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Motivation



Knowledge Transfer Partnerships (KTPs)

• A KTP is a three-way project between a company, a university, and a recent

graduate, where the business is able to utilise academic expertise in order to

develop a new technology or improve products and processes.

• Great opportunity for all three parties involved.

• KTP with Delta Rail (now Resonate) back in 2016 [Ian Dryden, David Hodge].

• Delta Rail / Resonate is a technology company specialising in rail and connected

transport solutions. Offices in Derby (about 20 km from UoN campus).
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Company’s Brief

Resonate’s brief

Explore a “link” between disruption reported by customers and that measured by

the railway . . .. In other words, can we identify a major disruption based on what

people are saying on Twitter?

Available Data

Any tweet that mentioned/tagged a railway company from 01/01/2015 to

31/12/2015: 5



Exploratory Data Analysis



Raw Data: 2.2M Tweets
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Exploratory Data Analysis

Not all tweets refer to disruption (in a broad sense) and/or tag railway company:

• Hi Sophie. We are experiencing delays of up to an hour on this

route due to an accident on the A259. @SouthernRailUK

• @TLRailUK I’m pretty sure you didn’t. Selfish train company.

Only out to rip me off and make me late either to work or from

work.

• Why would it make it go any faster? Just passing Maidenhead 4

mins before due in Reading. Not an excessive delay yet.

• Excellent journeys with @eastcoastuk on Monday. Great service

good food very pleasant. Thank you.
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Text → Counts

Data pre-processing:

1. Identify the tweets that refer to “delay” using related words; [off-the-self

sentiment analysis / classification];

2. divide the day (24 hours) in fixed intervals (e.g. 15-minutes);

3. count the number of “delay tweets” per interval.

There are many ways to pre-process the data (especially step 1 above) – this is not the

focus of this talk.

Our starting point is the temporal count data obtained at the end of step 3 and we

treat these as our observed data (x).
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Curating the Data

We split the 24 hours of a calendar day into 96 15-minutes intervals:

Tweet Day Time Interval Company “Delay”

selfish . . . make me late . . . Mon 03/05 08:30-08:45 Thames Link 1

. . . experiencing delays up to . . . Tue 08/12 16:30-16:45 Southern Rail 1

. . . great service . . . Fri 17/02 18:30-18:45 East Coast 0
...

...
...

...
...

Notation

Denote by x jd ,i the number of “delay” tweets in the ith interval on a given day d and

which refer to / tag company j , where i = 1, . . . , 96, d ∈ {01/01, . . . , 31/12} and

j = 1, . . . ,m.
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Modelling



Start Simple: Aggregate over companies

• We aggregate over the different companies and consider all the tweets which refer

to a given day of the week, e.g. Monday.

• We end up with a discrete-value time series of length T = 52× 96:

x = (x1, x2, . . . , x52)

where xk = (xk,1, . . . , xk,96) and k = 1, . . . , 52.

• We denote by xk,i the number of “delay” tweets in the ith 15-minute interval

(irrespective of which railway company is tagged) which was tweeted on the kth
Monday in the dataset.
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A Bayesian Hierarchical Model

We assume that the number of “delay” tweets at a given time-interval tell us

something about the (unobserved) state of the railway.

We wish to build a hierarchical model to learn the patterns in the observed data . . .

. . . both when there is a major disruption in the railway and when there is not.

The model should reflect the nature of the data: a combination of the normal pattern

and occasional additional counts caused by disruptive events.

Our Focus

Predicting the state of the railway at a given interval having observed the number of

“delay” tweets.
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It is Wednesday 08:30.

Between 08:15-08:30 there have been 60 tweets mentioning

“delay”.

Is 60 an unusually large number of tweets for that time on a

Wednesday or something to be expected?
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Modelling the State of the Railway

Assumption:

The state of the railway during a fixed time interval is either “normal” or “disrupted”;

the latter corresponds to intervals where there is a major disruptive event and the

former where there is not.

We model this behaviour using a Markov chain in discrete time.

Let {Zt , t = 0, 1, . . .} be an irreducible homogeneous Markov chain on the state space

S = {0, 1} with transition probability matrix M⋆
Z ; that is

m⋆
ij = P(Zt = j |Zt−1 = i), for i = 0, 1,

where 0 = “normal” and 1 = “disrupted”.
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Modelling the Volume of Tweets

Let the non-negative integer-valued random process {Xt , t = 0, 1, . . .} represent the

number of tweets posted at time t which are decomposed as follows:

Xt =

{
Yt , if Zt = 0;

Yt +W , if Zt = 1;
t = 1, 2, . . . ,T . (1)

We further assume that

• Yt |Zt
iid∼ Po(λ(t)), i.e. conditional on {Zt , t = 1, . . . ,T}, Y1, . . . ,YT are assumed

to be mutually independent.

• W ∼ Po(c) and independent of {Yt , t = 1, 2, . . . ,T}.
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Graphical Model
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MMPP / HMM

The model can be either viewed a discretised version of a Markov Modulated Poisson

Process (MMPP) or a Hidden Markov Model (HMM).

• the number of “delay” tweets we expect to see at time t (Yt) follows a Poisson

distribution with a time-dependent mean λ(t) if the state of the railway is

“normal”;

• if there is a major disruptive event at time t then there is an additional number of

“delay” tweets (W ) that follows a Poisson distribution with mean c .
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How to Model λ(t)?
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Figure 1: Frequency of “delay” tweets throughout the day
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Modelling the Intensity

Figure 1 suggests that the average number of “delay” tweets, λ(t), can be modelled

with the following parametric function:

λ(t) = c1 · exp
{
− 1

2σ2
1

(t − µ1)
2

}
+ c2 · exp

{
− 1

2σ2
2

(t − µ2)
2

}
+ c3, (2)

The parameters µ1 and µ2 represent the times during the morning and

afternoon/evening rush hours at which the number of tweets is maximum;

The rest parameters of the function λ(t), c1, c2, and c3 are scaling constants.
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Bayesian Learning



Bayesian Inference

Set-up:

• observed data: x = (x1, . . . , xT );

• model parameters: θ = (µ1, µ2, c1, c2, c3, c);

• observed-data likelihood: π(x1, . . . , xT |θ)

Observed-data likelihood, π(x1, . . . , xT |θ), not readily available because

z = (z1, . . . , zT ) is unobserved and hence will have to be integrated out:

π(x |θ) =
∑

z

(x , z |θ) .

The sum becomes computationally infeasible for large T .
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Bayesian Inference: Data Augmentation

We adopt a Bayesian framework and treat the unobserved states of the Markov chain

{Zt} additional parameters to be inferred alongside the model parameters θ.

π(θ, z |x) ∝ π(x , z ,θ)π(θ)

∝ π(x |z ,θ) π(z |θ) π(θ)

∝ π(µ1, µ2) π(m
⋆
00,m

⋆
01) π(m

⋆
10,m

⋆
11)π(c) π(c1) π(c2) π(c3)

×
T∏
t=1

P(Zt = zt |Zt−1 = zt−1,m⋆)×
T∏
t=1

P(Xt = xt |Zt = zt , c ,µ).
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Bayesian Inference: Augmented Likelihood

Having augmented the observed data x with the unobserved state of the railway (z),
the augmented likelihood

T∏
t=1

P(Xt = xt |Zt = zt , c ,µ)

is straightforward to compute.

Each term in the product is the probability mass function from a Poisson distribution.

If the state of the railway is “normal” that is, a Poisson(λ(t)); if “disrupted” then it

would be a Poisson(λ(t) + c).

Next step: Prior specification for π(θ).
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Bayesian Inference: Prior on parameters governing M⋆

four parameters of the transition probability matrix M⋆
z , namely m⋆

00,m
⋆
01,m

⋆
10 and m⋆

00,

M⋆ =

[
m⋆

00 m⋆
01

m⋆
10 m⋆

11

]
.

We assign Dirichlet distributions to these probabilities preserving the constraints that

m⋆
01 +m⋆

00 = 1 and m⋆
10 +m⋆

11 = 1.

(m⋆
00,m

⋆
01) ∼ Dir(α1, α2)

(m⋆
10,m

⋆
11) ∼ Dir(α3, α4)

where α1, . . . , α4 are further hyper-parameters.
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Bayesian Inference: Prior on parameters governing λ(t)

Based on the interpretation of the parameters µ1 and µ2, we assume that a-priori are

distributed as the ordered statistics of two independent Uniform random variables in

(0,24):

π(µ1, µ2) =
1

288
1{0 ≤ µ1 ≤ 24}1{0 ≤ µ2 ≤ 24}1{µ1 < µ2},

The first two terms come from the Uniform distribution and the last one comes from

the order statistics since we require µ1 < µ2.

We further assign that c ∼ Exp(β) and independent Uniform priors on c1, c2 and c3:

c1, c2 ∼ U(0, 150) and c3 ∼ U(0, 50).
22



Sampling from the Posterior distribution π(θ, z |x)

We develop a bespoke MCMC algorithm to sample from π(θ, z |x):

1. initialisation; repeat steps 2-7 until convergence:

2. Sample from π(m⋆
00,m

⋆
01|z) directly;

3. Sample from π(m⋆
10,m

⋆
11|z) directly;

4. Sample from π(c |x , c1, c2, c3) using Metropolis-Hastings;

5. Sample from π(µ1, µ2|x , z , c1, c2, c3) using Metropolis-Hastings;

6. Sample from π(c1, c2, c3|x , z , µ1, µ2) using Metropolis-Hastings;

7. Sample from π(z |x ,θ) using the Forward-Backward algorithm.

MCMC

A lot of work has gone into the development of the MCMC algorithm.
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Focus on Prediction

Our main focus is to predict the state of the railway at a particular time-interval tk
when we have observed data up to and including time interval tk ; that is, deriving the

posterior distribution π(Zk = s|x1:k):

π(Zk = s|x1:k) =
π(xk |Zk = s) π(Zk = s|x1:(k−1))

π(xk |x1:(k−1))
∝ π(xk |Zk = s) π

(
Zk = s|x1:(k−1)

)
Following some manipulation of the formulae we obtain the following recursion which

enables us predict Zk when the new data xk comes if the model has been fitted up to

time xk−1

p(Zk = s|x1:k) ∝ p(xk |Zk = s)
∑

l∈{1,2}

π(Zk = s|zk−1 = l) π(Zk−1 = l |x1:(k−1)) (3)
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Does this really work?
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Synthetic Data
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Synthetic Data
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Synthetic Data
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Incident on the 17th February 2015 – Great Western Railway

Reports of person being hit by a train around 20:58. 28



Model Extension



Capitalising on the Data’s Rich Structure

• We wish to capitalise on the rich

structure that the data has.

• One approach is to consider data

(tweets/counts) from different

companies separately.

• We can then fit/train our model to

data from each company and make

predictions.

• By doing so, we ignore the

dependence between companies.
29
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Capturing the Dependence Structure

So far we have considered the “state of the railway” in a broad sense without making

any distinction between different companies.

However, there could be a major disruptive event that affects only one railway

company whilst the rest are operating as normal.

Alternatively, there could be a major disruptive that affects more than one railway

company.

We are now interested in answering the following questions:

• Can we predict the status of different railway companies simultaneously?

• Can we measure the extend to which one company’s state affects the state of

another? 32



Bivariate MMPP / Coupled HMM

We want to model the state of the railway jointly for these two companies and consider

a bivariate Markov Chain in discrete-time:

Z =

(
Z (1)

Z (2)

)
=

(
Z

(1)
1 ,Z

(1)
2 , . . . ,Z

(1)
T

Z
(2)
1 ,Z

(2)
2 , . . . ,Z

(2)
T

)

The observed data are also considered jointly

x =

(
x (1)

x (2)

)
=

(
x
(1)
1 , x

(1)
2 , . . . , x

(1)
T

x
(2)
1 , x

(2)
2 , . . . , x

(2)
T

)
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Model Assumptions

• The future states only on the current states

Zt+1 ⊥⊥ Z1:(t−1) |Zt .

• Conditional independence: π (X1,t ,X2,t |Z1,t ,Z2,t) = π (X1,t |Z1,t)× π (X2,t |Z2,t)

• The model on π (Xj ,i |Zj ,i) for j = 1, 2 is the same as in the univariate case:

Xj ,t =

{
Yj ,t , if Zj ,t = 1;

Yj ,t +W , if Zj ,t = 2;
t = 1, 2, . . . ,T and j = 1, 2.

where Y j , t ∼ Poisson(λ(t)) and W ∼ Poisson(c).
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Bivariate MMPP / Coupled HMM
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Modelling the Bivariate Markov Chain

• Denote the discrete state space of Z (1) and Z (2) to be S1 and S2 respectively, i.e.

S1 = S2 = {normal, disrupted}

• Denote that the cardinality of S1 and S2 are d1 and d2 (d1, d2 ∈ N).

• One can construct an auxiliary univariate Markov chain {Z ⋆
i }

T
t=1 with state space

S⋆ with cardinality d1 × d2. Since Z ⋆
t and Zt share the same cardinality, one can

find a bijective mapping between them and have a single Markov Chain in the

extended state space:

S⋆ = {{normal, disrupted} , {normal, normal} ,

{disruptive, normal} , {disrupted, disrupted}}
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Modelling the Bivariate Markov Chain

The transition probability matrix M⋆ is of dimension 4× 4 and has 4× 3 = 12

unknown parameters to be estimated from the data.

In general, if we have m companies, then M⋆ will be of dimension 2m × 2m with

2m × (2m − 1) unknown parameters to be estimated.

For instance, if m = 4 then we have 240 parameters to be estimated.

If m = 8 we have 65,280 parameters.

In addition to the parameter growing rapidly, we can’t say anything about the

dependence between companies.
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Bayesian Inference for the Bivariate MMPP / Coupled HMM

• Given the observed data x = (x1, x2) we can make inference (and prediction) in a

similar fashion to the univariate case.

• Can construct an MCMC algorithm to sample from the target density:

π(θ,Z ⋆|x).

• For such an algorithm to be efficient, it should involve sampling efficiently from

the unobserved (bivariate) state:

π(Z ⋆|θ, x).

A Forward-Backward algorithm becomes infeasible as the number of

companies/chains increases.

• Gibbs sampler is also possible, i.e. alternate between π(Z (1)|Z (2),θ, x). and
π(Z (2)|Z (1),θ, x). 38



Modelling the Bivariate Markov Chain

Additional assumption:

Z
(1)
t ⊥⊥ Z

(2)
t |Z (1)

1:t−1,Z
(2)
1:t−1.

Instead of parameterising
{
Z (1),Z (2)

}
with M⋆, we introduce parameters, η:

η
(i)
abd = P

(
Z

(i)
t = d |Z (1)

t−1 = a,Z
(2)
t−1 = b

)
, where i = 1, 2 and a, b, d ∈ {0, 1}.

Such a parameterisation imposes some constraints since η
(i)
ab1 + η

(i)
ab0 = 1. That means

we can’t recover all elements of M⋆; but:

• If interested in prediction, then we don’t need the full M⋆; knowing η is sufficient;

• We are going to model η to understand how does one chain (company) affects the

other.
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Modelling the Marginal Probabilities η

If we consider data from two companies, then we have 8 independent η parameters.

Denote by

η
(i)
z1z21

= P
(
Z

(i)
t = 1 |Z (1)

t−1 = z1,Z
(2)
t−1 = z2

)
.

We model logit η
(i)
z1z21

as follows:

logit
(
η
(i)
z1 z21

)
= β

(i)
0 + β

(i)
1 1

(
Z

(1)
t−1 = 1

)
+ β

(i)
2 1

(
Z

(2)
t−1 = 1

)
+ β

(i)
3 1

(
Z

(1)
t−1 = 1 and Z

(2)
t−1 = 1

)
Parameters β1, β2 and β3 provide information about how does the state of one

company affect the state of the other.
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Putting Everything Together

• Introducing the η parametrisation not only allows us to investigate the dependence

between the different railway companies but also enable us efficient sampling of

the unobserved process Z =
(
Z (1),Z (2)

)
given observed data x1 and x2.

• We have a developed an efficient algorithm to sample from π(Z |x ,θ) that scales
well with the number of companies.

• We have also utilised a Polya-Gamma representation to sample efficiently from

π(β | x ,Z ).

41



Conclusions



Epilogue

• We have developed a probabilistic modelling framework for analysing multivariate

discrete time-series data and an efficient Markov Chain Monte Carlo algorithm to

allow fitting the model within a Bayesian framework.

• Key to our work is a reparameterisation which is sufficient for prediction (which is

our focus).

• There has also been a significant amount of work with regards to the theoretical

properties of our model.

• There are numerous ways to move this work forward, e.g.

• Classifying the tweets better;

• Estimate λ(t) non-parametrically;

• Different models for η. 42
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