Decoding Microbiome dual-Mediation: A Tool for Advanced Zero-Inflated Data Analysis

Xi Qiao, Liangliang Zhang

Presented by Liangliang Zhang Department of Population and Quantitative Health Sciences

Our Group

Outline

Microbiology and Human Microbiome Research

Microbiome Data and Host-Microbiome Association

Methods

Results

Microbiology and Human Microbiome Research

The world of bacteria holds far more genetic diversity

All the major and many of the minor living branches of life are shown on this diagram, but only a few of those that have gone extinct are shown. Example: Dinosaurs - extinct

Visual comparision of Microorganism Sizes

Sizes of Microscopic Entities

Э

• • • • • • • • • • • •

Microorganisms reside in every part of human body

Figure: Various bacteria live on earth

Figure: Distinct bacteria live in different body sites

ヘロト 人間 トメヨトメヨ

Microbiota dysbiosis linked with health and diseases

Microbiome constitutes a human organ

- Microorganisms interact with body host's environment: diet, antibiotics, chemotherapy, etc.
- I have extensively worked on linking microbiome at different body sites to patient outcomes.

Microbiome Data and Host-Microbiome Association

Steps of quantifying bacteria composition

Typical formats of microbiome data

OTU/ASV table

	Sam1	Sam2	Sam3
Otu1	660	605	560
Otu2	362	440	180
Otu3	153	60	170
Otu4	86	20	120

- Operational taxonomic unit (OTU) are used to categorize bacteria based on sequence similarity.
 - An amplicon sequence variant (ASV) is referred to as exact sequence variants, zero-radius OTUs or sub-OTUs.

Decoding Microbiome dual-Mediation: A Tool for Advanced Zero-Inflated Data Analysis

Microbiome Data and Host-Microbiome Association

Typical formats of microbiome data

Proportion table

Typical formats of microbiome data

Host-Microbiome Association Study

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Tumor Microbiome and Pancreatic Cancer

Volume 178, Issue 4, 8 August 2019, Pages 795-806.e12

(日)、(四)、(三)、(

Article

Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes

Erick Riquelme ^{1, 2, 18}, Yu Zhang ^{1, 18}, Liangliang Zhang ^{3, 4}, Maria Montiel ¹, Michelle Zoltan ¹, Wenli Dong ³, Pompeyo Quesada ¹, Ismet Sahin ⁵, Vidhi Chandra ¹, Anthony San Lucas ⁶, Paul Scheet ⁶, Hanwen Xu ¹, Samir M. Hanash ^{1, 7}, Lei Feng ³, Jared K. Burks ⁸, Kim-Anh Do ³, Christine B. Peterson ³, Deborah Nejman ⁹ ... Florencia McAllister ^{1, 16, 17, 19} A 🛤

12/41

Binary outcome in the Pancreatic cancer project

Identify differential features between two groups

Linear Model and Variable Selection

Methods

Mediation model

General Structure of Mediation Model

Causal Mediation Analysis

- In clinical trials and epidemiological studies, causal mediation analysis is to explain the underlying mechanism by which the effect of an exposure on the outcome is mediated through a casual intermediate variable or mediator.
- General Approaches
 - Structural equation modeling (SEM) [Baron and Kenny, 1986, MacKinnon and Dwyer, 1993, MacKinnon et al., 2002].
 - Counterfactual framework with potential outcomes [Albert, 2008, Robins and Greenland, 1992].

Zero-Inflated Microbiome Mediators

How to characterize the microbiome mediators?

- Count Data
- Zero-inflated Data
- High-dimensional Data

Figure: Histograms of genus level microbiome features from real human gut microbiome data [Wu et al., 2011]

- Methods

Bayesian and related methods

Zero Inflated Mediation Analysis

- Latent variable ω_{ij} : indicate the presence of structural zeros. For instance, patients undergoing antibiotic treatment are more likely to exhibit a zero count for a specific microbiome feature.
- In the context of the jth microbiome feature within the ith subject,

$$M_{ij} = egin{cases} M_{ij}^* & ext{, if } \omega_{ij} = 0 \ 0 & ext{, if } \omega_{ij} = 1 \ \omega_{ij} \sim ext{Bernoulli}(\pi_{ij}). \end{cases}$$

Under counterfactuals,

$$\begin{split} \mathsf{NDE} &= \mathsf{E}(Y_{a^*,M_{a,\omega_a}}|C_i) - \mathsf{E}(Y_{a,M_{a,\omega_a}}|C_i)\\ \mathsf{NIE} &= \mathsf{E}(Y_{a^*,M_{a^*,\omega_{a^*}}}|C_i) - \mathsf{E}(Y_{a^*,M_{a^*,\omega_a}}|C_i)\\ &+ \mathsf{E}(Y_{a^*,M_{a^*,\omega_a}}|C_i) - \mathsf{E}(Y_{a^*,M_{a,\omega_a}}|C_i)\\ &= \mathsf{NIE}_{prevelance} + \mathsf{NIE}_{abundance}\\ \mathsf{TE} &= \mathsf{E}(Y_{a^*,M_{a^*,\omega_{a^*}}}|C_i) - \mathsf{E}(Y_{a,M_{a,\omega_a}}|C_i)\\ &= \mathsf{NIE} + \mathsf{NDE} \end{split}$$

ZIMMA Framework

Mediator Model

Provalance Madel:

$$egin{aligned} \mathcal{M}_{ij} &= egin{cases} \mathcal{M}_{ij}^* & ext{, if } \omega_{ij} = 0 \ 0 & ext{, if } \omega_{ij} = 1 \ \omega_{ij} &\sim ext{Bernoulli}(\pi_{ij}), \end{aligned}$$

$$\log i(\pi_{ij}) = \log(\frac{\pi_{ij}}{1 - \pi_{ij}}) = \gamma_{0j} + \gamma_{Tj}T_i + \gamma_{Cj}^TC_i.$$
(1)
Abundance Model:

$$M_{ij}^* \sim \operatorname{NB}(\mu_{ij}, \tau_j) \\ \mu_{ij} = S_iA_{ij}$$

$$\log(A_{ij}) = \beta_{0j} + \beta_{Tj}T_i + \beta_{Cj}^TC_i$$
(2)
Outcome Model

$$E(Y_i) = \alpha_0 + \alpha_T T_i + \alpha_M^T M_i + \alpha_C^T C_i$$

Scaling and size factors

Scaling and Transformation of Compositional Data with Excessive Zeros (e.g. Microbiome)

For more details, please refer to our paper https://www.sciencedirect.com/science/article/pii/S200103702400374X

Expected abundance

Specifically, $M_{ij}^* \sim NB(\mu_{ij}, \tau_j)$ has the following probability mass function (PMF) [Pillow and Scott, 2012]:

$$p(M_{ij}^* = m^* | \mu_{ij}, \tau_j) = \frac{\Gamma(m^* + \tau_j)}{\Gamma(\tau_j)m^*!} \left(\frac{\tau_j}{\mu_{ij} + \tau_j}\right)^{\tau_j} \left(1 - \frac{\tau_j}{\mu_{ij} + \tau_j}\right)^{m^*}$$
(4)

where m^* is a non-negative integer, $\Gamma(\cdot)$ is the Gamma function, and the parameters μ_{ij} and τ_j control the mean and dispersion, respectively.

The expected value of the observed taxon counts, M_{ij} , given the treatment group T_i and pre-treatment confounding variables C_i , is:

$$E(M_{ij} \mid T_i, \boldsymbol{C}_i) = (1 - \pi_{ij})E(M_{ij} \mid \omega_{ij} = 1, T_i, \boldsymbol{C}_i) + \pi_{ij}E(M_{ij} \mid \omega_{ij} = 0, T_i, \boldsymbol{C}_i)$$

$$= (1 - \pi_{ij})E(M_{ij}^* \mid T_i, \boldsymbol{C}_i)$$

$$= (1 - \frac{1}{1 + \exp(\gamma_{0j} + \gamma_{Tj}T_i + \gamma_{Cj}^T\boldsymbol{C}_i)})S_i \exp(\beta_{0j} + \beta_{Tj}T_i + \beta_{Cj}^T\boldsymbol{C}_i)$$
(5)

Hypothesis on Indirect Effect

Under sequential ignorability assumption (no unmeasured confounding), for each of the mediator,

Average
$$\operatorname{NIE}_{prevelance} = \frac{1}{n} \sum_{i=1}^{n} \alpha_{M}^{T} (a^{*} - a) S_{i} e^{\beta_{0} + \beta_{T} a^{*} + \beta_{C}^{T} C_{i}} [\frac{e^{\gamma_{0} + \gamma_{T} a^{*} + \gamma_{C}^{T} C_{i}}}{e^{\gamma_{0} + \gamma_{T} a^{*} + \gamma_{C}^{T} C_{i}} + 1} - \frac{e^{\gamma_{0} + \gamma_{T} a + \gamma_{C}^{T} C_{i}}}{e^{\gamma_{0} + \gamma_{T} a + \gamma_{C}^{T} C_{i}}}]$$

Average $\operatorname{NIE}_{abundance} = \frac{1}{n} \sum_{i=1}^{n} \alpha_{M}^{T} (a^{*} - a) \frac{e^{\gamma_{0} + \gamma_{T} a + \gamma_{C}^{T} C_{i}}}{e^{\gamma_{0} + \gamma_{T} a + \gamma_{C}^{T} C_{i}} + 1} S_{i} [e^{\beta_{0} + \beta_{T} a^{*} + \beta_{C}^{T} C_{i}} - e^{\beta_{0} + \beta_{T} a + \beta_{C}^{T} C_{i}}]$
Average $\operatorname{NIE}_{prevelance} = 0 \Leftrightarrow \alpha_{M} = 0 \text{ or } \gamma_{T} = 0,$

Average
$$\mathsf{NIE}_{abundance} = \mathbf{0} \Leftrightarrow \alpha_M = \mathbf{0} \text{ or } \beta_T = \mathbf{0}.$$

There is no indirect effect through *j*the microbiome mediator only if

Average
$$\text{NIE}_{prevelance} = 0$$
 and Average $\text{NIE}_{abundance} = 0$

(日) (四) (日) (日) (日)

Mediator Selection through Spike and Slab prior

$$\begin{array}{c} \alpha_{M}, \beta_{T}, \gamma_{T} \sim \mathsf{N}(0, \delta\nu^{2}) \\ \delta = (1 - \kappa_{\alpha,\beta,\gamma})\delta_{0} + \kappa_{\alpha,\beta,\gamma}\delta_{1} \\ \kappa_{\alpha,\beta,\gamma} \sim \mathsf{Bernoulli}(\theta_{\alpha,\beta,\gamma}) \\ \nu^{2} \sim \mathsf{IG}(a, b) \\ \theta_{\alpha,\beta,\gamma} \sim \mathsf{Beta}(\frac{1}{2}, \frac{1}{2}) \end{array} \xrightarrow{\mathsf{Spike}}$$

0 _

Unidentifiable source of zeros

Unidentifiability

Current prior: $\gamma_0 \sim N(0,1)$, $\tau \sim gamma(0.01, 0.01)$

True (1/ τ)	True (_{Yo})	0%	True(τ)	Est.(τ)	Est.(y _o)
0.5	0 (p=0.5)	67%	2	0.28 (0.08, 0.54)	-0.55 (-1.79, 0.52)
0.5	-1 (p=0.27)	46%	2	0.58(0.24, 0.98)	-0.87 (-1.87,-0.05)
0.5	-2 (p=0.12)	21%	2	2.02 (1.23, 2.93)	-1.63 (-2.37,-0.93)
0.5	-3 (p=0.04)	14%	2	2.18 (1.31, 3.06)	-1.95 (-2.70,-1.30)
1	-3 (p=0.04)	20%	1	0.84 (0.54, 1,18)	-2.08 (-3.06, -1.17)
2	-3 (p=0.04)	32%	0.5	0.47 (0.29, 0.68)	-1.86 (-2.88, -0.87)
5	-3 (p=0.04)	47%	0.2	0.22 (0.13, 0.33)	-1.53 (-2.71,-0.43)

Results: Different combination of over _dispersion and prevalence model intercept would result in similar zero%, but the non-zero counts would have different over dispersion (histograms on the right).

Empirical prior

- 1. $\tau_j \stackrel{\text{Ind}}{\sim} \text{Gamma}(m_{1j}, m_{2j})$
- 2. We fit an NB regression model using only the non-zero data and applying maximum likelihood estimation (MLE) to obtain an estimate of the dispersion, τ_i^+ [Venables and Ripley, 2002].
- 3. The mean of the gamma prior, m_{1j}/m_{2j} , is then set to τ_j^+ , with a small variance, ν_{τ}^+ (e.g., 0.1), specified as the prior variance $\frac{m_{1j}}{m_{2j}^2}$ to account for uncertainty, implying $m_{1j} = \frac{\tau_j^+}{\nu_{\tau}^+}$, $m_{2j} = \frac{\tau_j}{\nu_{\tau}^+}$.

Algorithm

Algorithm 1 ZIMMA Posterior Sampling Algorithm for each iteration from 1 to R do

Step 1: Update all parameter associated with *j*-th mediator, j = 1, ..., P.

for j from 1 to P do

draw latent structural zero indicator ω_{ij} :

$$p(\omega_{ij} = 1|M_{ij}, \text{rest}) = \begin{cases} f(\omega_{ij}|M_{ij} = 0, \text{rest}), & \text{if } M_{ij} = 0\\ 0, & \text{if } M_{ij} \neq 0 \end{cases}$$

draw Polya Gamma variable $\phi_{ij} | \omega_{ij}$, rest ~ PG $(1, \gamma_{0j} + \gamma_{Tj}T_i + \gamma_{Cj}C_i)$.

draw $(\gamma_{0j}, \gamma_{Tj}, \boldsymbol{\gamma_{Cj}})^T | \kappa_{\gamma_j}, \text{rest} \sim \text{MVN}(\boldsymbol{\mu}_{\boldsymbol{\gamma}}, \boldsymbol{\Sigma}_{\boldsymbol{\gamma}}).$

draw $\beta_{0j}, \beta_{Tj}, \beta_{Cj}, \tau_j$ using random walk Metropolis-Hastings sampling al-

gorithm with a normal proposal distribution.

$$\begin{split} & \operatorname{draw} \, \alpha_{Mj} | \kappa_{\alpha_j}, \operatorname{rest} \sim \mathcal{N}(\mu_{\alpha_j}, \sigma_{\alpha_j}^2). \\ & \operatorname{draw} \, \kappa_{\alpha_j}, \kappa_{\beta_j}, \kappa_{\gamma_j} | \alpha_{Mj}, \beta_{Tj}, \gamma_{Tj}, \operatorname{rest} \sim \operatorname{Bernoulli} \left(\frac{a_{\alpha_j,\beta_j,\gamma_j}}{a_{\alpha_j,\gamma_j}+k_{\alpha_j,\beta_j,\gamma_j}} \right). \\ & \operatorname{draw} \, \nu_{\alpha_j}^2, \nu_{\beta_j}^2, \nu_{\gamma_j}^2 | \kappa_{\alpha_j,\beta_j,\gamma_j}, \operatorname{rest} \sim \operatorname{IG}(l_1 + \frac{1}{2}, l_2 + \frac{(\alpha_{Mj},\beta_{Tj}, \gamma_T)^2}{2k_{\alpha_j,\beta_j,\gamma_j}}). \\ & \operatorname{draw} \, \theta_{\alpha_j}, \theta_{\beta_j}, \theta_{\gamma_j} | \kappa_{\alpha_j,\beta_j,\gamma_j}, \operatorname{rest} \sim \operatorname{Beta}(a + \kappa_{\alpha_j,\beta_j,\gamma_j}, b + 1 - \kappa_{\alpha_j,\beta_j,\gamma_j}). \end{split}$$

end for

Step 2: Draw the rest coefficients in Equation (4): $\alpha_{0_j}|_{\cdot} \sim N(\mu_{\alpha_0}, \sigma^2_{\alpha_0})$, $\alpha_T \sim N(\mu_{\alpha_T}, \sigma^2_{\alpha_T})$, $\alpha_{Ce} \sim MVN(\mu_{\alpha_C, e}, \sigma^2_{\alpha_{c-1}})$

Step 3: Draw the error term σ_Y^2 Equation (4): $\sigma_Y^2 | \alpha_0, \alpha_T, \alpha_M, \alpha_C \text{rest} \sim \text{IG}(\eta_{\sigma_Y^2}, \xi_{\sigma_Y^2}).$

Simulation and applications

Simulation Results

- $N = 100; \tau = 0.5;$ Effect size = 1
- Compared Methods: CMM [Sohn and Li, 2019]; microHIMA [Zhang et al., 2021]; LDM [Yue and Hu, 2022]

Simulation Results

- \blacktriangleright *N* = 100; τ = real data median; Effect size = 1
- Compared Methods: CMM [Sohn and Li, 2019]; microHIMA [Zhang et al., 2021]; LDM [Yue and Hu, 2022]

Application1: COMBO

- N = 98
- Exposure/treatment: fiber intake
- Outcome: BMI
- P = 99 (<u>Genus</u> level, Prevalence > 10)

Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y. Y., Keilbaugh, S. A., Bewtra, M., Knights, D., Walters, W. A., Knight, R., Sinha, R., Gilroy, E., Gupta, K., Baldassano, R., Nessel, L., Li, H., Bushman, F. D., & Lewis, J. D. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science (New York, N.Y.), 334(6052), 105–108. https://doi.org/10.1126/science.1208344

Indirect effect through prevalence and abundance (NIE_AP)

Feature Name	Abundance Estimate (PIP)	Prevalence Estimate (PIP)	Outcome Estimate (PIP)
Lachnispriraceae_UCG-010	-1.61 (0.90)	-1.50 (0.82)	0.96 (0.84)

CASEWES

Indirect effect through abundance or prevalence (NIE_A, NIE_P)

Feature Name	Abundance Estimate (PIP)	Prevalence Estimate (PIP)	Outcome Estimate (PIP)
Saccharibacteria	-1.02 (0.77)		0.50 (0.54)
Megasphaera	-2.68 (0.95)		0.64 (0.62)
Actinomyces	-3.60 (0.91)		0.44 (0.53)
Rhodospirillaceae_uncl ass		-0.64 (0.54)	-0.49 (0.61)

Active Genus Features	Phylum	NIE_Category	NIE Direction
Romboutsia	Firmicutes	$NIE_{abundance}$	$-+ \rightarrow -$
Ruminococcaceae_UCG-002	Firmicutes	$NIE_{abudance}$	$ \rightarrow +$
Saccharibacteria_ge	Saccharibacteria	$NIE_{abundance}$	$-+ \rightarrow -$
Coprococcus_3	Firmicutes	NIE _{abundance}	$-+ \rightarrow -$

Real Data Application on Cardiovascular Study

Application2: Cardiometabolic Disease

- N = 220
- Male, No diabetes.
- Exposure/treatment: HC (Heathy Control) vs.MMC (individuals with features of the metabolic syndrome and, thus, at increased risk of ischemic heart disease (IHD)).
 - HC (Status = 0) = 104
 - MMC (Status = 1) = 116
- Outcome: BMI
- P = 106 (Genus level, Prevalence > 10%)

Fromentin, S., Forslund, S.K., Chechi, K. et al. Microbiome and metabolome features of the cardiometabolic disease spectrum. Nat Med 28, 303–314 (2022). https://doi.org/10.1038/s41591-022-01688-4

Real Data Application on Cardiovascular Study

Indirect effect through prevalence and abundance (NIE_AP)

Real Data Application on Cardiovascular Study

Indirect effect through abundance or prevalence (NIE_A, NIE_P)

Feature Name	Abundance Estimate (PIP)	Prevalence Estimate (PIP)	Outcome Estimate (PIP)
Acidaminococcus	1.27 (0.83)		0.85 (0.97)
Parasutterella		-1.11 (0.62)	0.41 (0.68)

CASE WESTER

Conclusions and Future Work

Conclusions -

- Addressing Zero-Inflation: ZIMMA's ability to detect structural zeros avoids the bias introduced by pseudo counts, a common strategy in dealing with zero-inflated count data.
- Precise Interpretation: By decomposing the indirect effect into abundance and prevalence pathways, ZIMMA provides a more precise interpretation of active microbiome mediators.
- ► **High Power:** ZIMMA demonstrates superior statistical power compared to existing methods. Future Works-
 - More Applications To demonstrate the usage of ZIMMA.
 - Sensitivity Analysis To what extent does violating assumptions affect the magnitude of bias?
 - Microbiome Correlation

Thank You

CASE WESTERN RESERVE

- Results

Albert, J. M. (2008).

Mediation analysis via potential outcomes models. *Statistics in medicine*, 27(8):1282–1304.

Baron, R. and Kenny, D. (1986).

The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations.

Journal of Personality and Social Psychology, 51:1173–1182.

MacKinnon, D. P. and Dwyer, J. H. (1993). Estimating mediated effects in prevention studies. *Evaluation review*, 17(2):144–158.

MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., and Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. *Psychological methods*, 7(1):83.

Pillow, J. and Scott, J. (2012).

Fully bayesian inference for neural models with negative-binomial spiking.

Decoding Microbiome dual-Mediation: A Tool for Advanced Zero-Inflated Data Analysis

In Pereira, F., Burges, C., Bottou, L., and Weinberger, K., editors, *Advances in Neural Information Processing Systems*, volume 25. Curran Associates, Inc.

Robins, J. M. and Greenland, S. (1992).

Identifiability and exchangeability for direct and indirect effects. *Epidemiology*, pages 143–155.

Sohn, M. B. and Li, H. (2019).

Compositional mediation analysis for microbiome studies. *The Annals of Applied Statistics*, 13(1):661 – 681.

Venables, W. N. and Ripley, B. D. (2002). Modern Applied Statistics with S. Springer, New York, fourth edition. ISBN 0-387-95457-0.

Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.-Y., Keilbaugh, S. A., Bewtra, M., Knights, D., Walters, W. A., Knight, R., Sinha, R., Gilroy, E., Gupta, K., Baldassano, R., Nessel, L., Li, H., Bushman, F. D., and Lewis, J. D. (2011).
Linking long-term dietary patterns with gut microbial enterotypes.
Science, 334(6052):105–108.

Yue, Y. and Hu, Y.-J. (2022).

A new approach to testing mediation of the microbiome at both the community and individual taxon levels.

Bioinformatics, 38(12):3173-3180.

Zhang, H., Chen, J., Feng, Y., Wang, C., Li, H., and Liu, L. (2021). Mediation effect selection in high-dimensional and compositional microbiome data. *Statistics in Medicine*, 40(4):885–896.

