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Motivation



Knowledge Transfer Partnerships (KTPs)

e A KTP is a three-way project between a company, a university, and a recent
graduate, where the business is able to utilise academic expertise in order to
develop a new technology or improve products and processes.

e Great opportunity for all three parties involved.

e KTP with Delta Rail (now Resonate) back in 2016 [lan Dryden, David Hodge].

I‘ -~ resonate

e Delta Rail / Resonate is a technology company specialising in rail and connected
transport solutions. Offices in Derby (about 20 km from UoN campus).



Company’s Brief

Resonate’s brief
Explore a “link” between disruption reported by customers and that measured by
the railway . ... In other words, can we identify a major disruption based on what

people are saying on Twitter?

X [

Available Data

Any tweet that mentioned/tagged a railway company from 01/01/2015 to
31/12/2015: :



Exploratory Data Analysis



Raw Data: 2.2M Tweets
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121/01/2015 17:26_@witheta @SouthernRailUK Not a damn chance. | have annual season from ELD and can't see them offering diddly squat.

21/01/2015 17:26 Just asked if my early train would definitely depart before the later one and was told 'It's a gamble' @SouthernRailUK #LondonBridgeTrains
21/01/2015 17:27 RT @FJGSolicitors: .@VirginTrains to the rescue - the power of social http://t. http://t.co/Vq

21/01/2015 17:27 @eastcoastuk Yes they were empathetic (chilly) but it's out of their hands... An ongoing issue? Someone said staff wearing coats yesterday!
21/01/2015 17:27 @TfLTravelAlerts @districtline @DistrictLame 2/2 at Victoria station

21/01/2015 17:27 @greateranglia @Sasbo23 GK is basically saying they have no spares as they sent back 36 trains to save cash when they arrived

21/01/2015 17:27 @LondonMidland thanksss G302

21/01/2015 17:27 RT @jodrell: @richard_je @greateranglia old and unpleasant sounds about right :-(

21/01/2015 17:28 Twitter would | get in trouble if | dialled 999 and reported @SW_Trains for crimes of extortionate prices? It'll be worth it #swtrains

21/01/2015 17:29 RT gl glia17.11 to ield - black hat found and passed to staff at Shenfield. %
21/01/2015 17:29 @TLRailUK @SouthernRailUK just but explaining why that train always crawls along and is always late. Never any announcements on board. Ta!
21/01/2015 17:29 @MWilliamsWBA @LondonMidland my M.P replied and will raise their appalling service with the minister for transport on my behalf

21/01/2015 17:29 @Dombelina @SouthernRailUK at least they were honest!

21/01/2015 17:29 Are @Se_Railway planning on running trains to charring cross and Waterloo at the weekends or is this the new norm #blackheath #WeekendTravel
21/01/2015 17:29 Tube from Paddington to Kings Cross is a joke. Like a third world service. Reflects so badly on London from a prime station @TfL

21/01/2015 17:29 @SW._Trains do you ever plan on making trains more frequent on your very overcrowded lines? Like the reading line? It's getting tedious.
21/01/201517:29 nRailUK @p. i very clever 'l believe' not ‘it will be'. Get out clause released!

21/01/2015 17:29 @greateranglia complete robbery !! you add on an extra “£100 to season toys knowing you won't be running trains for every wkd in 2 months
21/01/2015 17:29 Standing on the train out of London is always good fun ilUK #LondonBridgeTrail

21/01/2015 17:29 @SouthernRailUK @AlexBakerface has been seen on one of your trains. Expect delays...don't ask me why!

21/01/2015 17:29 Thanks Grant @fgw. Looks like we're stuck with crappy old tugs for 2+ years. Then probably more delays when electrification is installed.
21/01/2015 17:29 @demiii_ @c2c_rail2 @c2c_Rail | don't even know what that means!

21/01/2015 17:29 @greateranglia can you turn the heating on please - 1730 to Gidea Park from Liverpool St carriage number 64568

21/01/2015 17:30 RT g ia17.11 to ield - black hat found and passed to staff at i 6
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Exploratory Data Analysis

Not all tweets refer to disruption (in a broad sense) and/or tag railway company:

e Hi Sophie. We are experiencing delays of up to an hour on this
route due to an accident on the A259. @SouthernRailUK

e QTLRailUK I’m pretty sure you didn’t. Selfish train company.
Only out to rip me off and make me late either to work or from

work.

e Why would it make it go any faster? Just passing Maidenhead 4

mins before due in Reading. Not an excessive delay yet.

e Excellent journeys with Qeastcoastuk on Monday. Great service

good food very pleasant. Thank you.



Text — Counts

Data pre-processing:
1. Identify the tweets that refer to “delay” using related words; [off-the-self
sentiment analysis / classification];
2. divide the day (24 hours) in fixed intervals (e.g. 15-minutes);
3. count the number of “delay tweets” per interval.

There are many ways to pre-process the data (especially step 1 above) — this is not the
focus of this talk.

Our starting point is the temporal count data obtained at the end of step 3 and we

treat these as our observed data (x).



Curating the Data

We split the 24 hours of a calendar day into 96 15-minutes intervals:

Tweet Day Time Interval Company “Delay”
selfish ... make me late ... Mon 03/05 | 08:30-08:45 Thames Link 1
. experiencing delays up to ... | Tue 08/12 16:30-16:45 Southern Rail 1
... great service . .. Fri 17/02 18:30-18:45 East Coast 0

Notation

Denote by x ; the number of “delay” tweets in the iy, interval on a given day d and
which refer to / tag company j, where i =1,...,96, d € {01/01,...,31/12} and
Jj=1....m.



Modelling



Start Simple: Aggregate over companies

o We aggregate over the different companies and consider all the tweets which refer
to a given day of the week, e.g. Monday.

e We end up with a discrete-value time series of length T = 52 x 96:
x = (x1,X2,...,Xs52)
where X = (Xk,17 500 7xk,96) and kK = ]., 500 ,52

e We denote by x,; the number of “delay” tweets in the i, 15-minute interval
(irrespective of which railway company is tagged) which was tweeted on the kyp,
Monday in the dataset.

10



A Bayesian Hierarchical Model

We assume that the number of “delay” tweets at a given time-interval tell us
something about the (unobserved) state of the railway.

We wish to build a hierarchical model to learn the patterns in the observed data . ..
... both when there is a major disruption in the railway and when there is not.

The model should reflect the nature of the data: a combination of the normal pattern
and occasional additional counts caused by disruptive events.

Our Focus

Predicting the state of the railway at a given interval having observed the number of
“delay” tweets.

11



It is Wednesday 08:30.

Between 08:15-08:30 there have been 60 tweets mentioning
“delay”.

Is 60 an unusually large number of tweets for that time on a

Wednesday or something to be expected?



Modelling the State of the Railway

Assumption:

The state of the railway during a fixed time interval is either “normal” or “disrupted”;
the latter corresponds to intervals where there is a major disruptive event and the
former where there is not.

We model this behaviour using a Markov chain in discrete time.

Let {Z;, t =0,1,...} be an irreducible homogeneous Markov chain on the state space
S ={0,1} with transition probability matrix M%; that is

mi=P(Z=j|Za=1i), for i=0,1,

where 0= “normal” and 1 = "disrupted”. "



Modelling the Volume of Tweets

Let the non-negative integer-valued random process {X;, t =0,1,...} represent the
number of tweets posted at time t which are decomposed as follows:

X, =1 "o it 2=0 t=1.2... T (1)
Yt+W7 |f Zt:]-r

We further assume that
o Y.|Z s Po(A(t)), i.e. conditional on {Z;, t =1,..., T}, Y1,..., Y7 are assumed
to be mutually independent.

e W ~ Po(c) and independent of {Y;, t =1,2,..., T}

13



Graphical Model
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MMPP / HMM

The model can be either viewed a discretised version of a Markov Modulated Poisson
Process (MMPP) or a Hidden Markov Model (HMM).

e the number of “delay” tweets we expect to see at time t (Y;) follows a Poisson
distribution with a time-dependent mean A(t) if the state of the railway is

“normal”;

o if there is a major disruptive event at time t then there is an additional number of
“delay” tweets (W) that follows a Poisson distribution with mean c.

15



How to Model \(t)?
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Figure 1: Frequency of “delay” tweets throughout the day
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Modelling the Intensity

Figure 1 suggests that the average number of “delay” tweets, A(t), can be modelled

with the following parametric function:

) = ¢ - exp {—T(t - M1)2} PP {—2%%@ - u2)2} ta (@)

The parameters 11 and p, represent the times during the morning and
afternoon/evening rush hours at which the number of tweets is maximum;

The rest parameters of the function \(t), ¢i, ¢, and c3 are scaling constants.

17



Bayesian Learning




Bayesian Inference

Set-up:

e observed data: x = (xq,...,x7);
e model parameters: @ = (1, 12, €1, G2, C3, C);
e observed-data likelihood: 7(xy,..., x7|0)

Observed-data likelihood, m(xy,. .., x7|@), not readily available because
z=(z,...,zr) is unobserved and hence will have to be integrated out:

m(x|6) = (x,2]6).

The sum becomes computationally infeasible for large T.
18



Bayesian Inference: Data Augmentation

We adopt a Bayesian framework and treat the unobserved states of the Markov chain
{Z:} additional parameters to be inferred alongside the model parameters 6.

(0, z|x) o« 7(x,z,0)r(0)
x 7(x|z,0)n(z|0)n(0)

o (g, p2) w(mgg, may) w(mig, miy) w(c) w(er) m(e2) m(cs)

T T
X H P(Zt — Zt|Zt—1 — Zt—17 m*) X H P(Xt — Xt|Zt — Zta C,IJ/)

t=1 t=1 19



Bayesian Inference: Augmented Likelihood

Having augmented the observed data x with the unobserved state of the railway (z),
the augmented likelihood

HP(Xt = Xt|Zt = Zi, C7l'l’)

t=1
is straightforward to compute.
Each term in the product is the probability mass function from a Poisson distribution.

If the state of the railway is “normal” that is, a Poisson(A(t)); if “disrupted” then it
would be a Poisson(\(t) + ¢).

Next step: Prior specification for 7(8).

20



Bayesian Inference: Prior on parameters governing M*

" s . P .
four parameters of the transition probability matrix M}, namely mg,, mg;, mi, and mg,,

* *
M* — Moy Moy

* *
My My,

We assign Dirichlet distributions to these probabilities preserving the constraints that
mSl + mSO = 1 and mfo + m{l = 1

(mgg, mgy) ~ Dir(ay, az)

* * H
(miq, miy) ~ Dir(as, as)
where aq, ..., a4 are further hyper-parameters.

21



Bayesian Inference: Prior on parameters governing A(t)

Based on the interpretation of the parameters 1 and pp, we assume that a-priori are
distributed as the ordered statistics of two independent Uniform random variables in
(0,24):

1
(p1, 2) = 502 110 < pin < 24} 1{0 < pip < 24} T < pia},

The first two terms come from the Uniform distribution and the last one comes from

the order statistics since we require p11 < fio.

We further assign that ¢ ~ Exp(3) and independent Uniform priors on ¢;, ¢ and c3:

c1, ¢ ~ U(0,150) and c; ~ U(0,50).
22



Sampling from the Posterior distribution 7(8, z|x)

We develop a bespoke MCMC algorithm to sample from 7(0, z|x):

. initialisation; repeat steps 2-7 until convergence:
. Sample from w(mf},, m§;|z) directly;

. Sample from w(mj,, mi;|z) directly;

T
7(c|x, c1, ¢, c3) using Metropolis-Hastings;

1
2
3
4. Sample from
5
6. Sample from 7 cl,cz,c3\x,z,u1,u2) using Metropolis-Hastings;
7

(
(
. Sample from 7(u1, ta|X, 2, €1, G2, c3) using Metropolis-Hastings;
(
(

. Sample from 7(z|x,0) using the Forward-Backward algorithm.

MCMC
A lot of work has gone into the development of the MCMC algorithm.

23



Focus on Prediction

Our main focus is to predict the state of the railway at a particular time-interval ty
when we have observed data up to and including time interval t;; that is, deriving the
posterior distribution 7(Z, = s|xy.x):

(x| Z = s) (2 = S| Xq-(k—
2= sho) = TR AT o n)7, - 97 (2= shrngen)

Following some manipulation of the formulae we obtain the following recursion which
enables us predict Z, when the new data x, comes if the model has been fitted up to

time Xk—1

P(Zk = 5|X1:k) o8 p(Xk’Zk = 5) Z 7T(Zk = 5|Zk71 = /) 7T(qu = /’X1:(k—1)) (3)

1e{1,2
{12} 24



Does this really work?



Synthetic Data
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Synthetic Data
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Synthetic Data
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Incident on the 17th February 2015 — Great Western Railway

counts

0 20 40 60 80

120

N

2o(1)
most likely path z*
o counts data

10 15 20
hour

Reports of person being hit by a train around 20:58.
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Model Extension




Capitalising on the Data’s Rich Structure

e We wish to capitalise on the rich
structure that the data has.

otk

e One approach is to consider data
(tweets/counts) from different
companies separately.

e We can then fit/train our model to
data from each company and make
predictions.

e By doing so, we ignore the

dependence between companies.
29



False Negative
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False Positive

31



Capturing the Dependence Structure

So far we have considered the “state of the railway” in a broad sense without making
any distinction between different companies.

However, there could be a major disruptive event that affects only one railway
company whilst the rest are operating as normal.

Alternatively, there could be a major disruptive that affects more than one railway
company.
We are now interested in answering the following questions:

e Can we predict the status of different railway companies simultaneously?

e Can we measure the extend to which one company'’s state affects the state of
another? 32



Bivariate MMPP / Coupled HMM

We want to model the state of the railway jointly for these two companies and consider
a bivariate Markov Chain in discrete-time:

S zo\ zW Zo . Z0
z® A4 S 4 <

The observed data are also considered jointly

L (xO) _(
= x@) = L@ 0

83



Model Assumptions

e The future states only on the current states

Zi1 UL Zyeoyy | Z.
e Conditional independence: 7 (Xi.t, Xo.t | Z1.ts Zot) = 7 (X1t | Z1t) X T (Xot | Z2t)
e The model on 7 (Xj ;| Z;;) for j = 1,2 is the same as in the univariate case:

Xt = Yie !f Zie =1L t=1,2,...,T and j=1,2.
’ Yie+ W, if Z,=2;

where Y/, t ~ Poisson(A(t)) and W ~ Poisson(c).

34
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Modelling the Bivariate Markov Chain

e Denote the discrete state space of Z(!) and Z(®) to be S; and S, respectively, i.e.
S1 = S = {normal, disrupted}

e Denote that the cardinality of S; and S, are d; and d, (d, d» € N).

e One can construct an auxiliary univariate Markov chain {Z¥}_, with state space
S* with cardinality d; x d>. Since Z;F and Z; share the same cardinality, one can
find a bijective mapping between them and have a single Markov Chain in the

extended state space:

S* = {{normal, disrupted} , {normal, normal} ,
{disruptive, normal} , {disrupted, disrupted} }

36



Modelling the Bivariate Markov Chain

The transition probability matrix M* is of dimension 4 x 4 and has 4 x 3 =12
unknown parameters to be estimated from the data.

In general, if we have m companies, then M* will be of dimension 27 x 2™ with
2™ x (2™ — 1) unknown parameters to be estimated.

For instance, if m = 4 then we have 240 parameters to be estimated.
If m = 8 we have 65,280 parameters.

In addition to the parameter growing rapidly, we can’t say anything about the
dependence between companies.

37



Bayesian Inference for the Bivariate MMPP / Coupled HMM

e Given the observed data x = (xg, xo) we can make inference (and prediction) in a

similar fashion to the univariate case.

e Can construct an MCMC algorithm to sample from the target density:
(0, Z*|x).

e For such an algorithm to be efficient, it should involve sampling efficiently from
the unobserved (bivariate) state:

7(Z7]0, x).

A Forward-Backward algorithm becomes infeasible as the number of

companies/chains increases.

e Gibbs sampler is also possible, i.e. alternate between 7(Z1[Z®) 6, x). and
m(Z@|zM, 0, x). 38



Modelling the Bivariate Markov Chain

Additional assumption:
1 2 1 2
z 122\ 7). 7).

Instead of parameterising {Z(), Z®)} with M*, we introduce parameters, 7:

nggd:p(z< =d|zW =a,7? = ) where i =1,2 and a,b,d € {0,1}.

Such a parameterisation imposes some constraints since 772'21 + 'r]gib)o = 1. That means

we can't recover all elements of M*; but:
e If interested in prediction, then we don't need the full M*; knowing n is sufficient;

e We are going to model 7 to understand how does one chain (company) affects the
other.

39



Modelling the Marginal Probabilities 7

If we consider data from two companies, then we have 8 independent 1 parameters.

Denote by
2
7];)221 P <Z() _1|Zt Zl,Zf )1—22> .

(1)

71201
logit (772)41) = Bo +5§)]1< t( )1 = 1> +5()]1< t( )1 = 1>
+ A1 (zﬁ’l —1land Z% = 1)

We model logit n as follows:

Parameters (31, B> and (33 provide information about how does the state of one
company affect the state of the other.

40



Putting Everything Together

e Introducing the i parametrisation not only allows us to investigate the dependence
between the different railway companies but also enable us efficient sampling of
the unobserved process Z = (Z(l), Z(2)) given observed data x; and x;.

e We have a developed an efficient algorithm to sample from 7(Z|x, 0) that scales

well with the number of companies.

e We have also utilised a Polya-Gamma representation to sample efficiently from

(8] x, Z).

41



Conclusions




Epilogue

e We have developed a probabilistic modelling framework for analysing multivariate
discrete time-series data and an efficient Markov Chain Monte Carlo algorithm to
allow fitting the model within a Bayesian framework.

e Key to our work is a reparameterisation which is sufficient for prediction (which is
our focus).

e There has also been a significant amount of work with regards to the theoretical
properties of our model.

e There are numerous ways to move this work forward, e.g.
e Classifying the tweets better;
e Estimate A\(t) non-parametrically;

e Different models for 7. 42
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