha) = u(A|\beta) = 0$$

- Finite set of precisions $P \subset (\frac{1}{2}, \overline{p}]$ with $\overline{p} < 1$
- Voters' precisions drawn from distribution F on P

- Finite set of precisions $P \subset (\frac{1}{2}, \overline{p}]$ with $\overline{p} < 1$
- Voters' precisions drawn from distribution F on P

• Finite set of signals
$$S = \left\{ s^p_\omega \mid \omega \in \{lpha, eta\}, \ p \in P
ight\}$$

- Finite set of precisions $P \subset (\frac{1}{2}, \overline{p}]$ with $\overline{p} < 1$
- Voters' precisions drawn from distribution F on P

• Finite set of signals
$$S = \left\{ s^p_\omega \ \mid \ \omega \in \{lpha, eta\}, \ p \in P
ight\}$$

• Voter *i* receives a signal *s_i*:

$$Pr(s_i = s^p_{\omega} \mid \omega, p) = p;$$
 $Pr(s_i = s^p_{-\omega} \mid \omega, p) = 1 - p$

Voting Rules

We consider two voting rules, i.e. two ballot spaces V:

- Majority Rule (M):
 - Vote for A ($v_i = 1$), for B ($v_i = -1$) or abstention ($v_i = 0$)

•
$$V = \{-1, 0, 1\}$$

Voting Rules

We consider two voting rules, i.e. two ballot spaces V:

• Majority Rule (M):

• Vote for A (
$$v_i = 1$$
), for B ($v_i = -1$) or abstention ($v_i = 0$)

•
$$V = \{-1, 0, 1\}$$

- Continuous Voting (CV):
 - Each voter chooses a number $v_i \in [-1, 1]$

•
$$V = [-1, 1]$$

Voting Rules

We consider two voting rules, i.e. two ballot spaces V:

• Majority Rule (M):

• Vote for A (
$$v_i = 1$$
), for B ($v_i = -1$) or abstention ($v_i = 0$)

•
$$V = \{-1, 0, 1\}$$

• Continuous Voting (CV):

• Each voter chooses a number $v_i \in [-1, 1]$

- *V* = [-1, 1]
- For each rule:
 - A is implemented if $\sum_i v_i > 0$
 - *B* is implemented if $\sum_i v_i < 0$
 - Ties broken randomly

- Profile $\sigma: S \to V$
- Efficient if

$$Pr(A \mid s_1, \dots s_n) > \frac{1}{2} \quad \Rightarrow \quad \sum_{i=1}^n \sigma(s_i) > 0$$
$$Pr(A \mid s_1, \dots s_n) < \frac{1}{2} \quad \Rightarrow \quad \sum_{i=1}^n \sigma(s_i) < 0$$

- Profile $\sigma: S \to V$
- Efficient if

$$Pr(A \mid s_1, \dots s_n) > \frac{1}{2} \quad \Rightarrow \quad \sum_{i=1}^n \sigma(s_i) > 0$$
$$Pr(A \mid s_1, \dots s_n) < \frac{1}{2} \quad \Rightarrow \quad \sum_{i=1}^n \sigma(s_i) < 0$$

- Symmetric if $\sigma(\mathbf{s}_{\omega}^{\mathbf{p}}) = -\sigma(\mathbf{s}_{-\omega}^{\mathbf{p}})$
 - relevant when prior is $\frac{1}{2}$

- Profile $\sigma: S \to V$
- Efficient if

$$Pr(A \mid s_1, \dots s_n) > \frac{1}{2} \quad \Rightarrow \quad \sum_{i=1}^n \sigma(s_i) > 0$$
$$Pr(A \mid s_1, \dots s_n) < \frac{1}{2} \quad \Rightarrow \quad \sum_{i=1}^n \sigma(s_i) < 0$$

- Symmetric if $\sigma(\mathbf{s}_{\omega}^{\mathbf{p}}) = -\sigma(\mathbf{s}_{-\omega}^{\mathbf{p}})$
 - relevant when prior is $\frac{1}{2}$
- Equilibrium notion : BNE

Model Efficiency of CV

Proposition 1

Under CV, when the prior is even, there is a symmetric, efficient equilibrium σ , such that:

$$\sigma(s^p_{\alpha}) = \kappa \log\left(\frac{p}{1-p}\right)$$

Model Efficiency of CV

Proposition 1

Under CV, when the prior is even, there is a symmetric, efficient equilibrium σ , such that:

$$\sigma(s^p_{\alpha}) = \kappa \log\left(rac{p}{1-p}
ight)$$
 with $\kappa = rac{1}{\log\left(rac{\overline{p}}{1-\overline{p}}
ight)}$

Model Efficiency of CV

Proposition 1

Under CV, when the prior is even, there is a symmetric, efficient equilibrium σ , such that:

$$\sigma(s^{p}_{\alpha}) = \kappa \log\left(\frac{p}{1-p}\right)$$
 with $\kappa = \frac{1}{\log\left(\frac{\overline{p}}{1-\overline{p}}\right)}$

Implications:

• All voters partially abstain, unless they have maximal precision: $\forall p \neq \overline{p} : -1 < \sigma(s^p_{\omega}) < 1$

Model Efficiency of CV

Proposition 1

Under CV, when the prior is even, there is a symmetric, efficient equilibrium σ , such that:

$$\sigma(s^{p}_{\alpha}) = \kappa \log\left(\frac{p}{1-p}\right)$$
 with $\kappa = \frac{1}{\log\left(\frac{\overline{p}}{1-\overline{p}}\right)}$

Implications:

- All voters partially abstain, unless they have maximal precision: $\forall p \neq \overline{p} : -1 < \sigma(s^p_{\omega}) < 1$
- No voter fully abstains: $\forall p$, $|\sigma(s_{\omega}^{p})| > 0$

Efficiency of CV: comments

Robustness : equilibrium strategies are independent of:

- the precision distribution F
- the number of voters *n*
- \bullet adding new precisions to the initial set P

Efficiency of CV: comments

Robustness : equilibrium strategies are independent of:

- the precision distribution F
- the number of voters *n*
- adding new precisions to the initial set ${\it P}$

Uniqueness :

- Efficient equilibrium is not unique in general, but we can provide bounds on efficient equilibrium strategies
- It becomes unique (up to a multiplicative constant) when $n \to \infty$ or when F has full support on $P = (\frac{1}{2}, \overline{p}]$

Efficiency of CV: comments

Robustness : equilibrium strategies are independent of:

- the precision distribution F
- the number of voters *n*
- adding new precisions to the initial set ${\it P}$

Uniqueness :

- Efficient equilibrium is not unique in general, but we can provide bounds on efficient equilibrium strategies
- It becomes unique (up to a multiplicative constant) when $n \to \infty$ or when F has full support on $P = (\frac{1}{2}, \overline{p}]$

General Prior : CV remains efficient, strategies of the form

$$\sigma(s^{p}_{\alpha}) = c + \kappa \log\left(\frac{p}{1-p}\right)$$

Proposition 2

Best equilibrium under CV weakly dominates the one under M.

 Criterion : ex-ante probability of implementing correct outcome (A in α and B in β)

Proposition 2

- Criterion : ex-ante probability of implementing correct outcome (A in α and B in β)
- Intuition: richer strategy space in a common-value game (Mc Lennan, 1998)

Proposition 2

- Criterion : ex-ante probability of implementing correct outcome (A in α and B in β)
- Intuition: richer strategy space in a common-value game (Mc Lennan, 1998)
- Moreover, worst equilibrium is no worse under CV than M

Proposition 2

- Criterion : ex-ante probability of implementing correct outcome (A in α and B in β)
- Intuition: richer strategy space in a common-value game (Mc Lennan, 1998)
- Moreover, worst equilibrium is no worse under CV than M
- Dominance is strict with the experimental parameters

Proposition 2

- Criterion : ex-ante probability of implementing correct outcome (A in α and B in β)
- Intuition: richer strategy space in a common-value game (Mc Lennan, 1998)
- Moreover, worst equilibrium is no worse under CV than M
- Dominance is strict with the experimental parameters
- Differential complexity not built in the model

Communication before Voting

Proposition 3

Under communication, there are no welfare differences across voting rules under the best equilibrium.

- \Rightarrow Under communication, M becomes efficient
 - Intuition : with common values, voters may share all their information and then all vote for the efficient decision (Gerardi & Yariv, 2009)

Communication before Voting

Proposition 3

Under communication, there are no welfare differences across voting rules under the best equilibrium.

- \Rightarrow Under communication, M becomes efficient
 - Intuition : with common values, voters may share all their information and then all vote for the efficient decision (Gerardi & Yariv, 2009)
 - Individual votes are not pinned down by equilibrium analysis

The experiment

- Fixed groups of 5/9 subjects
- Except for the voting rule, the set of parameters was fixed throughout the session
- Three parts:
 - Parts 1&2: 20 rounds of voting using either Majority or CV
 - Different rules in parts 1 and 2
 - Balanced different orders

- Fixed groups of 5/9 subjects
- Except for the voting rule, the set of parameters was fixed throughout the session
- Three parts:
 - Parts 1&2: 20 rounds of voting using either Majority or CV
 - Different rules in parts 1 and 2
 - Balanced different orders
 - Part 3
 - Group decides which rule to use (random dictator)
 - 10 round with the chosen rule

- The color of a triangle is chosen randomly \blacktriangle or \blacktriangle
 - Probabilities $\Pr(\alpha)$ and $1 \Pr(\alpha)$ respectively

- The color of a triangle is chosen randomly \blacktriangle or \blacktriangle
 - Probabilities $Pr(\alpha)$ and $1 Pr(\alpha)$ respectively
- Each voter was randomly and independently assigned a type
 - The type is a probability of getting a right signal (precision)
 - Subjects learned only about their own type

- The color of a triangle is chosen randomly \blacktriangle or \blacktriangle
 - Probabilities $\Pr(\alpha)$ and $1 \Pr(\alpha)$ respectively
- Each voter was randomly and independently assigned a type
 - The type is a probability of getting a right signal (precision)
 - Subjects learned only about their own type
- Subjects receive a 'hint' about the color of triangle
 - Ball drawn from an urn filled with 100 (blue and red) balls
 - Proportion of balls of each color depends on the type of voter

- The color of a triangle is chosen randomly \blacktriangle or \blacktriangle
 - Probabilities $\Pr(\alpha)$ and $1 \Pr(\alpha)$ respectively
- Each voter was randomly and independently assigned a type
 - The type is a probability of getting a right signal (precision)
 - Subjects learned only about their own type
- Subjects receive a 'hint' about the color of triangle
 - Ball drawn from an urn filled with 100 (blue and red) balls
 - Proportion of balls of each color depends on the type of voter
- Subjects vote (with either M or CV)
- Payoffs
 - 100 (0) if the group guessed color was (not) correct
 - 50 in case of a tie

Voting Mechanisms

- Majority:
 - Vote for Blue, vote for Red or Abstain

Voting Mechanisms

- Majority:
 - Vote for Blue, vote for Red or Abstain
- Continuous Voting
 - Vote for Blue or vote for Red
 - "Indicate the number of points you allocate to the color you vote for. You can allocate any number between 0 and 20 to the color you vote for, including decimals"

		Prob. of each Precision							
Parameters	n	Prior	55%	60%	75%	95%	Eq M vote		
Baseline (B)	5	0.5	0.15	0.7	-	0.15	All		

			Prob.	of eacl			
Parameters	n	Prior	55%	60%	75%	95%	Eq M vote
Baseline (B)	5	0.5	0.15	0.7	-	0.15	All
Distrib (D)	5	0.5	0.25	0.5	-	0.25	iff prec \geq 95

			Prob.				
Parameters	n	Prior	55%	60%	75%	95%	Eq M vote
Baseline (B)	5	0.5	0.15	0.7	-	0.15	All
Distrib (D)	5	0.5	0.25	0.5	-	0.25	iff prec \geq 95
Size (S)	9	0.5	0.15	0.7	-	0.15	iff prec \geq 95

			Prob.	of eacl			
Parameters	n	Prior	55%	60%	75%	95%	Eq M vote
Baseline (B)	5	0.5	0.15	0.7	-	0.15	All
Distrib (D)	5	0.5	0.25	0.5	-	0.25	iff prec \geq 95
Size (S)	9	0.5	0.15	0.7	-	0.15	iff prec \geq 95
+ Types (MT)	5	0.5	0.15	0.5	0.2	0.15	iff prec \geq 75

			Prob.	of eacl			
Parameters	n	Prior	55%	60%	75%	95%	Eq M vote
Baseline (B)	5	0.5	0.15	0.7	-	0.15	All
Distrib (D)	5	0.5	0.25	0.5	-	0.25	iff prec \geq 95
Size (S)	9	0.5	0.15	0.7	-	0.15	iff prec \geq 95
+ Types (MT)	5	0.5	0.15	0.5	0.2	0.15	iff prec \geq 75
Asym Prior (A)	5	0.3	0.15	0.7	-	0.15	t_A iff prec \geq 95
							t_B iff prec \geq 60

			Prob.	of eacl			
Parameters	n	Prior	55%	60%	75%	95%	Eq M vote
Baseline (B)	5	0.5	0.15	0.7	-	0.15	All
Distrib (D)	5	0.5	0.25	0.5	-	0.25	iff prec \geq 95
Size (S)	9	0.5	0.15	0.7	-	0.15	iff prec \geq 95
+ Types (MT)	5	0.5	0.15	0.5	0.2	0.15	iff prec \geq 75
Asym Prior (A)	5	0.3	0.15	0.7	-	0.15	t_A iff prec \geq 95
							t_B iff prec \geq 60
Comm. (C)	5	0.5	0.15	0.7	-	0.15	

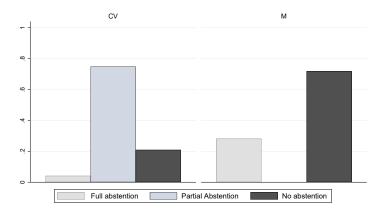
Treatments

			Prob.	of eacl			
Parameters	n	Prior	55%	60%	75%	95%	Eq M vote
Baseline (B)	5	0.5	0.15	0.7	-	0.15	All
Distrib (D)	5	0.5	0.25	0.5	-	0.25	iff prec \geq 95
Size (S)	9	0.5	0.15	0.7	-	0.15	iff prec \geq 95
+ Types (MT)	5	0.5	0.15	0.5	0.2	0.15	iff prec \geq 75
Asym Prior (A)	5	0.3	0.15	0.7	-	0.15	t_A iff prec \geq 95
							t_B iff prec \geq 60
Comm. (C)	5	0.5	0.15	0.7	-	0.15	

• Equilibrum under CV (symmetric treatments):

Precision	55%	60%	75%	95%
Eq. Weight	1.36	2.75	7.46	20

• In A: voters vote asymmetrically to compensate

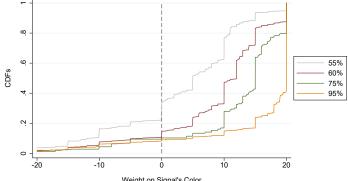

Experimental Procedures

- Experiments were conducted at LINEEX (U. Valencia)
- December 2017 February 2018
- 408 participants (all of them students)
- Computerized interactions (Ztree)
- No subject participated in more than one session
- Average payoff: €14.54 Euros for approximately one hour

Experimental results

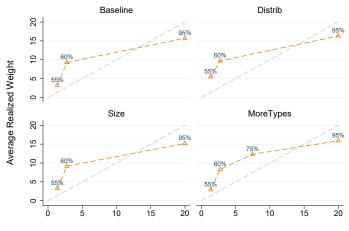
Partial Abstention

• Do participants make use of partial abstention?

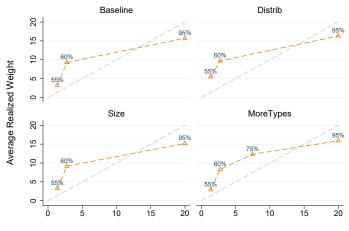


Partial Abstention

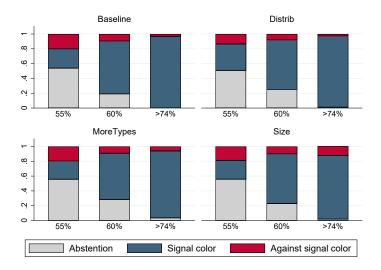
• Is the use correlated with the strength of information?



Vote Weight Distribution by Type

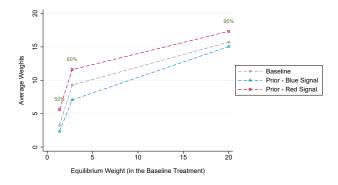

Weight on Signal's Color

CV: Realized weights vs Equilibrium


Equilibrium Weight on the Signal Color

CV: Realized weights vs Equilibrium

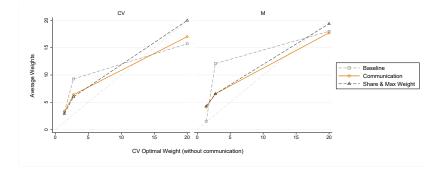
Equilibrium Weight on the Signal Color


M: Voting Behaviour by Type

Behaviour

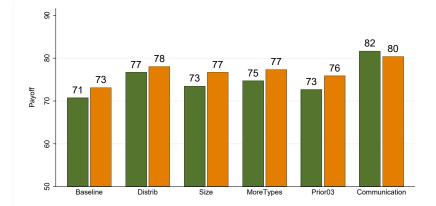
CV: The effect of the Prior

- In the Prior03 Treatment, Pr(blue) = 0.3
 - They need stronger evidence to choose blue: vote 'more red'

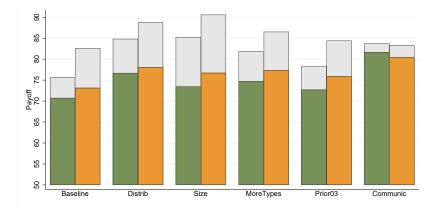


Behaviour CV: The effect of Communication

- Ambiguous effect of communication on voting weights (CV)
 - Players can ignore communication and play equilibrium weights
 - ② They can share information and vote in the same manner → weaker relation between signals and weights
 - Note that both equilibria are efficient

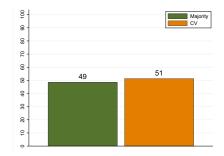

Behaviour

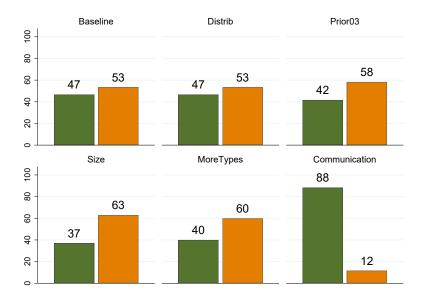
CV: The effect of Communication

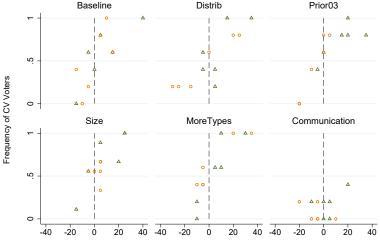


Welfare Average Payoffs

Welfare Average Payoffs

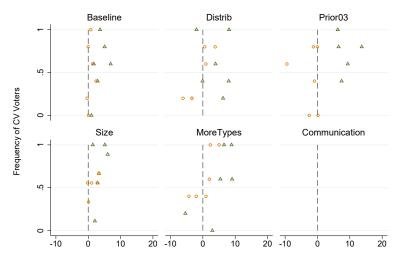



Welfare Average Payoffs



- In part 3, subjects had to select the voting rule
- If no frictions: forward-looking voters should choose CV
 - frictions: additional time, cognitive cost
 - ${\ensuremath{\, \bullet }}$ if backward looking \rightarrow depends on realized payoff

- In part 3, subjects had to select the voting rule
- If no frictions: forward-looking voters should choose CV
 - frictions: additional time, cognitive cost
 - ${\ensuremath{\, \bullet }}$ if backward looking \rightarrow depends on realized payoff



Difference in Realized Payoffs between CV and M

• Positive correlation with realized performance

Difference in Expected Payoffs between CV and M

DV: System Choice	(1)	(2)	(3)	(4)	(5)	(6)
CV Realized Payoff	0.018***		0.018***	0.017***	0.017***	0.017***
5	(0.002)		(0.003)	(0.003)	(0.003)	(0.003)
M Realized Payoff	-0.015***		-0.014***	-0.014***	-0.014***	-0.014***
	(0.002)		(0.002)	(0.002)	(0.002)	(0.002)
CV Simulated Payoff		0.032***	0.004	0.005	0.007	0.007
		(0.010)	(0.008)	(0.008)	(0.007)	(0.008)
M Simulated Payoff Time CV Time M Time Control Questions M Time Control Questions CV		-0.031***	-0.005	-0.006	-0.008	-0.010
		(0.009)	(0.006)	(0.006)	(0.006)	(0.007)
					0.000	0.000
					(0.000)	(0.000)
					-0.000	-0.000
					(0.000)	(0.000)
						-0.001 (0.001)
						(0.001)
	Constant	0.247	0.398	0.314	0.277	0.205
(0.228)		(0.736)	(0.442)	(0.547)	(0.531)	(0.512)
Questionnaire Controls				~	~	~
Observations	348	348	348	348	348	348
Clusters	42	42	42	42	42	42
R-squared	0.249	0.063	0.250	0.258	0.260	0.271

Conclusion

- Flexibility of ballot space and information aggregation
- Comparison of MV and CV
 - CV dominates MV
 - Underperforms theoretical predictions
- Choice of voting rule
 - $\bullet~$ Voters are backward looking $\rightarrow~$ inefficiencies

Thanks!