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The world of bacteria holds far more genetic diversity

https://www.evogeneao.com/en/learn/tree-of-life

https://www.evogeneao.com/en/learn/tree-of-life
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Visual comparision of Microorganism Sizes
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Microorganisms reside in every part of human body

Figure: Various bacteria live on earth Figure: Distinct bacteria live in
different body sites


HeartfeltFarflungKittiwake-mobile.mp4
Media File (video/mp4)
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Microbiota dysbiosis linked with health and diseases

Microbiome constitutes a human organ
I Microorganisms interact

with body host’s
environment: diet,
antibiotics, chemotherapy,
etc.

I I have extensively worked on
linking microbiome at
different body sites to
patient outcomes.

Figure from Masenga SK, et al. (2022)
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Microbiome Data and Host-Microbiome Association
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Steps of quantifying bacteria composition
Data Merging
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Typical formats of microbiome data

I OTU/ASV table

I Proportion table

I I Operational taxonomic unit
(OTU) are used to categorize
bacteria based on sequence
similarity.

I An amplicon sequence variant
(ASV) is referred to as exact
sequence variants, zero-radius
OTUs or sub-OTUs.

I Phylogenetic tree
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Host-Microbiome Association Study
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Tumor Microbiome and Pancreatic Cancer
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Binary outcome in the Pancreatic cancer project
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Identify differential features between two groups
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Linear Model and Variable Selection
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Mediation model
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General Structure of Mediation Model
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Causal Mediation Analysis

I In clinical trials and epidemiological studies, causal mediation analysis is to explain the underlying
mechanism by which the effect of an exposure on the outcome is mediated through a casual
intermediate variable or mediator.

I General Approaches
I Structural equation modeling (SEM)

[Baron and Kenny, 1986, MacKinnon and Dwyer, 1993, MacKinnon et al., 2002].
I Counterfactual framework with potential outcomes [Albert, 2008, Robins and Greenland, 1992].
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Zero-Inflated Microbiome Mediators

How to characterize the microbiome mediators?
I Count Data
I Zero-inflated Data
I High-dimensional Data

Figure: Histograms of genus level microbiome features from real human gut microbiome data [Wu et al., 2011].
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Bayesian and related methods
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Zero Inflated Mediation Analysis

I Latent variable ωij : indicate the presence of structural zeros. For instance, patients undergoing
antibiotic treatment are more likely to exhibit a zero count for a specific microbiome feature.

I In the context of the jth microbiome feature within the ith subject,

Mij =
{

M∗
ij , if ωij = 0

0 , if ωij = 1

ωij ∼ Bernoulli(πij ).

Under counterfactuals,

NDE = E(Ya∗,Ma,ωa |Ci )− E(Ya,Ma,ωa |Ci )
NIE = E(Ya∗,Ma∗,ωa∗ |Ci )− E(Ya∗,Ma∗,ωa

|Ci )

+ E(Ya∗,Ma∗,ωa
|Ci )− E(Ya∗,Ma,ωa |Ci )

= NIEprevelance + NIEabundance

TE = E(Ya∗,Ma∗,ωa∗ |Ci )− E(Ya,Ma,ωa |Ci )

= NIE + NDE
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ZIMMA Framework

I Mediator Model

Mij =
{

M∗
ij , if ωij = 0

0 , if ωij = 1

ωij ∼ Bernoulli(πij ),

I Prevalence Model:
logit(πij ) = log(

πij

1 − πij
) = γ0j + γTj Ti + γT

Cj Ci . (1)

I Abundance Model:
M∗

ij ∼ NB(µij , τj )
µij = Si Aij

.
log(Aij ) = β0j + βTj Ti + βT

Cj Ci (2)
I Outcome Model

E(Yi ) = α0 + αT Ti + αT
MMi + αT

C Ci (3)
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Scaling and size factors

Scaling and Transformation of Compositional Data with Excessive Zeros (e.g. Microbiome)

Read Count Relative Abundance

Scaling
Proportion 
Conversion

Contrast 
Transformation

...

ApplicationsLog Conversion

Arcsine Conversion

CLR

CAC

...

Contrast 
Transformation

CCT Framework

TSS UQ

CSS

TMM

...

Distance-
based 

Method

...

Differential 
Abundance 

Analysis

Variable Selection

Network Analysis

(Centered)

(Centered)

Step Ⅰ.

Step Ⅱ.

Step Ⅱ.

For more details, please refer to our paper
https://www.sciencedirect.com/science/article/pii/S200103702400374X

https://www.sciencedirect.com/science/article/pii/S200103702400374X
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Expected abundance

Specifically, M∗
ij ∼ NB(µij , τj ) has the following probability mass function (PMF)

[Pillow and Scott, 2012]:

p(M∗
ij = m∗|µij , τj ) = Γ(m∗ + τj )

Γ(τj )m∗!

(
τj

µij + τj

)τj (
1− τj

µij + τj

)m∗

(4)

where m∗ is a non-negative integer, Γ(·) is the Gamma function, and the parameters µij and τj control
the mean and dispersion, respectively.
The expected value of the observed taxon counts, Mij , given the treatment group Ti and pre-treatment
confounding variables Ci , is:

E(Mij | Ti ,Ci ) = (1− πij )E(Mij | ωij = 1,Ti ,Ci ) + πijE(Mij | ωij = 0,Ti ,Ci )
= (1− πij )E(M∗

ij | Ti ,Ci )

= (1− 1
1 + exp(γ0j + γTjTi + γT

Cj Ci )
)Si exp(β0j + βTjTi + βT

Cj Ci ) (5)
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Hypothesis on Indirect Effect

Under sequential ignorability assumption (no unmeasured confounding), for each of the mediator,

Average NIEprevelance = 1
n

n∑
i=1

αT
M(a∗ − a)Si eβ0+βT a∗+βT

C Ci [ eγ0+γT a∗+γT
C Ci

eγ0+γT a∗+γT
C Ci + 1

− eγ0+γT a+γT
C Ci

eγ0+γT a+γT
C Ci + 1

]

Average NIEabundance = 1
n

n∑
i=1

αT
M(a∗ − a) eγ0+γT a+γT

C Ci

eγ0+γT a+γT
C Ci + 1

Si [eβ0+βT a∗+βT
C Ci − eβ0+βT a+βT

C Ci ]

Average NIEprevelance = 0⇔ αM = 0 or γT = 0,

Average NIEabundance = 0⇔ αM = 0 or βT = 0.

There is no indirect effect through jthe microbiome mediator only if

Average NIEprevelance = 0 and Average NIEabundance = 0
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Mediator Selection through Spike and Slab prior

αM , βT , γT ∼ N(0, δν2)
δ = (1− κα,β,γ)δ0 + κα,β,γδ1

κα,β,γ ∼ Bernoulli(θα,β,γ)
ν2 ∼ IG(a, b)

θα,β,γ ∼ Beta(12 ,
1
2)
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Unidentifiable source of zeros
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Empirical prior

1. τj
Ind∼ Gamma(m1j ,m2j )

2. We fit an NB regression model using only the non-zero data and applying maximum likelihood
estimation (MLE) to obtain an estimate of the dispersion, τ+

j [Venables and Ripley, 2002].
3. The mean of the gamma prior, m1j/m2j , is then set to τ+

j , with a small variance, ν+
τ (e.g., 0.1) ,

specified as the prior variance m1j
m2
2j

to account for uncertainty, implying m1j =
τ+2

j
ν+
τ
,m2j = τj

ν+
τ
.
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Algorithm
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Simulation and applications
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Simulation Results

I N = 100; τ = 0.5; Effect size = 1
I Compared Methods: CMM [Sohn and Li, 2019]; microHIMA [Zhang et al., 2021]; LDM

[Yue and Hu, 2022]
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Simulation Results

I N = 100; τ = real data median; Effect size = 1
I Compared Methods: CMM [Sohn and Li, 2019]; microHIMA [Zhang et al., 2021]; LDM

[Yue and Hu, 2022]
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Real Data Application on COMBO Study
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Real Data Application on COMBO Study
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Real Data Application on COMBO Study

Active Genus Features Phylum NIE_Category NIE Direction
Romboutsia Firmicutes NIEabundance - + →-
Ruminococcaceae_UCG-002 Firmicutes NIEabudance - - →+
Saccharibacteria_ge Saccharibacteria NIEabundance - + →-
Coprococcus_3 Firmicutes NIEabundance - + →-
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Real Data Application on Cardiovascular Study
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Real Data Application on Cardiovascular Study
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Real Data Application on Cardiovascular Study
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Conclusions and Future Work

Conclusions –
I Addressing Zero-Inflation: ZIMMA’s ability to detect structural zeros avoids the bias introduced

by pseudo counts, a common strategy in dealing with zero-inflated count data.
I Precise Interpretation: By decomposing the indirect effect into abundance and prevalence

pathways, ZIMMA provides a more precise interpretation of active microbiome mediators.
I High Power: ZIMMA demonstrates superior statistical power compared to existing methods.

Future Works–
I More Applications To demonstrate the usage of ZIMMA.
I Sensitivity Analysis To what extent does violating assumptions affect the magnitude of bias?
I Microbiome Correlation
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Thank You
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