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Abstract

The paper develops a novel synthetic population generation scheme to deal with the NPS pollu-

tion problem of nitrate leaching from agricultural farms. The scheme relies upon estimation of the

joint distribution of the variables using Bayesian network learning which, coupled with the use of

non-parametric regression models facilitate the generation of realistic synthetic populations. Then

building upon the sequential GME model suggested by Kaplan et al. (2003) in line with the multi-

ple production relations model suggested by Murty et al. (2012) we obtain econometric estimates

of both the production technology and nature’s residual generating mechanism for the synthetic

population of farms. These estimates are used to proxy a reliable optimal taxation scheme that

corresponds to local environmental and economic conditions. The methodology is applied to the

Greek FADN dataset for the Greek NUTS II region of Thessaly during the 2017-18 cropping year.
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Introduction

Modern agricultural practices have dramatically increased crop production, but have also put sig-

nificant pressure on both groundwater and surface water pollution owing to reactive nitrogen. Since

1970, reactive nitrogen creation has increased considerably, largely driven by increased inorganic

fertilizer application to meet growing global demand for agricultural commodities (Galloway et al.,

2008).1 Although nitrate concentrations have slightly decreased over the past decades in some

European reservoirs, levels have remained high in others and, overall, nitrate levels in water stock

have remained constant. Although some improvements have been made in reducing nutrient inputs

from wastewater discharge, diffuse pollution of agricultural origin remains a major threat for water

in the EU. From 2000 to 2016, nearly 40 per cent of the groundwater monitoring stations in the EU

exceeded average values of 25mg NO−
3 l−1 and almost 50 per cent of the surface water monitoring

stations exceeded average values of 10mg NO−
3 l−1. Similar high levels occur in other parts of the

world where high levels of chemical fertilizers are used (Eurostat, 2018).

Effectively managing the tradeoffs inherent in nitrogen use requires information on the true

marginal benefits and costs to both private farmers and society. The benefits of nitrogen-based

fertilizer application, measured in terms of improved crop yields, are easily quantified based on

the market value of crop production. In contrast, the social costs of nitrogen are not captured in

market prices for fertilizer or agricultural commodities and are incurred primarily by the public

downwind or downstream of agricultural activities. Accounting for these costs in policies, payment

schemes, or programs designed to influence land management, offers the potential to mitigate these

tradeoffs and substantially improve environmental and social outcomes, especially in agriculturally

dominated landscapes. However, translating environmental changes to damage costs requires an

integrated approach that links specific interventions with the cascade of nitrogen related damages

over space and time. Recent studies have attempted to fill this gap by monetizing nitrogen related

damages for the EU (Brink et al., 2011), the US (Sobota et al., 2015), and China (Gu et al., 2015).

These studies effectively highlight the potential magnitude of nitrogen damages and the urgent

need to improve nitrogen cost accounting.

However, nitrate pollution is a typical non-source pollution (NPS) problem, as only the ambient

concentration of nitrogen is observed, posing serious challenges in policy formation and regulation

even when using the correct cost accounting. The main reasons are informational asymmetries

between the regulator and the individual farmers, along with the coexisting uncertainty related to

farm technologies and natural conditions. In policy formulation, these informational asymmetries

induce moral hazard and adverse selection problems. Under moral hazard, as monitoring and

1Specifically, the amount of nitrogen in the environment has been increased by more than 100% above preindustrial
levels, whereas on the other hand, CO2 emissions have increased approximately by 40% (Keeler et al., 2016).
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measurement of individual nitrate emissions is not possible, farmers can always increase their

profits by choosing higher than the socially desirable nitrogen emissions levels. On the other

hand, under adverse selection, individual farmers may have incentives not to reveal their specific

characteristics or farming type to the regulator if this is profitable for them.2 As the empirical

evidence worldwide reveals, in such situations the standard environmental policy instruments cannot

be used to internalize external damages or to obtain the Pareto optimal outcome. This failure had

resulted in increasing effort to develop policy schemes appropriate for such problems. Recently, the

focus of applied research is on the possibility of measuring individual emissions by applying either

monitoring technologies or conventional econometric tools to estimate individual emissions from

farm-level data in order to use standard policy instruments to regulate NPS pollution to some, or

even to a full, extent.3

Nevertheless, an important limitation of these individual assessments is that one needs the

population of farm operations in each specific region to approximate more accurate individual

leaching levels. Using data from a representative sample of farmers, researchers and policy makers

aim to approximate mean leaching levels that then can be applied to introduce conventional policy

instruments for the population of farmers. However, as noted by several authors nitrogen is lost

to aquatic, regional atmospheric, and global atmospheric pools in a variety of forms. These loss

pathways are associated with damages that occur over heterogeneous spatial and temporal scales

(Erisman et al., 2013). Valuing these damages requires tracking several forms of nitrogen across

space to endpoints where the environment or the water resources are impacted. The mean value

used to impose taxes or levies in several countries and regions across the globe will turn to a

non-optimal outcome which intensifies the problem in certain occasions.

A promising and cost-effective alternative to proxy more accurately individual leaching levels is

to use the existing farm surveys to construct a synthetic population of farmers covering the whole

region under study incorporating all alternative farming techniques and simulating all possible

natural conditions. Generally speaking, the task of synthetic population generation (SPG) refers

to the process of generating a synthetic dataset that mimics the true population. In other words, it

facilitates the inductive passage from the sample to the population, assuming the observed sample

is quasi-representative of the true population. With an accurate process the researchers construct

synthetic farm data that mimics the true population and hence provide more solid evidence to

support their research claims. In addition, using a synthetic population of farmers ambient nitrate

concentrations in water reservoirs are not neglected in the estimation of individual leaching levels

as they reflect actually local climatic, environmental and hydrological conditions that determine

2For a more detailed discussion on these issues see Segerson (1988) and Shortle and Horan (2001).
3Xepapadeas (2011) provides a thorough review of all approaches developed so far to deal with NPS pollution

problems.
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the extent of externality for rural and urban dwellers leading to more optimal policy interventions.

Along these lines, our aim in this paper is to use synthetic farm data to estimate both crop

technology and nature’s nitrate residual generating mechanism to approximate individual nitrate

leaching levels in the Greek NUTS II region of Thessaly during the 2017-18 cropping year. Our

analysis is based on the FADN database that accurately collects individual farm data for the last

30 years across the EU. Then following Young et al. (2009) and Sun and Erath (2015), we use

a Bayesian network learning approach taking into account the conditional distribution of input

and output variables to formulate a consistent way to generate a synthetic population of farmers.

The developed Bayesian network is coupled with the use of non-parametric regression models to

facilitate the generation of synthetic population that mimic the observed ones to a high degree.

Then, building upon the sequential GME approach suggested by Kaplan et al. (2003) and Farzin and

Kaplan (2004) we impose into a generalized entropy filter a specific theoretical structure describing

both crop production technology and nature’s nitrogen residual generating mechanism. Finally, the

theoretical model is based on the multiple production relations model developed by Murty et al.

(2012) that identifies appropriately the features of by-production of pollution in intended output

production activities which is adapted for nitrate leaching occasions in intensive crop production.

The remainder of the paper is structured as follows. Next section discusses the various ap-

proaches used in synthetic population generation process and presents the use of Bayesian learning

networks. The following section presents the farm technology taking into account individual emis-

sions arising from chemical fertilizer use, while section 4 presents the GME estimator applied.

Section 5 discusses the practical problems and presents the econometric estimates, while the last

section discusses policy implications and concludes the paper.

The Synthetic Population Generation Process

The current SPG techniques4 can be divided into two broad categories, namely, synthetic recon-

struction (SR) and combinatorial optimization (CO). The former approach first generates new

observations on a set of variables and then exploiting those generated observations it fills the gaps

and proceed to generate values for the next set of variables. This sequential process is continued

until all population values are filled. Corner-stone to this process are some true population con-

straints, usually taken from available census data. A standard algorithm for this technique is the

Iterative Proportional Fitting (IPF) which requires prior knowledge on the joint (bivariate) distri-

bution of any two variables.5 On the other hand, CO uses the publicly available data and samples

4Chapuis and Taillandier (2019) and Ramadan and Sisiopiku (2019) provide a brief review of the recent SPG
methods.

5In the case of more than two variables, IPF considers pairs of variables conditioning on the values of the other
variables.
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from them (with replacement) until the value of a stress criterion is minimized. Similarly to SR,

a list of constraints must also be satisfied (related to the stress criterion), but their difference lies

in their generated output. In summary, SR simulates new values, whereas CO reproduces different

combinations of the observed values. SR proceeds in a hierarchical fashion, simulating variables

with a specific order, whereas CO uses all variables in an iterative process. CO starts from a ran-

domly chosen set of observations it replaces an observation with a new one if the fit is improved,

until the fit can not be further improved. The SR approach is evidently faster, but CO can yield a

synthetic population that better fits some known constrains of the true population.

Ye et al. (2009) generalized the IPF to the Iterative Proportional Updating (IPU) algorithm

in order to better capture the overall joint distribution of the variables solving the zero-cell and

zero-marginal problems. However, in extreme cases such as when all individuals of certain types

completely fall into a single observational type, IPU fails to converge. Further, IPU may reach

to a solution that lies is outside the feasible region.6 Gargiulo et al. (2010), on the other hand,

proposed an iterative approach to generate statistically realistic populations matching few variables

only. Their approach can be extended to the complete set of variables, but the order of generating

these variables remains unknown. The advantage of their approach is that they consider no sample

data, only the tabular information, which however, does not take into account the relationship

among the variables.7 The drawback of both approaches though is that the synthetic population

is calibrated against some known tabular information which in practice may not be representative

of the characteristics of the true population.

On a completely different direction, Casati et al. (2015) proposed a hierarchical generation using

Markov Chain Monte Carlo (MCMC) simulation and in particular the Gibbs sampler. Keeping

the existing hierarchy of the variables, Casati et al. (2015) carefully generated the values of the

true population. For instance, in their case study the age and gender of a spouse are generated

after the household owner is generated. Generation of a variable conditional of previous variables

is accomodated using a regression model. In their case, a multinomial regression is fitted and

the estimated probabilities are fed into the multinomial distribution that generates values for the

variable of interest. According to the MCMC theory, hundreds of thousands, or perhaps millions

of values must be generated and then only a small fraction of them is used. Further, the final

synthetic population does not satisfy some known marginal constraints and a post-process of the

generated data must be applied.

6In those cases, IPU will iterate until a corner solution is found.
7Lenormand and Deffuant (2013) compared the sample-free method of Gargiulo et al. (2010) to the IPU algorithm

(Ye et al., 2009) in generating individuals and households in France and found that the differences between the two
approaches are very small.
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Bayesian Networks in SPG

Using this hierarchical approach, Young et al. (2009) and Sun and Erath (2015) proposed the use

of Bayesian Networks (BNs) to formulate a suitable and theoretically consistent way to generate a

synthetic population taking into account the conditional distribution of the variables characterizing

individuals.8 The rationale is to first construct a network of the variables that can be represented

via a graph where all variables appear with nodes (vertices) and can either be connected indicating

the direction of their relationship, or not connected at all. This yields two advantages over the

previous SPG approaches: first, it provides information on the joint distribution of all variables

and, second, it shows which variables depend upon which in an ordered fashion. The population is

then hierarchically generated as in the SR approaches, but the estimated conditional distributions

will be more accurate than in the MCMC based approach. The generated data following the

BN approach will match to a high degree the observed data, when the variables are categorical.

In continuous variables following an asymmetric distribution one should rely on non-parametric

techniques in order to accurately sample values from the observed (conditional) distributions.9

Formally, a BN B = ⟨G,P ⟩ is defined as a composite structure comprising a Directed Acyclic

Graph (DAG) G applied to a set of vertices representing variables denoted as V, along with a joint

probability distribution denoted as P (Pearl, 1988; Spirtes et al., 2000). The relationship between

P and G is governed by the Markov condition, which posits that each variable is conditionally

independent of its non-descendants given its parental nodes.10 Hence, the joint distribution P can

be factorized into a product of conditional distributions:

P (V1, . . . , VD) =
D∏
i=1

P (Vi|Pa(Vi)) (1)

where, D represents the total count of variables, and Pa(Vi) designates the set of parental nodes for

Vi within the graph G. G, P are faithful to each other when G exclusively captures the conditional

(in)dependencies in P , and when all conditional (in)dependencies in P are implied by G. This cor-

respondence characterizes G as a perfect map of P (Neapolitan, 2003). A fundamental postulate

underlying BN learning algorithms is causal sufficiency, which presumes the absence of latent or un-

observed variables among the observed variables. It is evident that a comprehensive representation

of the population’s characteristics requires the inclusion of all pertinent and important variables.

8BNs have been used by Sebastiani and Ramoni (2001) to analyse data extracted from the British general household
survey. More importantly, Zhang et al. (2017), Ilahi and Axhausen (2019), and Deeva et al. (2020) used BNs to
generate synthetic privacy data, population synthesis and social media profiles data, respectively. Further, BNs have
been successfully coupled with ABM models (Kocabas and Dragicevic, 2009, 2013)

9In our case study, we address this issue by either sampling from the kernel density estimate of the observed
(unconditional) distribution or by employing the k-NN regression when the values should be sampled from the
conditional distribution. The decision between them relies upon the learned BN structure.

10The parental nodes of a given variable Vi are constituted by the nodes directed towards that variable.
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The BN learning offers two interconnected advantages: first, it encompasses the detection of

statistically significant associations among variables and, second, it defines a topological order for

the variables characterized by a tree structure. This topological structure is instrumental in gener-

ating values hierarchically from the variables which entails the formulation of the joint distribution

of the data. According to the Markov condition, the joint distribution can be explicitly and sequen-

tially expressed, facilitating the process of SPG. This generative process commences by determining

values for variables devoid of parental nodes. Subsequently, these values are employed to gener-

ate values for their respective child variables, and this procedure iterates until values have been

generated for all variables.

The MMHC BN learning algorithm

In our case study, for the BN learning process we have employed the Max-Min Hill-Climbing

(MMHC) algorithm (Tsamardinos et al., 2006). The MMHC algorithm initially identifies sta-

tistically significant associations (edges) between the variables and subsequently employs a scoring

method to establish the orientation or assignment of arcs in these relationships. In order to con-

struct the skeleton structure of the BN, the algorithm employs the Max-Min Parents and Children

(MMPC) variable selection algorithm (Tsamardinos et al., 2003; Tsamardinos and Brown, 2008)

which effectively controls the false discovery rate, ensuring that a low proportion of non-significant

variables are incorrectly selected. The MMPC algorithm is particularly well-suited for datasets

with small sample sizes and a large number of variables, as the conditional independence tests it

employs retain high statistical power, even in the presence of limited data. Subsequently, MMHC

seeks to determine the optimal DAG where edges either transition into arrows or are removed to

maximize a scoring metric.

In cases of continuous variables, the Bayesian Information Criterion (BIC) score is employed

(Lam and Bacchus, 1994):

BIC(G,Θ | V) =
n∑

i=1

logP (Vi | Pa(Vi),ΘVi)−
log (n)

2
|ΘVi | (2)

This scoring phase involves a greedy Hill-Climbing search, an iterative local search approach,

within the space of BNs. In this process, edge deletions or direction reversals that yield the most

substantial increase in the score within the BN space are applied. It is imperative to note that

every time an edge is removed or an arrow direction is modified, a check for cycles is conducted. If

cycles are introduced, the operation is aborted, even if it would otherwise enhance the score. The

search process continues recursively in a similar manner.

The MMHC algorithm, like all BN learning algorithms, operates under the assumption of being
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agnostic to the true underlying relationships within the input data. However, it is common for

both practitioners and researchers to possess prior knowledge regarding the necessary directions

(whether allowed or forbidden) of certain relationships among variables. In such cases, economic

theory can contribute to enhancing the quality of the BN model by imposing or forbidding directions

among specific sets of variables. This prior knowledge can be seamlessly integrated into the scoring

phase of the MMHC algorithm, thereby reducing errors and producing more realistic BN structures.

Failure to incorporate such a priori information could result in the development of an unrealistic

BN structure, consequently yielding an unrealistic joint distribution that inadequately captures the

true underlying joint distribution.

The strength of significant relationships detected by the BN is quantified by the reduction in the

BIC score when a specific arrow (or arc or directed relationship) is removed, while keeping the BN

structure stable. A larger reduction in the score indicates a stronger indication of the importance

or strength of that particular directed relationship. This allows for the ordering of relationships

based on their relative strength. Bootstrap resampling serves as an additional measure to assess the

validity of the discovered (directed) relationships among the variables. In this approach, a set of

observations is randomly sampled with replacement from the original dataset (comprising observed

farms), and the BN is learned using the MMHC algorithm. This process is iterated 1,000 times, with

the discovered arcs recorded for each repetition. The metric of interest is the proportion of times

the observed directed relationships are replicated in the bootstrap samples. This metric serves

as an indicator of the confidence and stability in the relationships of each discovered (directed)

relationship within the original sample. In our case study, we remove the arrows corresponding

to directed relationships that appear in less than 50% of the bootstrap samples, ensuring that we

retain only the more robust and reproducible relationships.

Farm Production and Nitrogen Leaching Technology

Once the synthetic population of farmers is generated, we need to recover farm production and

nitrate leaching technologies to proxy individual emission rates. Since individual leaching levels

are unknown and we only know ambient concentration of nitrous oxide, we need to employ the

population of farmers in the area to proxy those unknown values. Keeping technological represen-

tations simple, we consider a farm production process that uses a vector of variable inputs xv ∈ ℜm
+

together with chemical fertilizers xq ∈ ℜ+ and irrigation water xw ∈ ℜ+, to produce a single output

denoted by y ∈ ℜ+. Chemical fertilization results in NO−
3 leaching (i.e., nitrous oxide), denoted

by q ∈ ℜ+, that contaminates water reservoirs. Further, we assume that the extent of nitrate

leaching into the water reservoirs depends on irrigation water application, the soil conditions of the

farm denoted by the vector s ∈ ℜk
+, and precipitation denoted by r ∈ ℜ+. Following the multiple
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production relations model developed by (Murty et al., 2012)11, as it was empirically applied by

(Tsagris and Tzouvelekas, 2022), farm production technology and the nature’s nitrogen residual

generating mechanism can be represented by the following closed, non-empty sets:

T y = {(xv, xq, xw, y, q, s, r) : (xv, xq, xw) can produce y}

T q = {(xv, xq, xw, y, q, s, r) : xq can pollute by q for a given level of (xw, s, r)}

Variable inputs (including chemical fertilizers and irrigation water) and farm output are strongly

disposable in farm production, whereas nitrogen generating technology satisfies costly disposability

of nitrate emissions (Murty, 2010) (i.e., nitrate leaching is an output of farm production whose

disposal is not free):

if (xv, xq, xw, y, q, s, r) ∈ T q ∧ q̄ ≥ q ∧ x̄q ≤ xq then (xv, x̄q, xw, y, q̄, s, r) ∈ T q

The above monotonicity property implies that T q is bounded from below. Any given level of

chemical fertilizers application may create a minimal level of nitrate leaching but it can always

generate a greater amount of leached nitrogen if farmers are ignorant about the nature’s residual

generating mechanism.12

Hence, overall farm technology may be described as the intersection of the two sub-technologies

T = T y ∩ T q reflecting both the transformation of inputs into farm output and the nitrogen

pollution generating mechanism resulting from chemical fertilization. According to Murty et al.

(2012), the unified crop technology violates free disposability with respect to chemical fertilizers

application, satisfies free disposability with respect to farm output and variable inputs use, and

it satisfies cost-disposability with respect to nitrogen pollution. In effect, if farm production is

inefficient, farmers can always decrease variable input use without changing fertilizer use that

generates nitrogen pollution in the reservoirs. On the other hand, if nitrogen pollution is inefficient,

then farmers can decrease nitrate leaching without altering variable input use and farm output by

improving their knowledge about nature’s pollution generating mechanism.

Using functional representations and assuming that farmers are technical inefficient in both

farm production and nitrate leaching, then farm production technology13 and nature’s nitrogen

11Their framework builds on the factorially determined multi-output model developed by Frisch (1965), as it was
further elaborated by Førsund (2009), that captures the physical process of generation of residuals allowing for some
inputs and outputs that exhibit technological non-rivalness/jointness.

12Water contaminated with nitrogen does not harm crop growth and therefore, farm technology set does not impose
any constraint on q.

13Using the implicit function theorem, Murty et al. (2012) proved that the marginal product of fertilizers is non-
negative in farm production, while at the same time more fertilizers applied on field increase nitrate leaching for any
given soil characteristics and irrigation water use.
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generation mechanism may be defined as14

T = {(xv, xq, xw, y, q, s, r) : g (xq, xw, s, r) θq = q ∧ f (xv, xq, xw) θy = y}

where f (xv, xq, xw) : ℜm+2
+ → ℜ+ is a continuous and, strictly increasing, twice differentiable

concave crop production function representing maximal farm output obtained from variable input,

chemical fertilizers and irrigation water use. Similarly, g (xq, xw, s, r) : ℜk+3
+ → ℜ+ is also a contin-

uous and twice-differentiable convex nitrate leaching function providing minimum nitrate leaching

levels attained from chemical fertilizer application and irrigation water use given soil characteristics

and precipitation. It also holds that q = 0 if xq = 0, that is when chemical fertilizers are not applied

on field nitrate leaching is zero regardless of the other factors affecting by-production.15

Finally, θy ∈ (0, 1] represents the percentage of maximal output realized by farm households in

the presence of technical inefficiency in farm production. Similarly,
θq − 1

θq
∈ (0, 1] represents the

percentage of excess nitrates leached due to inefficiency in fertilizers and irrigation water application

through nature’s residual generation mechanism.16 Except of wrong fertilizer application within

farming activities, farmers who are unaware of the natural processes may further intensify water

contamination through nitrate leaching. In other words, except of utilizing an appropriate input

mix during farm production exploring fully the potential of farm technology, farmers should also

be aware of the natural processes that trigger nitrate leaching in their own fields.

The GME Estimator

Since nitrate leaching is only detectable and measurable after it has entered the ecosystem we cannot

apply conventional econometric tools to estimate individual emissions. To overcome this problem

we utilize the Generalized Maximum Entropy (GME) method which is an information-theoretic

approach initially devised for ill-posed problems of inference where the sample sizes are limited

(Golan et al., 1996).17 To make the model empirically operational, and to apply GME, we need

to assume specific functional representations for crop production and nitrogen residual generating

technology. Starting from farm production, we choose the following transcendental logarithmic

14As noted by Førsund (2018) scaling of y and q is necessary to avoid the intersection of the two sets to be empty.
We resolve that in the econometric setup of the model.

15Nitrogen leaching may be non-zero in cases that farmers do not apply fertilizers at all due to the existing nitrogen
stock in the soil. However, since our primary focus is on estimating individual leaching levels we do not take that
into account.

16It holds that θq ≥ 1 as nitrate is leached in excess.
17On theoretical grounds, Golan and Perloff (2002) proved that GME, unlike Renyi-GME and Tsallis GME, satisfies

the properties of completeness, transitivity and uniqueness, permutation invariance, scaling, as well as subset and
system independence.
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(translog) specification to approximate production technology:

ln yi = β0 +
∑
m

βv
m lnxvmi +

1

2

∑
m

∑
l

βvv
ml lnx

v
mi lnx

v
li + lnhi

(
βh +

βhh

2
lnhi +

∑
m

βhv
m lnxvmi

)

+ lnxqi

(
βq +

βqq

2
lnxqi +

∑
m

βqv
m lnxvmi + βqw lnxwi + βqh lnhi

)
(3)

+ lnxwi

(
βw +

βww

2
lnxwi +

∑
m

βwv
m lnxvmi + βwh lnhi

)
+ εyi

where subscript i = 1, . . . , n indicates farms, β’s are the associated parameters and, εyi = ϵyi −uyi , is

the composed error term in stochastic frontier terminology with ϵyi denoting random disturbances,

and uyi capturing technical inefficiency in crop production obtained from θyi = exp (−uyi ).

Accordingly, following Knapp and Schwabe (2008) and Wang and Baerenklau (2014) we ap-

proximate nature’s nitrate residual generation mechanism as:

qi =
−δqi x

q
i + δqqi (xqi )

2

1 + exp (−δwi x
w
i )

exp (εqi ) (4)

with

δi = α0 +
∑
k

αs
kski + αh

hhi and εqi = ϵqi + uqi (5)

where again subscript i = 1, . . . , n indicates farms, α’s are the associated parameters, sk is the kth

environmental characteristic affecting soil nitrate absorption, ϵqi is the usual random term and uqi

captures technical inefficiency in nitrate leaching obtained from θqi = exp (uqi ).

The GME principle dictates that the k-th regression coefficient in (3) can be expressed in the

form of a weighted combination of J plausible real values zβk =
(
zβk
1 , zβk

2 , . . . , zβk
J

)
for βk as:18

βk = zβkpβk
k

such that βk ∈
[
zβk
1 , zβk

J

]
and the J non-negative weights pβk =

(
pβk
1 , pβk

2 , . . . , pβk
J

)′
sum to unity,∑

j

pβk
j = 1. Accordingly, the vector of random disturbances in the production frontier is expressed:

ϵϵϵy = ZϵypϵyZ (6)

where Zϵy is a n×nJ diagonal matrix with elements zϵ
y

i =
(
zϵ

y

i1 , z
ϵy
i2 , . . . , z

ϵy
ij

)
refering to the support

18The subscript k collects all superscripts and subscripts of the production frontier. On the other hand J is the
number of support values assumed for the regression coefficients.
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values of the ith random disturbance and pϵy
i =

(
pϵ

y

i1 , p
ϵy
i2 , . . . , p

ϵy

iJ

)′
. Similarly, we will denote by

Zuy
the matrix of support values of the technical inefficiencies in crop production. Accordingly we

denote by za
q
k , za

qq
k and, za

w
k the support values of the constant and slope coefficients that appear

in the numerator and denominator of the nitrate leaching function. Finally, the matrix of support

values of the random disturbances and inefficiencies of the nitrate leaching function will be denoted

by Zϵq and Zuq
respectively.

The constraint that forms the unified farm technology can be expressed as fi(·) ≥ gi(·) ∀ i =

1, . . . , n. Since GME requires only equality constraints we introduce non-negative valued slack

variables to turn the inequality above into equality. Expressing both the production and nitrate

leaching functions in log-scale, the constraint becomes

ln fi(·)− ln gi(·) = si ∀ i = 1, . . . , n. (7)

Again, the slack variable can be expressed in a similar form to equation (6) and its matrix of

support values will be denoted by Zs.

Assuming that individual nitrate leaching rates attributed to each farmer solely determine

observed concentration of nitrates in the reservoir, i.e.,
∑
i

qi = QN , the GME problem in our

specification is to minimize Shannon’s entropy I(p) subject to three sets of equality constraints:

min
p

I(p) = min
p


K∑
k

J∑
j

pβk
j ln pβk

j +
n∑

i=1

J∑
j

pϵ
y

ij ln p
ϵy

ij +
n∑

i=1

J∑
j

pu
y

ij ln pu
y

ij +
L∑
l

J∑
j

p
αq
k

j ln p
αq
k

j

+
L∑
l

J∑
j

p
αqq
k

j ln p
αqq
k

j +
J∑
j

p
αw
k

j ln p
αw
k

j +
n∑

i=1

J∑
j

pϵ
q

ij ln p
ϵq

ij +
n∑

i=1

J∑
j

pu
q

ij ln pu
q

ij +
n∑

i=1

J∑
j

psij ln p
s
ij


subject to19

ln yi = ln fi(·) + ϵyi − uyi ∀ i = 1, . . . , n (8a)

QN =

n∑
i

gi(·) exp (ϵqi + uqi ) (8b)

si = ln fi(·)− ln gi(·) ∀ i = 1, . . . , n (8c)

19We have omitted the summation to unity constraints of the probabilities as their Lagrangean multipliers vanish.
However these constraints have been taken into consideration in the computations.
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Introducing the Lagrangean multipliers λy = (λy
1, . . . , λ

y
n), λq and λ = (λ1, . . . , λn), becomes:

minp I(p, λy, λq, λ) = min
p


K∑
k

J∑
j

pβk
j ln pβk

j +

n∑
i=1

J∑
j

pϵ
y

ij ln p
ϵy

ij +

n∑
i=1

J∑
j

pu
y

ij ln pu
y

ij +

L∑
l

J∑
j

p
αq
k

j ln p
αq
k

j

+

L∑
l

J∑
j

p
αqq
k

j ln p
αqq
k

j +

J∑
j

p
αw
k

j ln p
αw
k

j +

n∑
i=1

J∑
j

pϵ
q

ij ln p
ϵq

ij +

n∑
i=1

J∑
j

pu
q

ij ln pu
q

ij

+
n∑

i=1

J∑
j

ps
1

ij ln p
s1

ij +
n∑

i=1

J∑
j

ps
2

ij ln p
s2

ij +
n∑

i=1

λy
i (ln yi − ln fi(·)− ϵyi + uyi )

+ λq

(
n∑
i

gi(·) exp (ϵqi + uqi )−QN

)
+

n∑
i=1

λi (ln fi(·)− ln gi(·)− si)

}

The problem was solved with respect to the probabilities20 using an iterative scheme. We begin

with some initial values in the Lagrangean multipliers, we then compute the associated probabilities

and solve each set of equations (8a)-(8c) serially. We update the multipliers and the associated

probabilities and then we solve those equations again. We repeat this process until convergence21

and then we use the probabilities to estimate all regression parameters. For the support values of

the parameters we used J = 5 for each regression coefficient22, random disturbances, inefficiencies

and, slack variables. As a starting point for the farm production model, we centered the support

values for the β coefficients coming from the stochastic frontier model, assuming a half normal

distribution, and we added a small perturbation from left and right. We examined the range of

the random disturbances to construct their support values, and used the estimated inefficiencies

as initial values. Finally, we decided upon the support values of the nitrate leaching function

parameters and of the slack variables based on trial-and-error as no prior information is available.

The Practical Problem

The Region of Thessaly

Our case study refers to the NUTS II Greek region of Thessaly where nitrate pollution from

agricultural activities turned into a major problem the last 15 years. The region is located in

Central Greece and accounts approximately for the 30% of total agricultural production in Greece

(see Figure 1a). Indeed, data on nitrate pollution of the water reservoirs in Thessaly provided

by the Greek Ministry of Agriculture indicate an extensive nitrate pollution of both surface water

20The detailed expressions of the model probabilities are presented in the Appendix Á.
21In our case convergence was achieved when the change between two successive vector of estimates of the production

function was tiny, i.e., less than 0.001.
22Golan et al. (1996) after several Monte Carlo simulation concluded that 5 support values are sufficient enough.
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reservoirs and underground aquifers. In total there are 62 sample points, depicted in Figure 2,

capturing approximately the 95% of the water resources in Thessaly for the 2017-18 cropping year.

Table 1 presents the stock of nitrous oxide measured by the personnel of the Greek Ministry of

Agriculture in all 62 locations. As it is evident from this Table, nitrate pollution is severe in the

south and south-east municipalities of the region where point measurements in 2018 exceed by

far the Drinking Water Directive limit of 50mg NO−
3 l−1.23 In the majority of the sites though

measured nitrates are beyond the recommended by the EU standards of 11.3mg NO−
3 l−1. Maximum

value is 123mg NO−
3 l−1 in the municipality of Karditsa and minimum value is 0.5mg NO−

3 l−1 in

minor water reservoirs of Elassona and Rigas Ferraios municipalities. In the four mountainous

municipalities nitrate pollution is not monitored by the Greek authorities as pollution is minor. It

should be noted though that all water reservoirs used to supply water for domestic use in the major

cities of the regions, nitrate pollution is beyond the limit of 50mg NO−
3 l−1 (Volos 61.0, Karditsa,

123.0, Farsala 96.5, Almyros 107.7).24

The FADN Dataset and BN Mapping

The FADN dataset used for the construction of joint probability distributions in the SPG framework

refers to the 2017-18 cropping period provided by the Greek Ministry of Agriculture. Overall, there

are 3,638 farms in the dataset located in the twelve Greek Nuts II regions.25 From those farms,

we focused on 509 holdings located in the region of Thessaly, the exact location of which along

with the twenty-two municipalities of the region of Thessaly are depicted in Figure 1b. The FADN

database contains very detailed information on crop production that cannot be applied effectively

for the generation of the synthetic population of farmers. Therefore, initially we followed the

EU Regulation No1166/2008 that establishes a framework for European statistics at the level of

agricultural holdings to aggregate across different output and cost items of crop and livestock

production. Next, attributes of the collected data were clustered in five groups in order to provide

a basis for the construction of the BN. These groups include: farm labour characteristics containing

information on the farm manager and paid or unpaid labour related characteristics, crop and animal

production including twenty crop and ten livestock products, other farm income and subsidies

containing information on the values of other farm income sources as well as subsidies and grants

grouped in four clusters (decoupled payments, crops and animals, exceptional support and rural

development and subsidies on cost), farm assets including current and non-current assets, land,

building and machinery and, variable inputs including twelve attributes measuring variable inputs

23Looking at the historical data there is a clear increasing trend in nitrate pollution since the beginning of 2000’s.
24It should be noted that the WHO standard for drinking water is 50mg NO−

3 l−1 for short-term exposure, and
3mg NO−

3 l−1 for chronic effects.
25Regional distribution of the surveyed FADN farms is presented in Table B.1 in the Appendix.
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cost.

Soil spatial and environmental data were obtained from the European Soil Data Centre, the

NASA’s Earthdata program and Socioeconomic Data and Applications Center and cover locations

throughout Greece. Those measurements were matched with the available FADN data points using

the 1-nearest neighbour (1-NN). Climatic data were accessed from the six Meteorological Stations,

located in the region of Thessaly and operated by the Greek Meteorological Service. Finally, total

crop and livestock production data necessary for the synthetic reconstruction of the population of

farmers in Thessaly were obtained from Agricultural Census of the Greek Statistical Service. Our

final aggregation scheme includes 204 attributes-variables describing production relations among

farmers in the sample used to construct the BN topological structure. Details on the data used in

the analysis, the aggregation scheme adopted as well as on the definition of variables following the

FADN coding are provided in Tables B2 through B11 in the Appendix.

As previously mentioned, BN learning algorithms are agnostic of the input data and require

some prior knowledge to facilitate the generation of more realistic populations. A set of constraints

must be imposed among these 204 variables. These refer to rationally forbidden directions between

the pairwise relationships. We keep the number of constraints at a minimum in order to avoid

restrictive structures in the resulting BN. The majority of the constraints refer either to crop or

to livestock production. The detailed list of constraints is presented in Appendix C. Running

the MMHC learning algorithm we discovered 220 statistically significantly associated relationships

among farm attributes. All of them are presented in Table C1 in the Appendix along with their

directions and their strength. For instance, the relationship, in the first row of the table, between

G4 and G5 is directed from G4 to G5 and hence in the BN terminology this is denoted by G4→G5.

The same is true for all relationships. The topological structure of the obtained BN is depicted in

Figure 3.

The results of bootstrap validation also appear in the Table C1. The 149 out of the 220

(67.73%) identified directed relationships in the observed farms were observed more than 50% of

the times in the bootstrap samples. This, rather low, number does not come by surprise as the data

contain many variables with high proportions of zero values. When sampling with replacement,

the percentage of unique values in the bootstrap sample is on average equal to 1 − (1 − 1/n)n,

which in the current situation is equal to 63%. Hence, the bootstrap sample of 509 farms contains

around 63% unique farms. Variables having more than 63% zeros may contribute only zeros to the

bootstrap sample and hence no relationship can be discovered, even if there is one.

15



Synthetic Sample Generation

Before generating the synthetic population of farmers in Thessaly, we generated a synthetic sample

that mimics the attributes of the surveyed farms in FADN database. The synthetic sample was

used as an assessment tool of the constructed BN and as a validation guide in order to proceed to

the SPG. The generation of random values from BNs using continuous data often results in values

that follow a normal distribution. However, this may not accurately reflect real-world scenarios,

particularly in cases where most variables exhibit strong right-skewness and contain numerous

zero values. To address this issue, we employed a refined data generation scheme based on non-

parametric regression, utilizing the BN structure learned from the variables of the observed farms.

The generation process follows a sequential order so that each variable is generated conditionally

upon its parent variable(s) following the existing BN structure depicted in Figure 3. In that way,

the produced synthetic data align more closely with the distribution patterns observed in the real

data, thereby providing a more realistic representation of the underlying data structure.

For variables with no parents, we computed the kernel density estimate (KDE) of the distri-

bution of the non-zero values and generated non-zero values from this KDE, whereas zero values

remained the same. Specifically, the KDE is given by

f̃(x) =
1

nh
√
2π

n∑
i=1

e−
(x−xi)

2

2h2

where h = 0.9min (σ̃, IQR/1, 34)n−1/5, σ̃ denotes the sample standard deviation and IQR is the

interquartile range. Random number generation for a variable with no parents is obtained from

x̃i = x̄+ (xi − X̄ + h̃zi)/
(
1 + h̃2/σ̃2

)1/2
, where zi are random values generated from the standard

normal distribution, h̃ is the estimated bandwidth and x̄ and σ̃2 denote the sample mean and

variance, respectively, of the observed values (Silverman, 2018).

For variables with at least one parent, we employed the k-Nearest Neighbors (k-NN) algorithm

which is a non-parametric kernel regression technique that considers only the values of the k nearest

neighbors. Using information from the surveyed farms, the estimated values are obtained from

x̃i =
∑

j∈Ck xj where, Ck represents the set of k closest neighbors determined from the Euclidean

distance computed using the parent variables. To select the appropriate value of k, we utilized

the observed variables to minimize the sum of squares of the errors between the observed and

fitted values. Once values for a variable are generated, we performed data transformation to ensure

that their mean matches the mean of the observed variable values. However, some post-generation

refinement steps were considered necessary. Specifically, in the case of crop production, when the

synthetic cultivated land for a crop is zero, the corresponding synthetic values for irrigated land and

crop production were set to zero. If the irrigated area for certain crops exceeded the corresponding
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cultivated land, we adjusted the irrigated area to be equal to the cultivated area. Similar refinement

procedures were applied to animal products.

Evaluation of the Synthetic Sample

First, in order to assess the equality of variable distributions between the observed and synthetic

farms, the energy distance-based test as described by Székely et al. (2004) was used. Specifically,

the energy distance test was used to examine the equality of both the joint distributions and all

univariate distributions between the observed and synthetic farms computed from:

e(S1, S2) =
n1n2

n1 + n2
(2M12 −M11 −M22)

where Mij =
1

ninj

∑ni
p=1

∑nj

q=1 ∥Vip − Vjq∥, for i, j = 1, 2 and ∥.∥ denotes the Euclidean norm. For

attributes taking discrete values we applied the familiar χ2 test:

χ2 =
K∑
k=1

(
Ak − Âk

)2
Âk

where Ak and Âk denote the frequency of the k-th possible value of the attribute of the observed

and of the synthetic farm, respectively and K is the number of possible values of the attribute. If

χ2 > χ2
0.95,K−1 the equality of the distributions of the observed and the synthetic farms is rejected.

Next, we tested the cultivated area and crop production compositions between the true and

the synthetic farms. We first normalized the data by dividing the cultivated area and production

volume of each product by the total cultivated area and total farm production for each farmer,

respectively. After expressing all variables in percentages,26 we then applied the α-transformation

(Tsagris et al., 2011) and applied the energy test for equality of the two joint distributions. For

either testing procedure, if the p-value is less than 0.05 theH0 is rejected and hence the distributions

cannot be assumed statistically equal.

Additionally, we employed the k-NN algorithm for this purpose. In all cases, we utilized a 10-

fold cross-validation protocol to measure the discrimination performance. Ideally, the two samples,

namely the observed and synthetic farms, should exhibit minimal separability, with the separability

measure approaching 50%. Finally, we applied Principal Component Analysis (PCA) to reduce

the dimensionality of the data, facilitating visual inspection of the observed and synthetic farm

samples in lower-dimensional space. The results showed that the energy test applied to the joint

distributions produced a p-value equal to 1 and in 94.8% of the cases the energy test for equality

of the univariate distributions of the attributes produced p-values larger than 0.05. The energy

26This type of data are termed compositional data (Aitchison, 1982).
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test applied to the compositions of the cultivated areas and the compositions of the production

produced p-values greater than 0.05 as well. The k-NN estimated an accuracy equal to 60% which

is satisfactory.

The results of the PCA along with the density plots of each attribute are presented in the

Appendix C (Figures C.1-C.3). Specfiically, Figure C.3 shows the combined samples of farms

(observed and synthetic), projected onto the 2-D space spanned by the pairs of the first 4 principal

components. The black and red dots indicate the observed and the synthetic sample of farms,

respectively. Accordingly, Figures C.1 and C.2 present the density plots of the cultivated area for

all crops as well as animal stock by the synthetic farmers. Evidently, both samples cannot be

distinguished from one another. Evidently, statistical testing implies that the obtained BN reflects

more than satisfactory the existing farm structures in Thessaly and it can be used to construct the

synthetic population of farmers in the region.

Synthetic Population Generation

Upon the successful generation of our synthetic sample, we proceeded to address the SPG task

using the same approach. Applying KDE for the variables with no parents we generate zeros and

non-zero values of size equal to the number of farms in the region. The available information

from the Agricultural Census was used to calibrate the generated values. For instance, the total

synthetic cultivated area should equal the total true cultivated area and the same applies for the

total production, the number of animals and so forth.27 The values of the variables with parents

was generated using the aforementioned k-NN algorithm using the same strategy as before and

applying the calibration using census information. It should be noted that the calibration was

not applied after all variables have been generated, but at each variable once its values have been

generated.

A crucial constraint imposed on the SPG process was that the cumulative synthetic totals of

cultivated land areas across the different crop and livestock products must align with the corre-

sponding observed totals, which were obtained from Agricultural Census in Thessaly. To fulfill

this constraint, a weighting generation scheme was required. Unfortunately, the existing repre-

sentation weights based on the FADN farm representation weights did not meet this constraint.28

Consequently, we undertook the task of estimating representation weights utilizing the empirical

likelihood method (Owen, 2001). These estimates were conditioned on ensuring that the mean of

the synthetic irrigated land areas equals the observed mean values (census total cultivated land di-

vided by the number of farms), thereby aligning our generated data with the observed agricultural

27Table C.2 in the Appendix shows the calculations for crop and animal production.
28FADN does not include small size farms.
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landscape.

The weights are obtained under the H0 that µµµ = µµµ0
29. The goal is to maximize Wilk’s log-ratio

test statistic with respect to some weights

max
wi

{
n∑

i=1

log (nwi) |
n∑

i=1

wixi = µµµ0, wi ≥ 0,
n∑

i=1

wi = 1

}
.

under the constraint that
∑n

i=1wixi = µµµ0. The introduction of Lagrangean parameters followed

by some tedious algebra, yields the following form of the weights: wi =
1

n

[
1 + λT (xi −µµµ0)

]−1
,

where λ is the Lagrangean parameter introduced and its value is computed via solving the equation
n∑

i=1

1

n

xi −µµµ0

1 + λT (xi −µµµ0)
= 0.

Upon computation of the weights wi we can then generate random samples of farmers. If we

denote by N the total farms in the population the representation weights are given by Nwi, that

is for the i-th observed farmer we will generate Nwi synthetic farmers with similar characteristics.

In total, we generated 34,853 synthetic farms for the region matching the acreage cultivated as well

as crop and livestock production in Thessaly.

For the empirical approximation of crop and livestock technology, we consider one output and

three variable inputs together with irrigation water (summary statistics of these variables are pre-

sented in Table 2). Different crops (including quantities sold off the farm and quantities consumed

by the farm household during the crop year) are aggregated into a single aggregate Tornqvist out-

put index with the revenue shares of each crop or livestock products defining the relevant weights.

On average, total farm production for the synthetic sample is 11,761e varying significantly among

farms. Farm labor is defined as the total working hours devoted to supervision and organizational

activities as well as to field activities such as harvesting, planting, fertilization, spraying and irri-

gation water application. Farm labor includes farm owner, family members and hired workers with

either permanent or seasonal occupation status.30 On average, farmers devote 2,283 hours in their

holdings for all farming activities.

Land input includes total acreage (rented or owned) measured in stremmas. Given the diverse

nature of farm activities, farms in Thessaly are large relative to the rest of Greece, with 122

stremmas on average. Chemical fertilizers include mostly ammonium nitrate and to a lesser extent

urea or ammonium sulfate. The different categories of chemical fertilizers are aggregated into a

single input index using again Tornqvist procedures with cost shares as weights. On average, farms

in the sample applied 3,901 Kgs of chemical fertilizers in their holdings. Irrigation water is measured

in m3. During the whole cropping period, farmers in the sample used 668 m3 of irrigation water.

29The µµµ0 refers to the mean vector obtained from the census totals.
30Given the competitive local labor market conditions we assume that family and hired labor are perfect substitutes,

implying that returns to farm and off-farm work are equal.
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To avoid problems associated with units of measurement, all variables were converted into indices,

with the basis for normalization being their maximum value for the production function and the

aggregate level of nitrates into the aquifer for the nitrate leaching function. This way, all values

are within the (0, 1] range.

Finally, for the allocation of synthetic farms among water reservoirs we assume that each farm

contributed to the pollution of its five nearest water resources in a manner inversely proportional

to its distance from the resource.31 Specifically, the Euclidean distance of the i-th observed farm,

from each of the 62 water resources (dij , i = 1, . . . , 198 unique locations, j = 1, . . . , 62 water

resource sample points) were computed and the 5 smallest distances, d∗ij were kept. The proportion

of the estimated pollution of the i-th farm to its j-th nearest water resource was set equal to

wij =
1/d∗

2

ij∑5
j=1 1/d

∗2
ij

.

Econometric Estimation of Synthetic Farm Technology

The estimated parameters of the translog production frontier along with those of the nitrate leaching

function appear in Table 3 together with their corresponding standard errors obtained using non-

parametric bootstrapping. The first-order parameters of variable inputs, chemical fertilizers and

irrigation water are statistically significant at least at the 5 percent level with their magnitudes

being bounded in the unity interval. The bordered Hessian matrix is found to be negative semi-

definite at the point of approximation and for the 87 percent of observations. Hence, concavity

of the production function is satisfied with respect to all variable inputs, fertilizer application and

irrigation water, implying positive and diminishing marginal products among synthetic farmers in

the sample.

Concerning nitrate leaching function the majority of the estimated parameters are statistically

significant at least at the 5 percent significance level, having the anticipated sign and magnitude.

The bordered Hessian matrix is found to be positive semi-definite for the 93% of the observations

implying that it is convex with respect to both chemical fertilizers and irrigation water application.

Overall unified synthetic farm technology appears on Figure 4, where the blue curve represents

crop production technology and the red curve nature’s nitrate residual generation mechanism with

respect to chemical fertilizers application. As the parameter estimates of both models imply, the

desired output (crop production) is concave and the by-product (leaching) is convex with respect to

fertilizer application. What is evident from the graph is that synthetic farms in Thessaly are both

production and emission inefficient with respect to both technologies. The latter is more evident

in higher chemical fertilizers application.

Based on the parameter estimates of the translog production frontier, output elasticities of

31The results do not vary substantially when the ten nearest water resources were utilised.
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variable inputs, chemical fertilizers and irrigation water are estimated and presented in Table 4.

Irrigation water together with labour input are found to have the greatest percentage impact on

farm’s crop production with their corresponding mean output elasticities being 0.3385 and 0.3447,

respectively. In contrast, production output is found to be less responsive to changes in chemical

fertilizer use with a point estimate of 0.2824. Finally, the corresponding point estimate for utilized

agricultural area is 0.3006, which is an expected result. In total, returns-to-scale were found to

be increasing (1.2662 on the average), implying that synthetic farmers in Thessaly are operating

before their optimal scale of production. In turn, this implies that the average farm size of 122

stremmas is lower than the farm size that would maximize their ray average productivity. This is

an expected outcome given the peculiarities of the agricultural sector in Thessaly.

Estimated individual leaching ranges from a minimum of 0.0001mg NO−
3 l−1 to a maximum

of 0.8146mg NO−
3 l−1 with an average value of 0.0482mg NO−

3 l−1 (see Figure 5). The frequency

distribution of these values depicted in Figure 5 reveal a smooth pattern with the majority of farms

exhibiting leaching levels up to 0.0100mg NO−
3 l−1. However, there is a group of farms with severe

nitrate emission problems exhibiting values above 0.1700mg NO−
3 l−1. Specifically, a large portion

of farmers (46% of sample participants) pollute by a relatively small degree, whereas the 10.1% of

surveyed farms are responsible for more than 0.1700mg NO−
3 l−1 as depicted by the histogram. The

majority of these synthetic farms belong either to the first or to the fourth profit quartile pollute

more the water reservoir (average nitrate leaching levels are above sample mean). Small farms

with lower profit margin are more keen to use excess chemical fertilizers and paying less attention

to water contamination. This is also true for more profitable farms who take full advantage of

the common water resource. Nitrate leaching elasticities reported in Table 4 show that chemical

fertilizers are the foremost important factor (positively correlated with profit margins) especially

on farms with cultivating in sloped plots with eroded soil. Our estimates are in line with the

survey of Hansen and Djurhuus (1996) who found higher nitrate leaching rates associated with

increased use of chemical fertilizers from large farms. Wrong irrigation schedules combined with

excess fertilization and adverse soil conditions further intensifies the water contamination problem.

Nitrate leaching elasticity of irrigation water application is 0.0122 on the average, with an increasing

trend over nitrate leaching quartiles.

Point estimates of both crop production and nitrate emission technical efficiencies are also pre-

sented in Table 4 per estimated individual nitrate leaching quartile. First, crop production efficiency

was found only 50.29% on average ranging from a minimum of 41.23% to a maximum of 68.16%.

These values exhibit a clear decreasing trend over individual nitrate leaching quartiles indicating

that abatement efforts directed to small farms should be accompanied by measures aimed to im-

prove utilization of crop production. Concerning technical efficiency in nitrate leaching, average
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value is higher 65.68% with less variation across synthetic farmers though. It is encouraging that

farms are doing more efficient job in realizing nature’s nitrate residual generation mechanism. Still

though, farmers in Thessaly can decrease individual leaching levels by 35% without changing chem-

ical fertilizer application as long as their know how on nature nature’s nitrate residual generation

mechanism is improved, e.g., more efficient irrigation schedule relative to fertilization, avoid fertil-

izer application in long dry periods. Finally, both estimated and efficient individual leaching rates

per fertilizer application are presented in Figure 6. Leaching is considerably higher at increased use

of chemical fertilizers exhibiting however, a variability among synthetic farms.

Individual Tax Rates

In the EU there are four countries introduced a nitrate fertilizer tax. Finland was the first country

who introduced the tax scheme in 1976. The tax was abolished in 1994 when the country became

a member state of the EU. Until 1992 the tax was applied to chemical fertilizers regardless their

nutrient content. It ranged from 0.006 to 0.09e/kg of fertilizers. After that year the tax was

uniform only on nitrate and phosphorus fertilizers and increased sharply to 0.44e/kg. The tax

system in Finland is somewhat similar to that found for pesticides in that what was once an

environmental charge (implemented on July 1st 1984 for all chemical fertilisers) has graduated into

a tax (since July 1st 1995). Pre-dating the environmental charge was the introduction of a price

regulation charge on nitrogen in commercial fertiliser. After 1995, Finish government introduced

voluntary programs for reduced fertilizer use implemented mainly through the Agri-Environmental

EU Regulation 2078/92. Unlike Finland, Sweden did not abolish their fertiliser tax upon accession

in 1995. The government saw the tax as a good way to finance environmental projects. Apart from

that, the tax as such was expected to have a positive effect on the environment. From that time

on, the tax on fertiliser has been equivalent to about 20% of the price of fertiliser or 0.27e/kg. In

1992, an evaluation was carried out by the Swedish government on the effect of chemical fertilizer

use in agriculture. This evaluation suggested that the tax had some impact on the use of chemical

fertilizer, and thus directly on nitrate and phosphate emissions to water, but the main effect was

indirect through the financing of action programs leading to a decrease in intensive use. This is an

important finding considering the inefficient use of fertilizers by the synthetic farms in Thessaly.

In Austria, the government implemented a tax system on fertilizers in 1986. The tax was

abolished in 1994, when Austria also joined the EU. There were no alternative/replacement policy

instruments implemented even since. Austrian authorities found that after the introduction of the

tax, there was a decrease in the use of nitrogen fertilisers of about 15% during 1986, following the

same trend over the next years, indicating that farmers had revised their nitrogen application plans

due to government intervention. The tax rate until 1991 was 0.25e/kg increased after that year
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to 0.47e/kg very close to the Swedish value. Finally, in Netherlands the government introduced a

levy system at a national level called Minas on the nitrogen and the phosphate surplus in 1998 to

reduce emissions. In summary, certain levels of nitrogen surplus are allowed (the levy-free surplus),

and these are lowered over time. For the surplus above this level the farmer has to pay a levy. The

tax rates in 2003 was set to 2.3e/kg. According to the Dutch government the levy system brought

approximately a 20% reduction in the use of nitrogen fertiliser during the period 1998-2006.

However, in order to introduce optimal policy instruments for environmental regulation, one

should first introduce social values for the pollutants and then to take into account the complex

nature of nitrate leaching from agricultural activities. The standard social planning problem is to

maximize consumer plus producer surplus, using demand functions for the desirable outputs, and

given (positive) input prices, to calculate input cost. Usually, pollutants are evaluated through

a monetized damage function of the form D = h
(
Qk
)
, where k stands for the kth pollutant, for

which it holds that
∂h(·)
∂Qk

≥ 0.32 The damage function is a typical relationship that is used in

environmental economics to capture the consumers’ willingness to pay for environmental qualities.

The latter are not assumed to have intrinsic values, but are evaluated by the man-made goods that

are given up to achieve certain environmental qualities. Assuming competitive farm output prices

and that existing variable-input prices wv
m are capturing their social evaluation, the social planning

problem is:

max
xv ,xq ,xw

Π = pyy −
∑
m

wv
mxvm − wqxq − wwxw −D

s.t. y = f (xv, xq, xw) θy, D = h(QN ),

QN =
∑
i

qi and qi = g (xq, xw, s, r) θq

Assuming interior solutions for all inputs, the necessary first-order condition with respect to

chemical fertilizers is:

py
∂f(·)
∂xq

= wq +
∂h(·)
∂QN

∂g(·)
∂xq

θq

where the second term in the right-hand side can be interpreted as the optimal input base Pigouvian

tax for the pollutant that generates non-point source pollution. Since we have estimated g(·) we only
need a proxy for

∂h(·)
∂QN

. To overcome this problem we use the marginal monetary damage estimated

by Keeler et al. (2016) in their study on the social cost of nitrogen in Minesota. Specifically, Keeler

et al. (2016) measured the social cost of NO−
3 as the present value of the monetary damages

caused by an incremental increase in emitted nitrogen arising from chemical fertilizer application.

Obviously, the social cost of NO−
3 is not uniform across space and time. Instead, changes in

32A by-product becomes a pollutant when the partial derivative of the damage function turns positive.
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management practices will result in different nitrogen-related costs depending on where NO−
3 moves

and the location, vulnerability, and preferences of populations affected. Hence, the range reported

by the authors of the estimated social cost of NO−
3 varies from 0.0 to 0.23 $/kg of fertilizers across

the state. In our study, assuming that the level of environmental quality required does not differ

considerably among regions, we adopt the mean value reported by Keeler et al. (2016) to serve as

a benchmark for policy purposes.

The results are depicted in Figure 7, where individual tax rates are presented per chemical

fertilizer application rate by the synthetic farmers. Specifically, the Pigouvian tax ranges from a

minimum of 0.0712 to a maximum of 0.1732e/kg (approximately, 60% increase between the lower

and the maximum value). As expected, it follows an increasing trend with fertilizer application by

synthetic farms, exhibiting however a rapid burst in farms using more than 32 tonnes of chemical

fertilizers in their plots. Next, Table 5 presents tax rates and revenues per both fertilizer and

irrigation water application rates for the synthetic farmers. As it is shown from the Table, on the

average tax rate increases from 0.0918e/kg of chemical fertilizer to 0.1365e/kg for farmers using

more than 30 tonnes of fertlizers. This change implies approximately a 32% increase in tax rate

between different users. This difference is not negligible and underlines the need of a progressive

rather than a constant nitrate tax rate.

Concerning irrigation water use, the increased trend is also evident but to a lesser extent.

Specifically, on the average individual tax rate increases from 0.1029e/kg for users with less than

4.5 ths of m3 to just 0.1153e/kg for those users applying more than 11 ths of m3 in their fields. This

difference accounts only for the 10% of the tax rate, three times lower than fertilizer application.

Concerning the tax revenues collected by the local government, these are 1,613,291e in total,

depending on irrigation water and chemical fertilizer use, ranging from just 1.08e to 1,558e for

individual farmers. It is interesting the fact that if local government uses these tax revenues to

finance policy initiatives to improve farmers’ know-how concerning the nitrate pollution generating

technology, taxes paid by individual farmers would be considerably less reaching a maximum of

only 735.3e. Calculating average values across municipalities it is obvious that the uniform tax

rate does not reflect the actual social cost incurred by individual farmers throughout the region of

Thessaly. As it shown from Table 6, tax rates vary from a minimum of 0.0862e/kg in Kalampaka

to a maximum of 0.1543e/kg in Sofades. This variability does not coincide with taxes paid on

the average by farmers in each municipality indicating that the uniform mean tax rate does reflect

accurately local conditions. These findings imply that the uniform mean tax adopted by some

European countries in the past does not capture adequately damages caused in the region by the

use of chemical fertilizers.
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Concluding Remarks

In this paper we develop a novel synthetic population generation scheme to approximate more

accurately farm nitrate leaching levels in the Greek region of Thessaly. The model is based on

the estimation of the joint distribution of the variables characterizing farm structures using a

Bayesian network learning together with non-parametric regression models. Synthetic farm data

were constructed using the FADN dataset that describes detail farm structures. Then we adapted

the GME approach suggested by Kaplan et al. (2003) which is incorporated into a specific theoretical

structure describing both crop production technology and nature’s nitrate residual mechanism based

on the multiple production relations model developed by Murty et al. (2012). The model assumes

a specific parametric structure of both technologies using an extensive soil science literature and

the model suggested by Knapp and Schwabe (2008) and Wang and Baerenklau (2014). Using

this complex modeling structure we were able to convert the NPS pollution problem into a PS

one approximating individual nitrate leaching levels for the synthetic population of farmers in the

region

Our empirical results provide a good proxy of the unified synthetic farm technology accommo-

dating appropriately both crop production and nature’s nitrogen residual generating mechanism.

Individual nitrate leaching levels in the region vary from a minimum of 0.0001 mg NO−
3 l−1 to

a maximum of 0.8i46 mg NO−
3 l−1. Farms in the sample, belonging to the lowest and highest

profit quartiles, pollute the underground water resources more than the other quantiles, indicat-

ing the group of farmers where appropriate policy measures should be directed toward. However,

good farming practices are observed among large farms that can be used as a benchmark to lessen

nitrate leaching levels in the area. Using these estimates we also calculated individual tax rates

which turn to be different according to fertilizer use and more importantly vary considerably across

region reflecting differences in soil, environmental and climate conditions. The results suggest that

a uniform tax rate as applied by several European countries is not appropriate and it should be

rather determined according to both fertilizer and irrigation water application.
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Tables and Figures

(a) (b)

Figure 1: (a) Map of Greece with the region of Thessaly highlighted. (b) Map of Thessaly with the
coordinates of the surveyed farms in FADN database.

Figure 2: Map of Thessaly with the coordinates of the water reservoirs. Coloured areas indicate
differences in the estimated total nitrate leaching from the synthetic population of farmers in each
municipality (coding of municipalities appears in Table 1 next). Stock levels per water reservoir
are presented in Table 1.
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Table 1: Nitrate Stock in the Water Reservoirs of Thessaly

Municipality Code mg NO−
3 l−1 Municipality Code mg NO−

3 l−1

Agia AG1 40.9 Larisa LA1 4.0
Almyros AL1 8.4 Larisa LA2 5.5
Almyros AL2 59.7 Larisa LA3 4.0
Almyros AL3 70.4 Mouzaki MO1 12.6
Almyros AL4 107.7 Mouzaki MO2 13.3
Almyros AL5 20.0 Palamas PA1 7.7
Almyros AL6 3.1 Palamas PA2 20.3
Elassona EL1 16.0 Palamas PA3 13.8
Elassona EL2 12.4 Palamas PA4 10.2
Elassona EL3 42.5 Pyli PY1 0.5
Elassona EL4 17.7 Pyli PY2 0.5
Elassona EL5 0.5 Pyli PY3 13.0
Elassona EL6 17.7 Pyli PY4 9.3
Elassona EL7 3.4 Rigas Ferraios RF1 68.0
Farkadona FA1 7.7 Rigas Ferraios RF2 30.4
Farkadona FA2 3.2 Rigas Ferraios RF3 22.4
Farkadona FA3 15.0 Rigas Ferraios RF4 0.5
Farkadona FA4 11.7 Rigas Ferraios RF5 18.5
Farsala FR1 30.7 Sofades SF1 77.1
Farsala FR2 17.7 Sofades SF2 3.3
Farsala FR3 96.5 Sofades SF3 8.3
Farsala FR4 31.8 Sofades SF4 9.2
Farsala FR5 38.1 Sofades SF5 12.9
Farsala FR6 58.1 Sofades SF6 5.3
Kileler KI1 21.4 Tempi TE1 20.6
Kileler KI2 26.9 Trikala TR1 1.9
Kileler KI3 63.4 Trikala TR2 1.9
Kalampaka KL1 1.3 Tyrnavos TY1 9.8
Kalampaka KL2 16.9 Tyrnavos TY2 11.7
Karditsa KR1 123.0 Tyrnavos TY3 10.3
Karditsa KR2 13.5 Volos VO1 61.0

Source: Greek Ministry of Agriculture.
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Figure 3: The BN structure of Thessaly (for the definition of the variables see Tables B2-B11 in
Appendix B).
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Table 2: Descriptive Statistics of the Synthetic Population of Farmers in Thessaly

Variable Mean Min Max St. Dev.

Farm Production (in e) 11,761 771 158,728 10,545
Land (in stremmas. 1 stremma equals 0.1 ha) 122 4.2 1,486 107
Labour (in hrs) 2,283 615 35,655 1,070
Irrigation Water (in m3) 668 8 5093 667
Chemical Fertilizers (in Kgs) 3,901 17 33,829 3,653
Precipitation (in mm) 266 240 347 44
Slope (0%-70.2%. 100% is horizontal line) 21 4 61 10
Soil Erosion (% of land downgraded. Values 0-50.8) 5.862 0.044 41.22 9.121
Nitrogen levels in the reservoirs (in mg NO−

3 l−1) 24.69 0.500 123 23.79

No of water reservoirs 62
No of surveyed farms 509
No of farms in the synthetic population 34,853
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Table 3: Parameter Estimates of the Translog Production and Nitrate
Leaching Frontiers for the Synthetic Population of Farmers in Thessaly

Parameter Estimate Std Error Parameter Estimate Std Error

Crop Production Frontier Nitrate Leaching Frontier
β0 0.3046 0.0685 δq0 0.1000 2.9798
βv
A 0.1966 0.0745 δqR 0.0690 0.0540

βv
L 0.1368 0.0525 δqS 0.0385 0.0232

βq 0.1467 0.1289 δqE 0.0049 0.0342
βw 0.1268 0.0870 δqq0 1.3536 0.6759
βvv
AA -0.0227 0.0098 δqqR 0.1879 0.1082

βvv
LL -0.0106 0.0007 δqqS 0.1749 0.0687
βqq -0.0101 0.0048 δqqE 0.1773 0.1606
βww -0.0103 0.0018 δw0 0.0705 0.0378
βvv
AL -0.0105 0.0017 δwR 0.1499 0.0021
βqv
A 0.0107 0.0041 δwS 0.0489 0.0008

βqv
L -0.0109 0.0032 δwE 0.0661 0.0093

βqw -0.0296 0.0029
βwv
A 0.0108 0.0104

βwv
L -0.0296 0.0223

Synthetic Population: 34,853 farms

where A stands for area, L for labour, R for precipitation level, S for the slope of
the land and, E for soil erosion. The corresponding standard errors are obtained using
non-parametric bootstrap.
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Figure 4: Production Frontier and Nitrate Leaching Functions
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Table 4: Crop Output and Nitrate Leaching Elasticities, Returns-to-Scale and Farm Size per Nitrate Leaching Quartile
for the Synthetic Farms

Crop Output Elasticities Leaching Elasticities Farm Size Efficiency in
Area Labour Fertilizers Water RTS Fertilizers Water (in str) Production Leaching

1st Q 0.3101 0.3628 0.3050 0.3725 1.3504 0.0510 0.0001 72.9 52.86 66.63
2nd Q 0.3106 0.3485 0.2830 0.3396 1.2817 0.0523 0.0016 88.4 50.36 65.61
3rd Q 0.3003 0.3381 0.2733 0.3240 1.2357 0.0543 0.0076 125.6 49.17 65.21
4th Q 0.2815 0.3292 0.2682 0.3180 1.1970 0.0585 0.0393 203.0 48.78 64.17

Mean 0.3006 0.3447 0.2824 0.3385 1.2662 0.0540 0.0122 122.5 50.29 65.68
StdDev 0.0449 0.0422 0.0429 0.0403 0.1183 0.0037 0.0624 106.9 6.37 0.52
Median 0.2961 0.3381 0.2746 0.3337 1.2551 0.0529 0.0022 88.8 49.49 65.36

Elasticities are computed at the mean values of all exogenous variables and distortion parameters.

Table 5: Tax Rates and Revenues for the Synthetic Farms According to Water and Fertilizer Use

Water Fertilizers (in tonnes)
(in ths of m3) ≤10 10-15 15-20 20-25 25-30 >30 Mean

Tax Rate (in e/kg):
≤4.5 0.0856 0.0912 0.0970 0.1042 0.1125 0.1270 0.1029
4.5-11 0.0915 0.0976 0.1037 0.1104 0.1197 0.1371 0.1100
>11 0.0984 0.1035 0.1071 0.1139 0.1237 0.1454 0.1153
Mean 0.0918 0.0974 0.1026 0.1095 0.1186 0.1365 0.1094

Average Tax Paid under leaching inefficiency (in e/farm):
≤4.5 3.6 10.0 21.0 37.4 74.7 148.1 49.1
4.5-11 3.6 10.7 22.5 39.7 79.1 161.6 52.9
>11 4.1 11.3 23.2 41.0 81.2 176.1 56.2
Mean 3.7 10.7 22.2 39.4 78.4 161.9 52.7

Total revenues (in e): 1,613,291 Min: 1.08 Max: 1,558

Average Tax Paid under leaching efficiency (in e/farm):
≤4.5 1.9 5.4 10.9 18.9 38.3 75.8 25.2
4.5-11 1.8 5.4 10.9 19.1 38.2 78.1 25.6
>11 2.0 5.5 11.0 19.2 38.0 83.4 26.5
Mean 1.9 5.4 10.9 19.1 38.1 79.1 25.8

Total revenues (in e): 788,674 Min: 0.08 Max: 735.3
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Figure 6: Estimated and Efficient Individual Nitrate Leaching Levels

36



Table 6: Average Tax Rates and Revenues in the Different Municipalities of Thessaly

Municipality Tax Tax Municipality Tax Tax Municipality Tax Tax
Rate Paid Rate Paid Rate Paid

Agia 0.1099 49.3 Almyros 0.1424 28.4 Elassona 0.1087 45.4
Farkadona 0.0892 53.5 Farsala 0.1103 117.3 Kileler 0.1348 64.2
Kalampaka 0.0862 32.7 Karditsa 0.1359 101.0 Larisa 0.0987 71.7
Mouzaki 0.0955 67.8 Palamas 0.1093 68.0 Pyli 0.0875 35.4
Rigas Ferraios 0.1236 15 Sofades 0.1543 78.9 Tempi 0.1078 32.0
Trikala 0.0887 48.3 Tyrnavos 0.0966 28.4 Volos 0.0921 14.6
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Figure 7: Tax Rate per Fertilizer Application
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