Bayesian Detection and Prediction of Disruptive Events using Twitter

Theo Kypraios

School of Mathematical Sciences @ University of Nottingham

University of Crete - March, 2024

Acknowledgements

Jiale Tao Karthik Bharath University of Nottingham University of Nottingham

1. Motivation

- 2. Exploratory Data Analysis
- 3. Modelling
- 4. Bayesian Learning
- 5. Model Extension
- 6. Conclusions

Motivation

Knowledge Transfer Partnerships (KTPs)

- A KTP is a three-way project between a company, a university, and a recent graduate, where the business is able to utilise academic expertise in order to develop a new technology or improve products and processes.
- Great opportunity for all three parties involved.
- KTP with Delta Rail (now Resonate) back in 2016 [lan Dryden, David Hodge].

• Delta Rail / Resonate is a technology company specialising in rail and connected transport solutions. Offices in Derby (about 20 km from UoN campus).

Company's Brief

Resonate's brief

Explore a "link" between **disruption** reported by customers and that measured by the railway In other words, can we **identify** a major **disruption** based on what people are saying on Twitter?

Available Data

Any tweet that mentioned/tagged a railway company from 01/01/2015 to 31/12/2015:

Exploratory Data Analysis

Raw Data: 2.2M Tweets

	🖲 😑 💧 Aut	oSave 🗩	6 B B 7 · C ···			cleaned_tweets2015 ~				Q 82
F	lome Insert	Draw	Page Layout Formulas	Data Review View	Automate 🔉 Tell	me			P	Comments 🔀 Share 🗸
	Paste 🗳	Aptos Nar B I L	row (Bod v 16 v A^ / ⊔ v ⊞ v <u>&</u> v <u>A</u> v	A [×] = = = ≫ × = = = ⊡ ⊡	ٷ Wrap Text Υ 편 Merge & Centre Υ	Custom ✓ Image: v % 9 58 58	Conditional Format Cell Formatting as Table Styles	insert Delete Format	∑ × A Z V × ∫ Sort & Find ♦ × Filter Sele	& Sensitivity Analyse Data
A	1 \$ ×	$\checkmark f_X$	21/01/2015 17:26:56							Ŧ
	A							В		
1	21/01/2015 17:26 @witheta @SouthernRailUK Not a damn chance. I have annual season from ELD and can't see them offering diddly squat.									
2	21/01/2015 17:26 Just asked if my early train would definitely depart before the later one and was told 'It's a gamble' @SouthernRailUK #LondonBridgeTrains									
3	21/01/201	21/01/2015 17:27 RT @FJGSolicitors: .@VirginTrains to the rescue - the power of social http://t.co/5MvBt5wgmg http://t.co/Vqtc4eVvSI								
4	21/01/201	15 17:27	@eastcoastuk Yes the	y were empathetic (chilly) but it's out of th	eir hands An ongoing	issue? Someone said sta	aff wearing coats yeste	erday!	
5	21/01/201	15 17:27	@TfLTravelAlerts @dist	trictline @DistrictLame 2	/2 at Victoria stat	tion				
6	21/01/201	15 17:27	@greateranglia @Sasb	023 GK is basically sayir	ig they have no sp	ares as they sent back 3	36 trains to save cash wh	en they arrived		
7	21/01/201	15 17:27	@LondonMidland than	nksss ,úåÔ∏è						
8	21/01/201	15 17:27	RT @jodrell: @richard_	je @greateranglia old ar	id unpleasant sou	nds about right :-(
9	21/01/201	15 17:28	Twitter would I get in t	rouble if I dialled 999 an	d reported @SW_T	Frains for crimes of exto	rtionate prices? It'll be w	orth it #swtrains		
10	21/01/201	15 17:29	RT @sussmes88: @gre	ateranglia 17.11 Brentw	ood to Shenfield -	 black hat found and pa 	assed to staff at Shenfiel	d.		S
1	21/01/201	15 17:29	@TLRailUK @Southern	1RailUK just but explaini	ng why that train a	lways crawls along and	is always late. Never any	announcements on b	ooard. Ta!	
12	21/01/201	15 17:29	@MWilliamsWBA @Lo	ndonMidland my M.P re	plied and will raise	e their appalling service	with the minister for tran	nsport on my behalf		
13	21/01/201	15 17:29	@Dombelina @Southe	ernRailUK at least they w	ere honest!					
14	21/01/201	15 17:29	Are @Se_Railway plan	ning on running trains to	charring cross an	d Waterloo at the week	ends or is this the new n	orm #blackheath #We	ekendTravel	
15	21/01/201	15 17:29	Tube from Paddington	to Kings Cross is a joke.	Like a third world	service. Reflects so bac	lly on London from a pri	me station @TfL		
16	21/01/201	15 17:29	@SW_Trains do you ev	er plan on making trains	more frequent on	your very overcrowded	lines? Like the reading l	ine? It's getting tediou	JS.	
15	21/01/201	15 17:29	@SouthernRailUK @pa	anthrosighalot very cleve	er 'I believe' not 'it	will be'. Get out clause	released!			
18	21/01/201	15 17:29	@greateranglia compl	ete robbery !! you add o	n an extra ⊐£100 t	o season toys knowing	you won't be running tra	ins for every wkd in 2 r	months	
15	21/01/201	15 17:29	Standing on the train of	out of London is always g	ood fun @Southe	rnRailUK #LondonBridg	geTrains			
20	21/01/201	15 17:29	@SouthernRailUK @Al	exBakerface has been se	en on one of your	r trains. Expect delays	don't ask me why!			
2'	21/01/201	15 17:29	Inanks Grant @fgw. Lo	JOKS LIKE WE'RE STUCK WITH	i crappy old tugs f	or 2+ years. Then proba	ibly more delays when el	ectrification is installe	ea.	
22	21/01/201	15 17:29	@demiii_@c2c_rail2@	vc2c_Rail I don't even kr	low what that mea	ans!				
23	21/01/201	15 17:29	@greateranglia can yo	u turn the heating on ple	ase - 1730 to Gid	ea Park from Liverpool S	st carriage number 6456	8		
24	21/01/201	15 17:30	KI @sussmes88: @gre	ateranglia 17.11 Brentw	ooa to Shenfield -	- plack hat found and pa	assed to staff at Shenfiel	α.		

Exploratory Data Analysis

Not all tweets refer to disruption (in a broad sense) and/or tag railway company:

- Hi Sophie. We are experiencing delays of up to an hour on this route due to an accident on the A259. @SouthernRailUK
- @TLRailUK I'm pretty sure you didn't. Selfish train company. Only out to rip me off and make me late either to work or from work.
- Why would it make it go any faster? Just passing Maidenhead 4 mins before due in Reading. Not an excessive delay yet.
- Excellent journeys with @eastcoastuk on Monday. Great service good food very pleasant. Thank you.

Data pre-processing:

- Identify the tweets that refer to "delay" using related words; [off-the-self sentiment analysis / classification];
- 2. divide the day (24 hours) in fixed intervals (e.g. 15-minutes);
- 3. count the number of "delay tweets" per interval.

There are many ways to pre-process the data (especially step 1 above) – this is **not** the focus of this talk.

Our starting point is the temporal count data obtained at the end of step 3 and we treat these as our observed data (x).

Curating the Data

We split the 24 hours of a calendar day into 96 15-minutes intervals:

Tweet	Day	Time Interval	Company	"Delay"
selfish make me late	Mon 03/05	08:30-08:45	Thames Link	1
experiencing delays up to	Tue 08/12	16:30-16:45	Southern Rail	1
great service	Fri 17/02	18:30-18:45	East Coast	0
	:	:	:	:

Notation

Denote by $x_{d,i}^{j}$ the number of "delay" tweets in the i_{th} interval on a given day d and which refer to / tag company j, where i = 1, ..., 96, $d \in \{01/01, ..., 31/12\}$ and j = 1, ..., m.

Modelling

Start Simple: Aggregate over companies

- We aggregate over the different companies and consider all the tweets which refer to a given day of the week, e.g. Monday.
- We end up with a discrete-value time series of length $T = 52 \times 96$:

$$\boldsymbol{x} = (\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_{52})$$

where $x_k = (x_{k,1}, ..., x_{k,96})$ and k = 1, ..., 52.

 We denote by x_{k,i} the number of "delay" tweets in the i_{th} 15-minute interval (irrespective of which railway company is tagged) which was tweeted on the k_{th} Monday in the dataset.

A Bayesian Hierarchical Model

We assume that the number of "delay" tweets at a given time-interval tell us something about the (unobserved) state of the railway.

We wish to build a hierarchical model to learn the patterns in the observed data

... both when there is a major disruption in the railway and when there is not.

The model should reflect the nature of the data: a combination of the normal pattern and occasional additional counts caused by disruptive events.

Our Focus

Predicting the state of the railway at a given interval having observed the number of "delay" tweets.

It is Wednesday 08:30.

Between 08:15-08:30 there have been 60 tweets mentioning "delay".

Is 60 an unusually large number of tweets for that time on a Wednesday or something to be expected?

Assumption:

The state of the railway during a fixed time interval is either "normal" or "disrupted"; the latter corresponds to intervals where there is a major disruptive event and the former where there is not.

We model this behaviour using a Markov chain in discrete time.

Let $\{Z_t, t = 0, 1, ...\}$ be an irreducible homogeneous Markov chain on the state space $S = \{0, 1\}$ with transition probability matrix M_Z^* ; that is

$$m_{ij}^{\star} = P(Z_t = j \mid Z_{t-1} = i), \quad \text{for} \quad i = 0, 1,$$

where $0 =$ "normal" and $1 =$ "disrupted".

Modelling the Volume of Tweets

Let the non-negative integer-valued random process $\{X_t, t = 0, 1, ...\}$ represent the number of tweets posted at time t which are decomposed as follows:

$$X_{t} = \begin{cases} Y_{t}, & \text{if } Z_{t} = 0; \\ Y_{t} + W, & \text{if } Z_{t} = 1; \end{cases} \qquad t = 1, 2, \dots, T.$$
(1)

We further assume that

- Y_t |Z_t ~ Po(λ(t)), i.e. conditional on {Z_t, t = 1,..., T}, Y₁,..., Y_T are assumed to be mutually independent.
- $W \sim Po(c)$ and independent of $\{Y_t, t = 1, 2, \dots, T\}$.

Graphical Model

The model can be either viewed a discretised version of a Markov Modulated Poisson Process (MMPP) or a Hidden Markov Model (HMM).

- the number of "delay" tweets we expect to see at time t (Y_t) follows a Poisson distribution with a time-dependent mean λ(t) if the state of the railway is "normal";
- if there is a major disruptive event at time t then there is an additional number of "delay" tweets (W) that follows a Poisson distribution with mean c.

Figure 1: Frequency of "delay" tweets throughout the day

Figure 1 suggests that the average number of "delay" tweets, $\lambda(t)$, can be modelled with the following parametric function:

$$\lambda(t) = c_1 \cdot \exp\left\{-\frac{1}{2\sigma_1^2}(t-\mu_1)^2\right\} + c_2 \cdot \exp\left\{-\frac{1}{2\sigma_2^2}(t-\mu_2)^2\right\} + c_3, \quad (2)$$

The parameters μ_1 and μ_2 represent the times during the morning and afternoon/evening rush hours at which the number of tweets is maximum;

The rest parameters of the function $\lambda(t)$, c_1 , c_2 , and c_3 are scaling constants.

Bayesian Learning

Set-up:

- observed data: $\boldsymbol{x} = (x_1, \dots, x_T);$
- model parameters: $\theta = (\mu_1, \mu_2, c_1, c_2, c_3, c);$
- observed-data likelihood: $\pi(x_1, \ldots, x_T | \theta)$

Observed-data likelihood, $\pi(x_1, \ldots, x_T | \theta)$, not readily available because $z = (z_1, \ldots, z_T)$ is unobserved and hence will have to be integrated out:

$$\pi(\mathbf{x}|\mathbf{ heta}) = \sum_{\mathbf{z}} (\mathbf{x}, \mathbf{z}|\mathbf{ heta}).$$

The sum becomes computationally infeasible for large T.

Bayesian Inference: Data Augmentation

We adopt a Bayesian framework and treat the unobserved states of the Markov chain $\{Z_t\}$ additional parameters to be inferred alongside the model parameters θ .

$$\pi(oldsymbol{ heta},oldsymbol{z}|oldsymbol{x}) \propto \pi(oldsymbol{x},oldsymbol{z},oldsymbol{ heta})\pi(oldsymbol{ heta})$$

 $\propto \pi(\boldsymbol{x}|\boldsymbol{z},\boldsymbol{\theta})\pi(\boldsymbol{z}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})$

$$\propto \pi(\mu_1,\mu_2) \pi(m_{00}^\star,m_{01}^\star) \pi(m_{10}^\star,m_{11}^\star) \pi(c) \pi(c_1) \pi(c_2) \pi(c_3)$$

×
$$\prod_{t=1}^{T} P(Z_t = z_t | Z_{t-1} = z_{t-1}, \boldsymbol{m}^*) \times \prod_{t=1}^{T} P(X_t = x_t | Z_t = z_t, \boldsymbol{c}, \boldsymbol{\mu}).$$
 19

Bayesian Inference: Augmented Likelihood

Having augmented the observed data x with the unobserved state of the railway (z), the augmented likelihood

$$\prod_{t=1}^{T} P(X_t = x_t | Z_t = z_t, \boldsymbol{c}, \boldsymbol{\mu})$$

is straightforward to compute.

Each term in the product is the probability mass function from a Poisson distribution. If the state of the railway is "normal" that is, a $Poisson(\lambda(t))$; if "disrupted" then it would be a $Poisson(\lambda(t) + c)$.

Next step: Prior specification for $\pi(\theta)$.

Bayesian Inference: Prior on parameters governing M^{\star}

four parameters of the transition probability matrix M_z^{\star} , namely $m_{00}^{\star}, m_{01}^{\star}, m_{10}^{\star}$ and m_{00}^{\star} ,

$$M^{\star} = \left[egin{array}{cc} m^{\star}_{00} & m^{\star}_{01} \ m^{\star}_{10} & m^{\star}_{11} \end{array}
ight]$$

We assign Dirichlet distributions to these probabilities preserving the constraints that $m_{01}^{\star} + m_{00}^{\star} = 1$ and $m_{10}^{\star} + m_{11}^{\star} = 1$.

$$(m_{00}^{\star}, m_{01}^{\star}) \sim \operatorname{Dir}(\alpha_1, \alpha_2)$$

 $(m_{10}^{\star}, m_{11}^{\star}) \sim \operatorname{Dir}(\alpha_3, \alpha_4)$

where $\alpha_1, \ldots, \alpha_4$ are further hyper-parameters.

Bayesian Inference: Prior on parameters governing $\lambda(t)$

Based on the interpretation of the parameters μ_1 and μ_2 , we assume that a-priori are distributed as the ordered statistics of two *independent* Uniform random variables in (0,24):

$$\pi(\mu_1,\mu_2) = \frac{1}{288} \mathbb{1}\{0 \le \mu_1 \le 24\} \mathbb{1}\{0 \le \mu_2 \le 24\} \mathbb{1}\{\mu_1 < \mu_2\},\$$

The first two terms come from the Uniform distribution and the last one comes from the order statistics since we require $\mu_1 < \mu_2$.

We further assign that $c \sim \text{Exp}(\beta)$ and independent Uniform priors on c_1 , c_2 and c_3 : $c_1, c_2 \sim U(0, 150)$ and $c_3 \sim U(0, 50)$.

Sampling from the Posterior distribution $\pi(\theta, z|x)$

We develop a bespoke MCMC algorithm to sample from $\pi(\theta, z|x)$:

- 1. initialisation; repeat steps 2-7 until convergence:
- 2. Sample from $\pi(m_{00}^{\star}, m_{01}^{\star}|z)$ directly;
- 3. Sample from $\pi(m_{10}^{\star},m_{11}^{\star}|z)$ directly;
- 4. Sample from $\pi(c|\mathbf{x}, c_1, c_2, c_3)$ using Metropolis-Hastings;
- 5. Sample from $\pi(\mu_1, \mu_2 | \boldsymbol{x}, \boldsymbol{z}, c_1, c_2, c_3)$ using Metropolis-Hastings;
- 6. Sample from $\pi(c_1, c_2, c_3 | \boldsymbol{x}, \boldsymbol{z}, \mu_1, \mu_2)$ using Metropolis-Hastings;
- 7. Sample from $\pi(\boldsymbol{z}|\boldsymbol{x},\boldsymbol{\theta})$ using the Forward-Backward algorithm.

MCMC

A lot of work has gone into the development of the MCMC algorithm.

Focus on Prediction

Our main focus is to predict the state of the railway at a particular time-interval t_k when we have observed data *up to and including* time interval t_k ; that is, deriving the posterior distribution $\pi(Z_k = s | \mathbf{x}_{1:k})$:

$$\pi(Z_k = s | oldsymbol{x}_{1:k}) \;\; = \;\; rac{\pi(x_k | Z_k = s) \, \pi(Z_k = s | oldsymbol{x}_{1:(k-1)})}{\pi(x_k | oldsymbol{x}_{1:(k-1)})} \propto \pi(x_k | Z_k = s) \, \pi \left(Z_k = s | oldsymbol{x}_{1:(k-1)}
ight)$$

Following some manipulation of the formulae we obtain the following recursion which enables us predict Z_k when the new data x_k comes if the model has been fitted up to time x_{k-1}

$$p(Z_{k} = s | \mathbf{x}_{1:k}) \propto p(x_{k} | Z_{k} = s) \sum_{l \in \{1,2\}} \pi(Z_{k} = s | z_{k-1} = l) \pi(Z_{k-1} = l | \mathbf{x}_{1:(k-1)})$$
(3)

Does this really work?

Incident on the 17th February 2015 – Great Western Railway

Reports of person being hit by a train around 20:58.

Model Extension

Capitalising on the Data's Rich Structure

- We wish to capitalise on the rich structure that the data has.
- One approach is to consider data (tweets/counts) from different companies separately.
- We can then fit/train our model to data from each company and make predictions.
- By doing so, we ignore the dependence between companies.

False Negative

30

Capturing the Dependence Structure

So far we have considered the "state of the railway" in a broad sense without making any distinction between different companies.

However, there could be a major disruptive event that affects only one railway company whilst the rest are operating as normal.

Alternatively, there could be a major disruptive that affects more than one railway company.

We are now interested in answering the following questions:

- Can we predict the status of different railway companies *simultaneously*?
- Can we measure the extend to which one company's state affects the state of another?

Bivariate MMPP / Coupled HMM

We want to model the state of the railway jointly for these two companies and consider a bivariate Markov Chain in discrete-time:

$$\boldsymbol{Z} = \begin{pmatrix} \boldsymbol{Z}^{(1)} \\ \boldsymbol{Z}^{(2)} \end{pmatrix} = \begin{pmatrix} Z_1^{(1)}, Z_2^{(1)}, \dots, Z_T^{(1)} \\ Z_1^{(2)}, Z_2^{(2)}, \dots, Z_T^{(2)} \end{pmatrix}$$

The observed data are also considered jointly

$$m{x} = egin{pmatrix} m{x}^{(1)} \ m{x}^{(2)} \end{pmatrix} = egin{pmatrix} x_1^{(1)}, x_2^{(1)}, \dots, x_T^{(1)} \ x_1^{(2)}, x_2^{(2)}, \dots, x_T^{(2)} \end{pmatrix}$$

Model Assumptions

• The future states only on the current states

$$Z_{t+1} \perp Z_{1:(t-1)} \mid Z_t.$$

- Conditional independence: $\pi(X_{1,t}, X_{2,t} | Z_{1,t}, Z_{2,t}) = \pi(X_{1,t} | Z_{1,t}) \times \pi(X_{2,t} | Z_{2,t})$
- The model on $\pi(X_{j,i} | Z_{j,i})$ for j = 1, 2 is the same as in the univariate case:

.

$$X_{j,t} = \left\{ egin{array}{cccc} Y_{j,t}, & ext{if} & Z_{j,t} = 1; \ Y_{j,t} + W, & ext{if} & Z_{j,t} = 2; \end{array}
ight.$$
 $t = 1, 2, \ldots, T$ and $j = 1, 2.$

where $Yj, t \sim \text{Poisson}(\lambda(t))$ and $W \sim \text{Poisson}(c)$.

Bivariate MMPP / Coupled HMM

Modelling the Bivariate Markov Chain

- Denote the discrete state space of $Z^{(1)}$ and $Z^{(2)}$ to be S_1 and S_2 respectively, i.e. $S_1 = S_2 = \{\text{normal}, \text{disrupted}\}$
- Denote that the cardinality of \mathcal{S}_1 and \mathcal{S}_2 are d_1 and d_2 $(d_1, d_2 \in \mathbb{N})$.
- One can construct an auxiliary univariate Markov chain {Z_i^{*}}_{t=1}^T with state space S^{*} with cardinality d₁ × d₂. Since Z_t^{*} and Z_t share the same cardinality, one can find a bijective mapping between them and have a single Markov Chain in the extended state space:
 - $\mathcal{S}^{\star} = \left\{ \left\{ \mathsf{normal}, \mathsf{disrupted} \right\}, \left\{ \mathsf{normal}, \mathsf{normal} \right\}, \right.$

 $\{disruptive, normal\}, \{disrupted, disrupted\}\}$

Modelling the Bivariate Markov Chain

The transition probability matrix M^* is of dimension 4×4 and has $4 \times 3 = 12$ unknown parameters to be estimated from the data.

In general, if we have *m* companies, then M^* will be of dimension $2^m \times 2^m$ with $2^m \times (2^m - 1)$ unknown parameters to be estimated.

For instance, if m = 4 then we have 240 parameters to be estimated.

If m = 8 we have 65,280 parameters.

In addition to the parameter growing rapidly, we can't say anything about the dependence between companies.

Bayesian Inference for the Bivariate MMPP / Coupled HMM

- Given the observed data $x = (x_1, x_2)$ we can make inference (and prediction) in a similar fashion to the univariate case.
- Can construct an MCMC algorithm to sample from the target density:

 $\pi(\boldsymbol{\theta}, \boldsymbol{Z}^{\star}|\boldsymbol{x}).$

• For such an algorithm to be efficient, it should involve sampling efficiently from the unobserved (bivariate) state:

 $\pi(\boldsymbol{Z}^{\star}|\boldsymbol{\theta}, \boldsymbol{x}).$

A Forward-Backward algorithm becomes infeasible as the number of companies/chains increases.

• Gibbs sampler is also possible, i.e. alternate between $\pi(Z^{(1)}|Z^{(2)}, \theta, x)$. and $\pi(Z^{(2)}|Z^{(1)}, \theta, x)$.

Modelling the Bivariate Markov Chain

Additional assumption:

$$Z_t^{(1)} \perp Z_t^{(2)} \mid Z_{1:t-1}^{(1)}, Z_{1:t-1}^{(2)}.$$

Instead of parameterising $\{Z^{(1)}, Z^{(2)}\}$ with M^* , we introduce parameters, η :

$$\eta_{abd}^{(i)} = P\left(Z_t^{(i)} = d \mid Z_{t-1}^{(1)} = a, Z_{t-1}^{(2)} = b\right), \quad \text{ where } i = 1, 2 \quad \text{ and } a, b, d \in \{0, 1\}.$$

Such a parameterisation imposes some constraints since $\eta_{ab1}^{(i)} + \eta_{ab0}^{(i)} = 1$. That means we can't recover all elements of M^* ; **but**:

- If interested in prediction, then we don't need the full M^{\star} ; knowing η is sufficient;
- We are going to model η to understand how does one chain (company) affects the other.

Modelling the Marginal Probabilities η

If we consider data from two companies, then we have 8 independent η parameters.

Denote by

$$\eta_{z_1 z_2 1}^{(i)} = P\left(Z_t^{(i)} = 1 \mid Z_{t-1}^{(1)} = z_1, Z_{t-1}^{(2)} = z_2\right).$$

We model logit $\eta_{z_1z_21}^{(i)}$ as follows:

$$\begin{aligned} \mathsf{logit}\left(\eta_{z_{1}\,z_{2}1}^{(i)}\right) &= \beta_{0}^{(i)} + \beta_{1}^{(i)}\,\mathbb{1}\left(Z_{t-1}^{(1)} = 1\right) + \beta_{2}^{(i)}\,\mathbb{1}\left(Z_{t-1}^{(2)} = 1\right) \\ &+ \beta_{3}^{(i)}\,\mathbb{1}\left(Z_{t-1}^{(1)} = 1 \text{ and } Z_{t-1}^{(2)} = 1\right) \end{aligned}$$

Parameters β_1 , β_2 and β_3 provide information about how does the state of one company affect the state of the other.

- Introducing the η parametrisation not only allows us to investigate the dependence between the different railway companies but also enable us efficient sampling of the unobserved process $Z = (Z^{(1)}, Z^{(2)})$ given observed data x_1 and x_2 .
- We have a developed an efficient algorithm to sample from π(Z|x, θ) that scales well with the number of companies.
- We have also utilised a Polya-Gamma representation to sample efficiently from $\pi(\beta \mid \mathbf{x}, \mathbf{Z})$.

Conclusions

Epilogue

- We have developed a probabilistic modelling framework for analysing multivariate discrete time-series data and an efficient Markov Chain Monte Carlo algorithm to allow fitting the model within a Bayesian framework.
- Key to our work is a reparameterisation which is sufficient for prediction (which is our focus).
- There has also been a significant amount of work with regards to the theoretical properties of our model.
- There are numerous ways to move this work forward, e.g.
 - Classifying the tweets better;
 - Estimate $\lambda(t)$ non-parametrically;
 - Different models for η .