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What is count data?

Count data represents the number of occurrences of an event within a
specific time period, area, or context. These values are non-negative
integers (0, 1, 2, · · · ).
Characteristics:

1 Discrete: Can only take on whole number values.

2 Non-negative: Counts cannot be negative.

3 Often skewed: Many observations with low counts, fewer with high
counts.
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Applications of count data

• Number of website visits per day.

• Number of defects in a manufactured product.

• Number of insurance claims filed per year.

• Number of species observed in a survey.

• Number of doctor visits per month.
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Why not ordinary least squares (OLS)?

Violation of assumptions: Applying OLS to count data often violates key
assumptions:

• Normality of residuals: Count data distributions are typically not
normal.

• Homoscedasticity (constant variance): Variance often depends on the
mean in count data.

• Linearity: The relationship between predictors and the count variable
might not be linear.

• Problematic predictions: OLS can yield negative or non-integer
predictions, which are nonsensical for counts.
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OLS predicted line for count data
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The Poisson distribution: A foundation

Concept: The Poisson distribution models the probability of a given
number of events occurring in a fixed interval of time or space if these
events occur with a known constant mean rate and independently of the
time since the last event.
Probability mass function (PMF):

P(Y = y) =
e−λλy

y !
; y = 0, 1, 2, · · ·

We won’t need to use this formula for Poisson regression, but some of its
properties.
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Cont...

The Poisson distribution is unimodal and skewed to the right. It has a
single parameter λ > 0, which is both its mean and its variance. That is

E (Y ) = var(Y ) = λ.

Therefore, when the counts are larger, on the average, they also tend to be
more variable. If Y = number of conferences attended in the past year has
a Poisson distribution, then we observe greater variability in y from person
to person when λ = 10.4 than when λ = 1.2. Also, λ increases, the skew
decreases and the distribution becomes more bell-shaped
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Poisson regression: Modeling counts

Goal: To model the relationship between predictor variables and the
expected count.
Link Function: Uses a log-link function to ensure the predicted mean is
always positive:

ln(λ) = β0 + β1X1 + β2X2 + · · ·+ βkXk ,

where

• λ is the expected count.

• β0 is the intercept.

• βj are the coefficient for the predictor variable Xj , where
j = 1, 2, · · · , k .
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Interpretation of coefficients

λ̂ = eb0eb1X1eb2X2 · · · ebkXk .

• Here the changes in a predictor result in multiplicative changes in the
predicted count.

• This contrasts with OLS regression in which changes in the predictor
result in additive changes in the predicted value.

• For a 1-unit increase in X1, the predicted count (λ̂) is multiplied by
eb1 , holding all other variables constant.
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Problems with Poisson regression

Real-life count data often exhibit two (related) characteristics:
overdispersion and zero-inflation. Overdispersion refers to an excess of
variability in the data (i.e., the variance exceeds the mean), while
zero-inflation refers to an excess of zeros.
Overdispersion occurs when the variance of the count variable is
significantly greater than its mean (i.e. Var(Y ) > E (Y )).
Causes:

• Unobserved heterogeneity: Missing important predictor variables that
influence the count.

• Clustering of events: Events may not be independent.

• Excess zeros: More zero counts than predicted by the Poisson
distribution.
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Consequences for Poisson regression

• Underestimation of standard errors.

• Inflated Type I error rates (incorrectly rejecting the null hypothesis).

• In the presence of overdispersion, the Poisson regression model is not
reliable and can lead to biased parameter estimates.
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The negative binomial distribution: Handling
overdispersion

The negative binomial distribution is a generalization of the Poisson
distribution that allows for overdispersion. It introduces an additional
parameter, often denoted as α (the dispersion parameter), that controls
the variance independently of the mean. The PMF is:

P[Y = y ] =
Γ(y + 1

α)

Γ( 1α)y !
(

1

1 + λα
)1/α(

λα

1 + λα
)y .

The mean and variance for this probability model are:
E (Y ) = λ and V (Y ) = λ(1 + αλ).
This clearly indicates Var(Y ) > E (Y ).
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Negative binomial regression

The negative binomial model adjusts for Poisson overdispersion; it cannot
be used to model underdispersed Poisson data. The negative binomial
allows us to model a far wider range of variability than the Poisson.

• Model: Similar to Poisson regression, but uses the negative binomial
distribution for the response variable.

• Link function: Typically uses a log-link function for the mean (ln(λ)).

• Handling overdispersion: The dispersion parameter α can be
estimated from the data.

• Interpretation of coefficients: Similar to Poisson regression.
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Zeros: False, structural and random

Zeros have multiple origins in a dataset: false zeros occur due to errors in
the experimental design or the observer; structural zeros are related to the
system under study; and random zeros are the result of the sampling
variability. Identifying the type of zeros and their relation with
overdispersion and/or zero inflation is key to select the most appropriate
statistical model.
Zero-inflated count models provide a way to both model the excess zeros
and the overdispersion.
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Zero-Inflated Poisson (ZIP) Model

A mixture model that combines two processes:

1 A Bernoulli process: Determines whether the count is zero or comes
from the Poisson process. Let π be the probability of being in the
“always zero” state.

2 A Poisson process: Generates the count (including zero) with mean λ
for those not in the “always zero” state.

It has the following PMF:

P(Y = y) =

{
ω + (1− ω)e−λ; if y = 0

(1− ω)e−λyλ/y !; if y > 0,

where 0 ≤ ω ≤ 1.
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Cont...

The mean and variance of ZIP model are:

E (Y ) = λ(1− ω) = µ

and
Var(Y ) = µ+

ω

1− ω
µ2.

Since the variance is larger than the mean, the ZIP distribution is
overdispersed with respect to the Poisson, and it will be appropriate when
overdispersion is due to a large number of zeros.
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Zero-Inflated negative binomial (ZINB) Model

When there are other sources of overdispersion different from the excess of
zeros, a ZINB model could be more appropriate.
It has the following PMF:

P(Y = y) =


ω + (1− ω)( 1

1+λα)
1/α; if y = 0

(1− ω)
Γ(y+ 1

α
)

Γ( 1
α
)y !

( 1
1+λα)

1/α( λα
1+λα)

y ; if y > 0,

where 0 ≤ ω ≤ 1.
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Cont...

The mean and variance for the ZINB are:

E (Y ) = λ(1− ω) = µ

and
Var(Y ) = µ+ (

ω

1− ω
+

α

1− ω
)µ2.

The overdispersion comes from the ratio ω
1−ω , related with the proportion

of structural zeros, and it also comes from the dispersion parameter of the
underlying NB distribution which is related to α

1−ω .
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Hurdle Models (Two-Part Models)

Similar to zero-inflated models, hurdle models also handle excess zeros by
modeling two distinct processes:

1 A binary process: Determines whether the count is zero or positive
(often using a logistic or probit model).

2 A truncated count process: Models the magnitude of the positive
counts (e.g., a truncated Poisson or negative binomial distribution,
excluding zeros).
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Key difference from zero-inflated models

Hurdle models assume that if an individual crosses the “hurdle” (i.e., has a
positive count), the zero count is no longer possible from the second
process. Zero-inflated models allow for zeros to arise from both processes.
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An empirical study

The empirical study population consisted of 2,167 patients admitted in
hospitals with a diagnosis of Asthma selected from MIMIC dataset using
ICD-9 code 49,390. This dataset is used in the study of Fernandez and
Vatcheva (2022). We present the main demographic characteristics of the
study population.
The distribution of the variable hospital length of stay (LOS) was
positively skewed, with values ranging from 0 to 40 days. The mean LOS,
8.0 days, was much lower than the variance of 43.10. The larger sample
variance compared to the sample mean suggested a deviation from the
Poisson regression model’s assumption for equal variance and mean.

• Fernandez, G.A., and Vatcheva, K.P. (2022). A comparison of
statistical methods for modeling count data with an application to
hospital length of stay. BMC Medical Research Methodology, 22(1),
211.
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Demographic and clinical characteristics of the study

Characteristic
Age (years), mean (SD) 62.3 (40.66)
Sex, n (%)

Male 864 (39.87)
Female 1303 (60.13)

Hospital admission type, n (%)
Elective 378 (17.44)
Emergency 1748 (80.66)
Urgent 41 (1.89)

Health insurance type, n (%)
Government 96 (4.43)
Medicaid 304 (14.03)
Medicare 961 (44.35)
Private 789 (36.41)
Self-Pay 17 (0.78)

LOS, mean (SD) 8.0 (6.56)
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Statistical analysis

Poisson, NB, ZIP, and ZINB regression models were fitted for LOS on the
predictor variables age, sex, health insurance, and admission type. The
Pearson dispersion statistic, calculated by dividing the model’s Pearson
Chi-square statistic by the corresponding degrees of freedom, was used as
a criterion for assessing model’s misspecification or an overdispersed
response variable. When the resultant value is greater than one, the model
is considered to be overdispersed. AIC and BIC were used to compare the
models. Furthermore, the models estimated coefficients, standard errors
and their significance where examined, giving special attention to the
difference in findings and conclusions across the models.

Count data models 25 / 30



Findings from fitted Poisson, NB, ZIP, and ZINB
regression models for hospital LOS, n = 2,167
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Comparison of fitted Poisson, NB, ZIP, and ZINB
regression models

The previous table presents the results of fitted Poisson, NB, ZIP, and
ZINB regression models for the outcome variable LOS on the patient level
predictor variables age, sex, type of hospital admission, and health
insurance status. In the zero-inflated models the same predictors were
used to fit both the count model and the logistic (zero) model.
Based on the results:

• The NB regression model provided the best fit to the data since it
resulted the smallest AIC and BIC values.

• The second best model was ZINB, followed by the ZIP model.

• The Poisson regression model resulted with the worst fit to the data
according to the AIC and BIC values.
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Cont...

• The Pearson dispersion statistic in Poisson regression model was
5.3016, greater than 1, suggesting overdispersion.

• The fitted NB regression model had the smallest dispersion statistic
of 1.1815.

• The regression coefficient estimates and their respective standard
errors differed across the models.

• It is quite noticeable in table the tendency for the Poisson, and ZIP
regression models to produced smaller standard errors of the
regression coefficient estimates than NB and ZINB regression models.
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Cont...

• Overdispersion may cause standard errors of the regression coefficient
estimates to be underestimated and therefore contributing to
discrepancies in significant regression coefficients findings between the
models. For instance, at a 5% significance level, only based on the
fitted Poisson and ZIP regression models there were significant
association between age and log LOS, controlling for the effect of sex,
health insurance type, and admission type variables included in the
models.

• In relation to the logistic part (zero-model), none of the variables in
both ZIP and ZINB regression models had significant contribution to
the structural zero-generating process of LOS.
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Choosing the right model

1 Start with Poisson regression: If the equidispersion assumption holds
(i.e., mean ≈ variance), Poisson might be sufficient.

2 Test for overdispersion: If variance is significantly greater than the
mean, consider negative binomial regression.

3 Assess excess zeros: If there are more zeros than predicted by Poisson
or negative binomial, explore zero-inflated or hurdle models.

4 Conceptual understanding: Does the process generating zeros seem
fundamentally different from the process generating positive counts?
If so, zero-inflated or hurdle models might be appropriate.

5 Model comparison: Use statistical tests (e.g., Vuong test) and
information criteria (AIC, BIC) to compare model fit.
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