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Abstract

Simplicial-simplicial regression refers to the regression setting where both the responses and predictor

variables lie within the simplex space, i.e. they are compositional. For this setting, constrained least

squares, where the regression coefficients themselves lie within the simplex, is proposed. The model is

transformation-free but the adoption of a power transformation is straightforward, it can treat more

than one compositional datasets as predictors and offers the possibility of weights among the simplicial

predictors. Among the model’s advantages are its ability to treat zeros in a natural way and a highly

computationally efficient algorithm to estimate its coefficients. Resampling based hypothesis testing

procedures are employed regarding inference, such as linear independence, and equality of the regression

coefficients to some pre-specified values. The performance of the proposed technique and its comparison

to an existing methodology that is of the same spirit takes place using simulation studies and real data

examples.

Keywords: compositional data, regression, quadratic programming

1 Introduction

Compositional data1 are non-negative multivariate vectors whose variables (typically called components)

conveying only relative information. When the vectors are scaled to sum to 1, their sample space is the

standard simplex

SD−1 =

{
(y1, ..., yD)⊤

∣∣∣∣yi ≥ 0,

D∑
i=1

yi = 1

}
, (1)

where D denotes the number of components.

Examples of such data may be found in many different fields of study and the extensive scientific

literature that has been published on the proper analysis of this type of data is indicative of its prevalence

in real-life applications2.

The widespread occurrence of this type of data in numerous scientific fields that involve predictors

has necessitated the need for valid regression models which in turn has led to several developments in

this area, many of which have been proposed recently. Most of these regression models have a restricted

1In the field of econometrics they are known as multivariate fractional data (Mullahy, 2015, Murteira and Ramalho,

2016).
2For a substantial number of specific examples of applications involving compositional data see Tsagris and Stewart

(2020).
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attention to the case of a simplicial response (simplicial-real regression setting), or a simplicial predictor

(real-simplicial regression setting). The case of simplicial-simplicial regression, where both sides of the

equation contain compositional data has not gained too much attention, and this is the main focus of

this paper.

Most published papers regarding the last case scenario involve transformations of both simplicial

sides. Hron et al. (2012), Wang et al. (2013), Chen et al. (2017) and Han and Yu (2022) used a log-

ratio transformation for both the response and predictor variables and performed a multivariate linear

regression model. Alenazi (2019) transformed the simplicial predictor using the α-transformation (Tsagris

et al., 2011) followed by principal component analysis and then employed the Kullback-Leibler divergence

regression (or multinomial logit) model (Murteira and Ramalho, 2016). The exception is Fiksel et al.

(2022) who proposed a transformation-free linear regression (TFLR) model whose coefficients lie within

the simplex and are estimated via minimization of the Kullback-Leibler divergence (KLD) between the

observed and the fitted simplicial responses.

An important issue with compositional data analysis is the presence of zeros that prohibit the use

of the logarithmic transformations, and hence the approach of Hron et al. (2012), Wang et al. (2013)

and Chen et al. (2017), an issue that is not addressed in most papers. The classical strategy addressing

this issue is to replace the zero values by a small quantity (Aitchison, 2003). However, the approach of

Alenazi (2019) and handles the zero cases in a natural manner. This is not true in general for the TFLR

model though.

Tsagris et al. (2011) categorized the compositional data analysis approaches into two main categories,

the raw data approach and the log-ratio approach. A perhaps better classification would be the raw data

and the transformation-based approaches. Moving along the lines of the raw data approach the paper

proposes the use of the same transformation-free linear regression model, as in Fiksel et al. (2022),

when both the response and the predictor variables are simplicial. However, the adoption of a power

transformation in the simplicial response generalizes the model. The regression coefficients are estimated

via simplicial constrained least squares (SCLS) and as the name implies, least squares is the loss function

used to estimate the regression coefficients which are constrained to lie on the simplex. This in turn

implies that the expected value of the simplicial response can be expressed as a Markov transition from

the simplicial predictor. The proposed SCLS model allows for more than one simplicial predictor, further

allows the possibility of assigning weights to the simplicial predictors, and treats zero values naturally, in

both the simplicial response and the predictor variables. The assumption of linear independence between

the simplicial variables, and hypotheses regarding the mateix of regression coefficients can be tested using

resampling techniques. Evidently, the SCLS is similar in spirit to the TFLR, but they have different

loss (or objective functions). The TFLR model employs the Expectation-Maximization (EM) algorithm,

whereas the SCLS model is based on quadratic programming, thus it enjoys a really low computational

cost.

The problem of constrained least squares (CLS), with a univariate real response, is not new. Liew

(1976) and Wets (1991) have studied the asymptotic properties of constrained regression and have es-

tablished the consistency of the regression coefficients, assuming the linear specification is correct. Wets

(1991) specifically formalized the asymtptotic properties of the regression coefficients for the case of the

M-estimators, whose least squares is a special case. More recently, James et al. (2019) proposed the

constrained LASSO, a penalized version of the CLS. The current work though differs from these works

in that it deals with the case of a constrained multivariate response.

The rest of the paper is structured as follows. Section 2 reviews some simplicial-simplicial regression

models, while Section 3 introduces the SCLS model, and discusses several cases related to the TFLR

model as well. Section 4 contains Monte-Carlo simulation studies comparing the SCLS to the TFLR

model in terms of a) type I and type II errors of the linear independence assumption, b) discrepancy of

the estimated regression coefficients, and c) computational cost. The SCLS model is then applied to real
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data for illustration, and comparison to the TFLR model, purposes, while the last section concludes the

paper.

2 Review of simplicial-simplicial regression models

Two commonly used log-ratio transformations, as well as a more general α–transformation are defined,

followed by some existing regression models for simplicial-simplicial regression.

2.1 Log-ratio simplicial-simplicial regression models

Aitchison (1982) suggested applying the additive log-ratio (alr) transformation to compositional data

prior to using standard multivariate data analysis techniques. Let y = (y1, . . . , yD)
⊤ ∈ SD−1, then the

alr transformation is given by

v = {vj}j=1,...,D−1 =

{
log

yj
y1

}
j=2,...,D

, (2)

where v = (v1, . . . , vD−1) ∈ RD−1. Note that the common divisor, u1, need not be the first component

and was simply chosen for convenience.

An alternative transformation proposed by Aitchison (1983) is the centred log-ratio (clr) transforma-

tion defined as

u = {uj}j=1,...,D =

{
log

yj
g (y)

}
j=1,...,D,

(3)

where g (y) =
∏D

j=1 y
1/D
j is the geometric mean.

The clr transformation (3) was proposed in the context of principal component analysis with the

potential drawback that
∑D

j=1 uj = 0, so essentially the unity sum constraint is replaced by the zero sum

constraint. To overcome the singularity problem, Egozcue et al. (2003) proposed multiplying Eq. (3) by

the (D−1)×D Helmert sub-matrix H (Dryden and Mardia, 1998, Lancaster, 1965, Le and Small, 1999),

an orthogonal matrix with the first row omitted, which results in what is called the isometric log-ratio

(ilr) transformation

z0 = Hu, (4)

where z0 = (z0,1, . . . , z0,D−1)
⊤ ∈ RD−1. Note that H may be replaced by any orthogonal matrix which

preserves distances (Tsagris et al., 2011).

Simplicial-simplicial regression based on the ilr tranformation (Chen et al., 2017, Han and Yu, 2022,

Hron et al., 2012, Wang et al., 2013) is similar to alr regression and is carried out by transforming both

the response and the predictor variables via the alr (2) or the ilr (4) transformations

E(vk|X) = β0k +

Dp−1∑
j=1

βjkalr(Xj) and E(z0k|X) = β0k +

Dp−1∑
j=1

βjkilr(Xj), k = 1, . . . , Dr − 1,

where Dr and Dp denote the number of components of the response and compositional variables, respec-

tively.

Moving along the same lines, (Wang et al., 2009) proposed partial least squares regression where

both the response and the predictor variables are first transformed using the ilr transformation (4), and

the PLS is applied to the transformed data. Kernel regression (Di Marzio et al., 2015), such as the

Nadaraya-Watson or local polynomial regression, may also be applied in a similar manner.

The fitted values for both the alr and ilr transformations are the same and are therefore generally back

transformed onto the simplex using the appropriate inverse transformation for ease of interpretation. The

drawback of these regression models is their inability to handle zero values in the compositional response

data. The popular solution is to apply zero substitution strategies (Aitchison, 2003, Mart́ın-Fernández

et al., 2012) prior to fitting these regression models.
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2.2 Kullback-Leibler divergence principal component regression

Zero imputation strategies strategy, however, can produce regression models with predictive performance

worse than regression models that can treat zeros naturally (Tsagris, 2015a). When zeros occur in the

data or more flexibility is required, the Box-Cox type transformation proposed by Tsagris et al. (2011)

may be employed. Specifically, Aitchison (2003) defined the power transformation as

wα =

{
yαj∑D
l=1 y

α
l

}
j=1,...,D

(5)

and Tsagris et al. (2011) subsequently defined the α-transformation, based on (5), as

zα =
1

α
H (Dwα − 1D) , (6)

where H is the Helmert sub-matrix and 1D is the D-dimensional vector of 1s.

While the power transformed vector wα in Eq. (5) remains in the simplex SD−1, zα in Eq. (6) is

mapped onto a subset of RD−1. Furthermore, as α → 0, Eq. (6) converges to the ilr transformation3 in

Eq. (4) (Tsagris et al., 2016), provided no zero values exist in the data. For convenience purposes, α is

generally taken to be between −1 and 1, but when zeros occur in the data, α must be restricted to be

strictly positive.

The benefit of the α-transformation over the alr and clr transformations is that it can be applied

even when zero values are present in the data (using strictly positive values of α), offer more flexibility

and yield better results (Tsagris, 2015b, Tsagris et al., 2016, Tsagris and Stewart, 2022).

In the context of simplicial-real regression, Murteira and Ramalho (2016) minimize the KLD

min
βββ

n∑
i=1

y⊤
i log

yi

ŷi
= max

βββ

n∑
i=1

y⊤
i log ŷi, (7)

where n denotes the sample size of the ui the observed simplicial response data and ûi = (ŷi1, . . . , ŷiD)
⊤

are the fitted simplicial response data which have been transformed to simplex space through the trans-

formation

ŷij =


1

1+
∑Dr

l=2 ex
⊤
i

βββl
if j = 1

ex
⊤
i βββj

1+
∑Dr

l=2 ex
⊤
i

βββl
for j = 2, ..., Dr,

 (8)

where where x⊤
i denotes the i-th row of the design matrix X containing the, non-simplicial, predictor

variables, and βββj = (β0j , β1j , ..., βpj)
⊤
, j = 2, . . . , D (Tsagris, 2015a,b).

The KLD regression model in Eq. (7), also referred to as Multinomial logit regression is a semi-

parametric regression technique, and unlike alr and ilr regression it can handle zeros naturally, since

limx→0 x log x = 0.

Alenazi (2019) performed principal component analysis (Jolliffe, 2005) on the α-transformed simplicial

predictor X, and then used the projections onto the first k principal components as Euclidean predictors

to the KLD regression model. This approach focuses on improving the predictive performance of the alr

and ilr regression models, while increasing the computational cost, as the value of α and the number k

of the principal components must be tuned via cross-validation4.

2.3 The TFLR model

The TFLR model (Fiksel et al., 2022) relates the simplicial response to the simplicial predictor via a

linear transformation

E(Yk|X) =

Dp∑
j=1

BjkXj , (9)

3The scaling factor D exists to assist in the convergence.
4For a comparison of this approach to the TFLR model, the reader is addressed to Fiksel et al. (2022).
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where B itself belongs to the simplex, B ∈ RDp×Dr |Bjk ≥ 0,
∑Dr

k=1 Bjk = 1. Estimation of the elements

of B takes place by minimizing the KLD as in Eq. (7)

min

{
n∑

i=1

Dr∑
k=1

yik log

(
yik∑Dp

j=1 Bjkxij

)}
= max


n∑

i=1

Dr∑
k=1

yik log

Dp∑
j=1

Bjkxij

 . (10)

The aforementioned approach allows for zero values in the response variable, but not for the simplicial

predictor, in general. Think for example the case of an observation xi = (xi1, xi2, 0, 0), where xi1 and xi2

are different from zero and and the k-th column of the estimated matrix B is equal to (0, 0, B3k, B4k)
⊤,

where both B3k and B4k are not zero. Another possibility is when a column of the B matrix is full of

zeros. These two cases will produce xikBik = 0 and hence (10) cannot be computed5.

3 The simplicial constrained least squares model

The SCLS model adopts the same link as TFLR (9) between the simplicial response and predictor

variables, but only this time the elements of B are estimated by minimizing the squared loss

SL(B) =

n∑
i=1

Dr∑
k=1

yik −
Dp∑
j=1

BjkXj

2

= tr (Y −XB) (Y −XB)
⊤

∝ 2

[
−tr

(
Y⊤XB

)
+

1

2
tr
(
B⊤X⊤XB

)]
. (11)

3.1 The SCLS model and quadratic programming

Quadratic programming solves the following problem

min
b

{
−d⊤b+

1

2
b⊤Db

}
, under the constraints A⊤b ≥ b0. (12)

The SL(B) though (11) is minimized via quadratic matrix programming, but it can be formulated

under the quadratic programming framework6, as in the constrained minimization formula in Eq. (12).

The D matrix is a Drp ×Drp diagonal matrix, where Drp = Dr ×Dp, and is related to the X⊤X in the

following manner

D = IDr
⊗X⊤X =


X⊤X 0 . . . 0

0
. . . 0

...
... 0

. . . 0

0 . . . 0 X⊤X

 , (13)

where ⊗ denotes the Kronecker product and IDr
is the Dr ×Dr identity matrix.

The A⊤ matrix can be broken down two three sub-matrices, the Dr × Drp A1, the Drp × Drp A2

and the the Drp ×Drp A3, one stacked under the other,

A⊤ =

 A⊤
1

A⊤
2

A⊤
3

 = A⊤ =

 IDr
. . . IDr

IDrp

−IDrp

 .

5This phenomenon may occur with the KLD regression model as well but it is rather highly unlikely.
6The SCLS model along with all relevant functions used throught this paper has been implemented in the R package

Compositional (Tsagris et al., 2024) which makes use of the R package quadprog (Turlach et al., 2019) that has implemented

the algorithm of Goldfarb and Idnani (1983) to minimize Eq. (11).

5



� The A⊤
1 matrix contains the identity matrix IDr , Dp times, one next to the other

A⊤
1 = (IDr

, . . . , IDr
) .

This is related to the unity sum constraint of the row coefficients. This means that

A⊤
1 b = (IDr , . . . , IDr )b = (1, . . . , 1)

⊤
.

� The A⊤
2 matrix is the identity matrix IDrp

A⊤
2 = IDrp

.

This is related to the fact that all coefficients take non-negative values, thus

A⊤
2 b = IDrpb ≥ (0, . . . , 0)

⊤
.

� The A⊤
3 matrix is the negated identity matrix −IDrp

A⊤
3 = −IDrp

.

This is related to the fact that the values of all coefficients must be less than or equal to 1, and hence

A⊤
3 b = −IDrp

b ≥ (−1, . . . ,−1)
⊤

(or IDrp
b ≤ (1, . . . , 1)

⊤
).

The b relates to the B matrix via the vectorization operation b = vec (B), that is, each column of

the matrix is stacked one under the other. Finally, the b0 vector contains the Dp-dimensional vector of

1s, jDp
, that corresponds to the unity sum constraint of the rows of B (linked to the A⊤

1 matrix), the

Drp-dimensional vector of 0s, 0Drp
, corresponding to the fact that all elements Bjk of B are non-negative

(linked to the A⊤
2 matrix) and finally the Drp-dimensional vector of -1s, −jDrp

, corresponding to the

fact that all elements Bjk of B are at bounded by unity from above (linked to the A⊤
3 matrix)

b0 =
(
jDp

,0Drp
,−jDrp

)⊤
.

3.2 Interpretation of the regression coefficients

Interpretation of the resulting estimated coefficients is a crucial aspect of a regression model if one

is interested in making inference about them7. Tsagris et al. (2023) for instance proposed some non-

parametric regression models that do not estimate coefficients, and thus visualized the (non-linear) effects

of the predictor variables graphically. SCLS on the other hand yields regression coefficients and being

a transformation free regression model, interpretation of its regression coefficients has similarities to the

interpretation of the coefficients of the regression model with the alr (2) transformation. In the latter, a

change in a predictor variable refers to a relative change in the components of the simplicial response,

and in the SCLS, the interpretation is somewhat similar. If xj increases by δ, while xl decreases by the

same amount, ceteris paribus, the expected change of y is equal to δ (Bj −Bl), where j and l denote

rows. Assume for instance the following form of the matrix of regression coefficients

B =


0.20 0.40 0.40

0.10 0.30 0.60

0.30 0.35 0.35

0.50 0.40 0.30

 (14)

If the first component of the predictor increases by 0.1, while the second component decreases by the

same amount, the expected change in the response is equal to 0.1 (0.2− 0.1, 0.4− 0.3, 0.4− 0.6) =

(0.01, 0.01,−0.02). While this interpretation is easy to understand it entails a perhaps minor down-

side. The interpretation is not universally applicable, as an expected change may lead to a point outside

the simplex.

7Hypothesis testing for the parameters relies upon resampling techniques (presented next) due to the lack of parametric

assumptions imposed on the coefficients.
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3.3 Visualization of the regression coefficients

In the case of a 3-part simplicial response, the coefficients can also be visualized using the ternary

diagram, as in Figure 1, that contains the 4 rows of the B matrix in Eq. (14). The interpretation of

the ternary diagram is as follows. A point close to a vertex indicates high proportion in that vertex-

associated component, while a point close to an edge opposite a vertex, indicates a low value in the

vertex-associated component and finally a point that lies close to the barycentre of the triangle indicates

almost equal values in all components. The third value of the second row of the matrix (B23) is equal to

0.60 and thus closer to the top vertex, whereas the third row values are similar, and hence B3 lies close

to the barycentre of the triangle. When the (row-)coefficients of a component of the simplicial predictor

take values to the barycenter, i.e. (1/Dr, . . . , 1/Dr) this indicates that the particular component of the

simplicial predictor does not carry too much statistical information. On the contrary, the further the

coefficients associated with a component of the simplicial predictor are from the barycentre, the more

information this component carries. In this simple example, the third component does not seem very

important, because the third row coefficients (B3) are close to the barycentre. The second component

(B2) of the simplicial predictor on the other hand, is probably the most important component, because

its vector of coefficients lie the furthest from the barycentre among the other three vectors of coefficients.

3.3.1 Confidence intervals for the regression coefficients

Confidence intervals for the true parameters can be constructed using non-parametric bootstrap (Fiksel

et al., 2022) but the drawback is that the lower and upper values do not sum to unity. Confidence regions

on the other hand are more intuitive. They are relatively easy to compute for 3-part simplicial responses

and can be visualized in a ternary diagram in that case8. Another non-parametric option would be to

use empirical likelihood (Owen, 2001), but to produce simultaneous confidence regions for all sets of

regression coefficients would be computationally hard, especially as the dimensionality of the simplicial

predictor, Dp, increases. To ease the computational burden one could produce profile confidence regions

instead. Following Fiksel et al. (2022), the minimum volume ellipsoid (Van Aelst and Rousseeuw, 2009)

that contains the 95% of the bootstrap based coefficients is estimated and its ellipsoid hull is computed

using the algorithm of Pison et al. (1999).

Figure 1: Ternary plot of the example matrix of coefficients B of Eq. (1).

8In case of 4 components one could use a trinagular pyramid that has four equilateral triangles with all edges equal in

length.
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3.4 A test of linear independence

Following Fiksel et al. (2022) a test of linear independence between Y and X that relies upon permuta-

tions is proposed. If Y is linearly independent of X, then E(Y|X) = E(Y). The test statistic utilized by

Fiksel et al. (2022) is based upon the KLD, but in the SCLS model it will be based upon the SLr (B).

The steps to compute the permutation based p-value are delineated below.

Step 1 Compute SLobs (B) using the observed data Y and X.

Step 2 Create Xr by permuting at random the rows of X.

Step 3 Compute SLr (B) using Y and Xr.

Step 4 Repeat Steps 2 and 3 R times (e.g. R = 999).

Step 5 Calculate the permutation based p-value =
∑R

r=1 I[SLr(B)≤SLobs(B)]+1

R+1 .

3.5 A test for specific values imposed on regression coefficients

In order to test the null hypothesis that B = B0 versus the alternative that at least one of the elements

of B differs, the permutation technique may be employed as well. One such example is the case of

Bj1 = . . . = BjDr
= 1/Dr for some j, 1 ≤ j ≤ Dp, indicating that the j-th component is not important.

Below are two examples where this test could be applied.

Amalagamation of components refers to summing the values of at least two components. For in-

stance take the simplicial vector x = (x1, x2, x3, x4). An example of an amalgamation would be

x∗ = (x1, x2 + x3, x4). In the regression case this would imply that for some given components of

the simplicial predictor, e.g. 1 ≤ l1, l2 ≤ Dp and l1 ̸= l2, the expected value of the simplicial response is

written as

E(Yk|X) =

Dp∑
j ̸=l1,l2

BjkXj +Bl1kXl1 +Bl2kXl2 =

Dp∑
j ̸=l1,l2

BjkXj +Bl1k (Xl1 +Xl2) , (15)

This implies to test for equality of two rows of the matrix B, for instance that Bl1 = Bl2 , where Bl

denotes the l-th row of the matrix B. The steps are similar to the linear test of independence where

the difference is noticed at Step 2. Instead of permuting the rows of the simplicial predictor X, its

two columns, the components (xl1 ,xl2) are permuted. The rows of X are kept constant, but those two

columns are permuted at random.

If this hypothesis is not rejected it implies that these two components can be amalgamated and form

a new simplicial predictor with Dp − 1 components. Evidently, the same procedure could be applied to

the simplicial response and in that case one ends up with an amalgamated simplicial response and in

that case the hypothesis would refer to the equality of two columns of the matrix B.

A sub-composition stems from a composition by removing at least one component and rescaling

the rest of the values to some to unity. The resulting null hypothesis in this regression setting is

Bj1 = . . . = BjDr
= 0 for some j, 1 ≤ j ≤ Dp. However, there is an associated problem with this, the

rescaling part, which in order to be valid the property of sub-compositional coherence9 (Aitchison, 2003)

should be met and in this case it is not. However, the theoretical implications of the sub-compositionality

are not known, and hence this test perhaps requires more investigation.

The hypothesis B1k = . . . = BDpk = 0 for some k, 1 ≤ k ≤ Dr is also meaningful as it implies that the

k-th component of the simplicial response is not affected by any component of the simplicial predictor.

Note however that this hypothesis cannot be tested by the TFLR for the reason of introducing zeros to

the fitted values.

9This property refers to the invariance of the results when the full composition or the sub-composition is used.
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3.6 More than one simplicial predictors

The SCLS model can be extended to the case of M (M > 1) simplicial predictors, in which case Eq. (9)

may be written as

E(Yk|X1, . . . ,XM ) =

M∑
m=1

Dp∑
j=1

Bm
jk

M
Xm

j , (16)

where the division of the matrix of coefficients B by M ensures that the estimated simplicial responses

sum to unity.

Fiksel et al. (2022) did not examine this case, but TFLR can be applied to this case as well. The

drawback of the SCLS model in this case is that the D matrix (13) will not be positive definite, a

drawback which can be handled by the algorithm of Higham (2002) (using Dykstra’s correction) that

forces positive definiteness. The algorithm yields an approximate solution which is deemed satisfactory.

The implication of Eq. (16) is that each simplicial predictor carries equal weight. One can escape this

restrictive assumption by assigning weights to the regression coefficient matrix of each set of simplicial

predictors, and hence write Eq. (16) as

E(Yk|X1, . . . ,XM ) =

M∑
m=1

Dp∑
j=1

amBm
jkX

m
j , (17)

where am ≥ 0 for m = 1, . . . ,M and
∑M

m=1 = 1, are the weights assigned to each set of simplicial

predictors. Thus, the previous case (16) can be seen as a special case of (17) where a1 = . . . = am = 1/M .

The weights may be computed using quadratic programming again, but in doing so the dimensionality of

the required matrix D will explode as the number of simplicial predictors and the number of components

of each increase, thus one can use simpler optimizers in R. The possibility of allowing for more than one

simplicial predictors in either model opens the door to conditional association testing and subsequently

to simplicial variable selection.

3.7 The α-SCLS and α-TFLR models

Another possible extension is to apply the power transformation (5) to the simplicial response.

E(Wα|X) = XB, (18)

and their predictions are then back-transformed using the inverse of (5)

ŷ =

{
ŵ

1/α
j∑D

l=1 ŵ
1/α
l

}
j=1,...,Dr

.

The extension will be denoted α-SCLS and α-TFLR models and evidently when α = 1 the SCLS and

TFLR models, respectively, are recovered. The power transformation strategy was shown to improve

the accuracy in the classification setting (Tsagris, 2014), at the cost of introducing the interpretation-

predictive performance trade-off. The cost of hard to interpret estimated regression parameters is com-

pensated by the benefit of an increased predictive performance.

3.8 Examples of application of the SCLS model

Similarly to the TFLR, the SCLS (and subesequently the α-SCLS and α-TFLR) can also be applied to

a series of other regression settings.
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3.8.1 AR(1) model

In the AR(1) model formulation, the current expected simplicial response is a linear function of its lagged

time response, E(Yt|Yt−1) = Yt−1B, thus the matrix B can be interpreted as the matrix of transition

probabilities of the states of the simplicial response at time t − 1. The linear independence test in this

case translates to testing the assumption of no auto-correlation. The case of allowing for more than

one simplicial predictors extends the 1 lag to p lags, thus extend the AR(1) model to the AR(p) model.

However, there is no theory to this end, what are implications of such a model (i.e. unit root testing,

etc.) and thus this requires more research.

3.8.2 Categorical predictor or response

The case of a categorical predictor can be addressed via the SCLS. In that case, each row of the simplicial

predictor is written as xi = ej , where ej denotes a vector with 0 Dp elements except its j-th element

that is 110, yielding a one-way analysis of variance type of model.

The linear independence test translates to to testing the assumption of equal simplicial population

means. The latter case was studied by Tsagris et al. (2017) using parametric and non-parametric

procedures. However, simulation studies (not presented) replicating a case scenario from Tsagris et al.

(2017) comparing the SCLS and TFLR with the bootstrap version of the two sample James test showed

that the latter is size correct, but the former two produced inflated type I errors. Hence, in contrast to

the suggestion made by Fiksel et al. (2022), there is evidence against the use of SCLS and TFLR models

for the purpose of hypothesis testing of equality of simplicial means.

Fiksel et al. (2022) stated that when the response is categorical this is equivalent to performing

multinomial linear regression, with an identity link. The task is also equivalent to discriminant analysis

for which better, non-linear, alternatives exist (Lu et al., 2024, Tsagris et al., 2016).

4 Simulation studies

Simulation studies were conducted to compare the SCLS and TFLR regression models with the axes of

comparison being a) the type I and II errors, b) the discrecpancy of the estimated matrix of coefficients,

and c) the computational cost (running time). For the first two axes, the simplicial response consisted

of Dr = (3, 5, 7, 10) components, while the simplicial predictor contained only 3 components, and the

sample sizes considered were n = (50, 100, 200, 300, 500), but for the third axis, the sample size was larger.

The results were averaged over 1, 000 replicates for each combination of dimensionality and sample size.

4.1 Type I error

Conforming to the null hypothesis of linear independence, both the values of the simplicial response

(Y) and predictor (X) were generated from Dirichlet distributions, independently of one another. The

values of the simplicial response were generated from a Dir(a), whose parameters a were drawn from

the uniform distribution U(1, 5), while the values of the simplicial predictor were generated from the

Dir(1, 1, 1). The estimated type I error for both models is presented in Table 1, where evidently the

results are similar, the permutation test attains the correct size, regardless of the model utilized, sample

size and the dimensionality of the simplicial response.

10This could also be seen as an extreme case of compositional data, where one component takes a value of 1 and all other

component have zero values.
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Table 1: Estimated type I error of both models, under the null hypothesis of linear independence.

Number of response components

Sample size Model Dr = 3 Dr = 5 Dr = 7 Dr = 10

n=50 SCLS 0.046 0.050 0.055 0.045

TFLR 0.045 0.054 0.049 0.039

n=100 SCLS 0.038 0.058 0.050 0.040

TFLR 0.038 0.059 0.054 0.040

n=200 SCLS 0.058 0.047 0.057 0.050

TFLR 0.053 0.056 0.062 0.056

n=300 SCLS 0.046 0.043 0.050 0.044

TFLR 0.046 0.036 0.051 0.047

n=500 SCLS 0.046 0.046 0.052 0.051

TFLR 0.042 0.043 0.045 0.042

4.2 Type II error

The response now was linked to the predictor in a linear manner, as in Eq. (9) with some pre-determined

values for B depending on Dr. Random vectors xi, for i = 1, . . . , n, were generated from Dir (1, 1, 1),

then transformed into µµµi = xiB and finally random vectors yi were generated from Dir (5µ1, . . . , 5µDr
)11.

The estimated powers for both models are presented in Table 2. For the small sample sized data,

TFLR seems to produce higher estimated power levels than the SCLS, but as soon as the sample size

increases their estimated power is equal.

Table 2: Estimated power of both models.

Number of response components

Sample size Model Dr = 3 Dr = 5 Dr = 7 Dr = 10

n=50 SCLS 0.977 1.000 0.996 0.942

TFLR 0.995 1.000 1.000 1.000

n=100 SCLS 1.000 1.000 1.000 1.000

TFLR 1.000 1.000 1.000 1.000

n=200 SCLS 1.000 1.000 1.000 1.000

TFLR 1.000 1.000 1.000 1.000

n=300 SCLS 1.000 1.000 1.000 1.000

TFLR 1.000 1.000 1.000 1.000

n=500 SCLS 1.000 1.000 1.000 1.000

TFLR 1.000 1.000 1.000 1.000

4.3 Discrepancy of the estimated matrix of coefficients

The discrepancy of the estimated matrix of coefficients was assessed by the KLD of the estimated to the

true values of the B matrix, and the L1 distance between the estimated and the true values of the B

11For more information on the specific values of B, the reader is referred to the Appendix.
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matrix

KLD(B̂,B) =

Dp∑
j=1

Dr∑
k=1

B̂jk log

(
B̂jk

Bjk

)
and L1(B̂,B) =

Dp∑
j=1

Dr∑
k=1

|B̂jk −Bjk|.

Table 3 contains the estimated discrepancy quantities. Both discrepancy metrics exhibit small differ-

ences between the two models, but the TFLR produces better results. However, the differences in the

discrepancies are rather small and can be asserted that the two models are not substantially different.

Secondly, for a given dimensionality of the simplicial response, as the sample size increases the differ-

ences, using both measures, between the two competing models diminish. Lastly, the KLD increases as

the dimensionality of the simplicial responses increases, for a given sample size, however, the L1 metric

decreases, exhibiting a rather unexpected behaviour.

Table 3: Estimated discrepancy of the regression coefficients of the SCLS and TFLR models.

KLD(B̂,B) L1(B̂,B)

Model Dr = 3 Dr = 5 Dr = 7 Dr = 10 Dr = 3 Dr = 5 Dr = 7 Dr = 10

n=50 SCLS 0.0096 0.0208 0.0166 0.0163 0.0533 0.0379 0.0414 0.0307

RFLR 0.0087 0.0145 0.0143 0.0130 0.0514 0.0348 0.0400 0.0290

n=100 SCLS 0.0048 0.0122 0.0088 0.0087 0.0380 0.0271 0.0299 0.0218

TFLR 0.0044 0.0085 0.0077 0.0070 0.0365 0.0249 0.0287 0.0206

n=200 SCLS 0.0024 0.0075 0.0046 0.0050 0.0274 0.0201 0.0211 0.0158

TFLR 0.0022 0.0051 0.0040 0.0039 0.0263 0.0181 0.0202 0.0148

n=300 SCLS 0.0014 0.0054 0.0031 0.0036 0.0215 0.0166 0.0172 0.0131

TFLR 0.0013 0.0037 0.0027 0.0029 0.0207 0.0149 0.0164 0.0123

n=500 SCLS 0.0008 0.0037 0.0021 0.0024 0.0170 0.0132 0.0136 0.0103

TFLR 0.0007 0.0025 0.0018 0.0019 0.0162 0.0118 0.0129 0.0095

4.4 Computational cost

To evaluate the computational cost the command benchmark(), from the R package Rfast2 (Papadakis

et al., 2023), was used, based on 20 repetitions. Simplicial response values with Dr = (3, 5, 7, 10) and

simplicial predictor values with Dp = 3 were generated from a Dirichlet distribution and the sample

sizes considered were n = (500, 1000, 5000, 10000, 20000). The speedup factors of the SCLS compared to

TFLR are presented in Table 4. The ratios clearly depict that the time required to fit the TFLR model

is significantly higher compared to that of the SCLS model.

The TFLR model has been implemented in the R package codalm (Fiksel and Datta, 2021) and the

code is written in R, wheras the SCLS model uses the R package quadprog (Turlach et al., 2019) that relies

upon Fortran. So, the running time comparison is not completely fair. Secondly, the code in the TFLR

implementation is not highly optimized. To address the second issue, the comparison took place using

a self implementation of the TFLR model. In this implementation, the estimated regression coefficients

from the SCLS model were used as starting values in the EM algorithm. The new speed-up factors of the

SCLS compared to TFLR also appear in Table 4. For the low dimensionality of the simplicial response,

the self implementation can be up to 10 times faster than the codalm’s implementation, whereas for a

higher dimensionality, the improvement drops to only 4 times.

A C++ implementation is expected to make the TFLR algorithm even faster. However, the number

of computations involved in the EM algorithm is still high compared to the quadratic programming

approach. Apart from the computational burden, the TFLRmodel may break down for some combination
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of zeros in the simplicial predictor and the matrix of coefficients B as mentioned in Section 2.3, whereas

the SCLS model treats those cases naturally.

Table 4: Speedup factors of SCLS compared to TFLR: ratio of running time of the TFLR model to the

running time of the SCLS model.

Number of response components

codalm implementation Self implementation

Sample size Dr = 3 Dr = 5 Dr = 7 Dr = 10 Dr = 3 Dr = 5 Dr = 7 Dr = 10

n=500 52.430 41.701 58.552 68.708 11.216 15.406 20.166 28.943

n=1000 69.645 85.490 67.583 94.403 12.156 21.820 27.049 66.684

n=5000 121.677 114.959 160.351 261.529 12.151 51.776 37.861 78.321

n=10000 201.123 222.886 159.677 231.467 24.744 37.547 59.314 83.515

n=20000 196.560 329.418 207.237 213.228 26.963 41.129 42.529 56.916

5 Real data analysis

Two real data sets are used to illustrate the performance of the SCLS and compare it with that of TFLR.

The first data set comes from the field of agricultural economics while the second comes from the field

of political sciences. A third data set was then used to illustrate the confidence regions (of the SCLS

model) of the row coefficients of the matrix B. Lastly, two of these datasets were further utilized to

illustrate the performance of the α-SCLS.

5.1 Crop cultivated area and crop production

Data regarding crop productivity in the Greek NUTS II region of Thessaly during the 2017-218 cropping

year were supplied by the Greek Ministry of Agriculture, also known as farm accountancy data network

(FADN) data. The data refer to a sample of 487 farms and initially they consisted of 20 crops, but after

aggregation they were narrowed down to 10 crops12. For each of the 487 farms the cultivated area and the

production in each of the 10 crops is known. However, the goal of the paper is to relate the composition

of the production (simplicial response, Y) to the composition of the cultivated area (simplicial predictor,

X) and for this reason were scaled to sum to unity13. Table 5 contains information about the data: the

component names and their simple arithmetic averages.

Tables 6 contains the regression coefficients estimated via the SCLS and TFLR models. Evidently,

the diagonal coefficients take high values as expected, as the proportion of each crop’s cultivated area

is expected to be highly related to the proportion of the same crop production. As expected, the linear

independence hypothesis is rejected, based on both models. The assumption of a diagonal matrix of

coefficients B = I10 was also rejected by both models.

In order to assess the fit of the two models the KLD of the observed to the predicted simplicial response

values and the Jensen-Shannon divergence (JSD) were employed. The KLD was 0.0267 for both models,

whereas the JSD values were 0.025 and 0.028 for the SCLS and the TFLR models, respectively. To

estimate the predictive performance of each model the 10-fold cross-validation (CV) was utilised and the

performance metrics were again the KLD and the JSD. The 10-fold CV was repeated 20 times and the

box-plots appearing in Figure 2 visualize the results. The average KLD values were 0.321 and 0.33 for

the SCLS and the TFLR models, respectively, whereas the average JSD values were 0.034 and 0.038 for

the SCLS and the TFLR models, respectively.

12A larger version of this dataset was used in (Mattas et al., 2024).
13The raw data cannot be distributed due to disclosure restrictions.
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Table 5: Information on the FADN dataset.

Component Cultivated area (X) Production (Y)

X1: Other Cereals 0.1063 0.0958

X2: Durum Wheat 0.1539 0.1407

X3: Maize 0.0600 0.1015

X4: Potatoes, Protein Crops and Rice 0.0393 0.0230

X5: Cotton 0.2315 0.2087

X6: Tobacco, Oil Seeds, Industrial Crops and Vegetables 0.0449 0.0708

X7: Green Plants, Pasture and Grazing 0.1777 0.1777

X8: Fruits, Berries and Nuts 0.0945 0.1098

X9: Olive Trees 0.0733 0.0446

X10: Grapes and Wine 0.0186 0.0273

(a) KLD (b) JSD

Figure 2: FADN data: box-plots of the predictive KLD and JSD for the SCLS and TFLR models.

5.2 Catalan elections

The data set contains the votes in Catalan elections from year 1980 up to 2006 for 41 regions each year.

The main parties consist of 6 candidates, while there are votes for other candidates, blank votes and

null votes. In total there are 328 observations with 9 variables, that were scaled to sum to 1. The goal

here is to assume an AR(1) model, where the lag refers to the one time period between two consecutive

election years. Table 7 contains the averages in the 9 components classified per year of election.

Since the task of interest is to perform a time series analysis, the AR(1) SCLS and TFLR models

were fitted to the data from the years 1980 up to 2003, and the data from the year of elections 2006 was

considered to be the test set. Table 8 contains the estimated coefficients of the SCLS and TFLR models.

The prediction capabilities showed that in terms of the KLD, the SCLS was worse than the TFLR, 0.132

versus 0.080, respectively, whereas in terms of the JSD, the two models performed equally well, both

produced JSD value equal to 0.002.
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Table 6: FADN data: estimated regression coefficients of the SCLS and TFLR models.

Estimated coefficients based on the SCLS model

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

X1 0.9246 0.0000 0.0342 0.0095 0.0000 0.0051 0.0078 0.0120 0.0000 0.0069

X2 0.0000 0.9337 0.0310 0.0000 0.0000 0.0112 0.0163 0.0000 0.0000 0.0078

X3 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

X4 0.0210 0.0285 0.0063 0.5571 0.0000 0.1653 0.2217 0.0000 0.0000 0.0000

X5 0.0000 0.0000 0.0427 0.0000 0.9229 0.0333 0.0011 0.0000 0.0000 0.0000

X6 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

X7 0.0000 0.0000 0.0649 0.0000 0.0000 0.0000 0.9351 0.0000 0.0000 0.0000

X8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

X9 0.0232 0.0197 0.0068 0.0025 0.0117 0.0313 0.0115 0.1062 0.7485 0.0385

X10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

Estimated coefficients based on the TFLR model

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

X1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

X2 0.0000 0.9995 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005

X3 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

X4 0.0000 0.0000 0.0000 0.8653 0.0000 0.0556 0.0791 0.0000 0.0000 0.0000

X5 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

X6 0.0000 0.0000 0.0000 0.0000 0.0000 0.9985 0.0000 0.0000 0.0015 0.0000

X7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

X8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9993 0.0007 0.0000

X9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0392 0.9608 0.0000

X10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

5.3 Education level of father and mother

This data set contains the education level of father and mother in percentages of low (l), medium (m),

and high (h) of 31 countries in Europe14 and the simplicial response is the father’s education level, while

the simplicial predictor is the mother’s educational level. This data set was used by Fiksel et al. (2022)

and was chosen on the grounds of illustrating a) the interpretation of the coefficients (see Section 3.2),

and b) their 95% confidence regions (see 3.3).

The matrix of the estimated regression coefficients of the SCLS model and of the TFLR model (for

comparison purposes) are given below

B̂SCLS =

 0.9014 0.0559 0.0428

0.0000 0.9409 0.0591

0.0000 0.0737 0.9263

 and B̂TFLR =

 0.9113 0.0512 0.0375

0.0000 0.9054 0.0946

0.0000 0.1415 0.8585

 ,

where the rows correspond to the low, medium and high educational levels of the mother, whereas the

columns indicate the same educational levels for the father. If the percentage of low educated mothers

increases (additively) by δ while the percentage of medium educated mothers decreases (additively) by δ,

the expected change in the three educational levels of the father is δ (0.9014− 0, 0.0559− 0.9409, 0.0428− 0.0591) =

(0.914δ,−0.885δ,−0.0163δ). Figure 3 presents the 95% confidence regions of the three row coefficients.

Evidently, there is high uncertainty in the coefficients corresponding to the highly educated women (third

14The dataset is available from the R package robCompositions (Templ et al., 2023).
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Table 7: Catalan elections data: yearly average voting proportions by candidate, blank and null votes.

Voting proportions

Year CiU PSC PP IC ERC CC Other Blank Null

1980 0.3095 0.1947 0.0157 0.1186 0.1018 0.0000 0.2482 0.0058 0.0058

1984 0.5640 0.2208 0.0745 0.0370 0.0533 0.0000 0.0395 0.0047 0.0062

1988 0.5385 0.2358 0.0503 0.0464 0.0573 0.0000 0.0588 0.0068 0.0060

1992 0.5260 0.2250 0.0540 0.0397 0.1011 0.0000 0.0363 0.0116 0.0064

1995 0.4869 0.2172 0.1022 0.0516 0.1227 0.0000 0.0064 0.0091 0.0038

1999 0.4669 0.3025 0.0734 0.0076 0.1170 0.0000 0.0202 0.0089 0.0035

2003 0.3877 0.2467 0.0875 0.0497 0.2039 0.0000 0.0116 0.0090 0.0039

2006 0.3769 0.2329 0.0792 0.0720 0.1797 0.0125 0.0194 0.0209 0.0065

row coefficients) as depicted by the figure.

Figure 3: Ecucation level data: confidence regions of the coefficients of the SCLS model: the black refers

to the first row coefficients, the red refers to the second row and the green refers to the third row of

coefficients.

5.4 Predictive performance of the power transformed SCLS model

The FADN and the education data sets were further used to test the performance of the SCLS model

when applied to the power transformed data using Eq. (5) employing the 20 times repeated 10-fold

CV protocol. Figure 4 presents the average predictive KLD measures as a function of the α-values.

Evidently, this strategy was not proved prosperous for the FADN data, but it was beneficiary in the case

of the Education data set.

6 Conclusions

The paper proposed the constrained least squares approach to estimate the parameters of a linear

transformation-free regression model for compositional data with compositional predictors. This re-

gression model was first proposed by Fiksel et al. (2022) who, in contrast to this approach, estimated

its parameters using the KLD from the observed to the fitted compositional data. This paper showed

that extensions to multiple simplicial predictors can straightforwardly be adopted by either approach
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Table 8: Catalan elections data: estimated regression coefficients of the SCLS and TFLR models.

Estimated coefficients based on the SCLS model

CiU PSC PP IC ERC CC Other Blank Null

CiUt−1 0.8326 0.0392 0.0000 0.0000 0.0632 0.0000 0.0390 0.0165 0.0094

PSCt−1 0.0000 0.7031 0.0910 0.1502 0.0481 0.0000 0.0077 0.0000 0.0000

PPt−1 0.0000 0.4776 0.5000 0.0000 0.0224 0.0000 0.0000 0.0000 0.0000

ICt−1 0.1725 0.5814 0.0207 0.0738 0.0000 0.0000 0.1516 0.0000 0.0000

ERCt−1 0.1854 0.0000 0.0679 0.0000 0.7468 0.0000 0.0000 0.0000 0.0000

CCt−1 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111

Othert−1 0.9222 0.0000 0.0778 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Blankt−1 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Nullt−1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Estimated coefficients based on the TFLR model

CiU PSC PP IC ERC CC Other Blank Null

CiUt−1 0.8605 0.0357 0.0000 0.0000 0.0548 0.0000 0.0334 0.0101 0.0055

PSCt−1 0.0000 0.7452 0.0711 0.1368 0.0380 0.0000 0.0000 0.0088 0.0000

PPt−1 0.0000 0.4217 0.5342 0.0000 0.0272 0.0000 0.0000 0.0168 0.0000

ICt−1 0.1908 0.5020 0.0000 0.1158 0.0000 0.0000 0.1902 0.0000 0.0012

ERCt−1 0.1499 0.0000 0.0636 0.0000 0.7863 0.0000 0.0000 0.0002 0.0000

CCt−1 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111 0.1111

Othert−1 0.8211 0.0000 0.1422 0.0000 0.0000 0.0000 0.0277 0.0000 0.0089

Blankt−1 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Nullt−1 0.1904 0.0000 0.0000 0.2025 0.0000 0.0000 0.2198 0.0803 0.3071

(a) FADN data (b) Education data

Figure 4: Predictive performance measured by KLD for the α-SCLS model as a function of the α-values.

and further, the categorical predictors case was examined via small simulation studies and the evidence

was against the use of this model. The extensive simulation studies comparing both approaches provided

evidence that both models perform nearly equally well and there is no clear winner. Finally, the inclusion

of a power parameter in the simplicial response provided evidence of increased predictive performance,
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at the cost of parameter interpretability. Thus, both approaches share similar properties and can be seen

as two sides of the same coin. An advantage however of the SCLS over its competitor, the TFLR, is the

first’s high computational efficiency.

Closing this paper we would like to pose some possible research directions and suggestions. a)

Exploitation of the relationship between compositional and directional data. By taking the square root

both variables transform into directional data for which spherical regression models exist and in order to

ensure that the fitted values will lie within the simplex the folded Kent model (Scealy and Welsh, 2014)

may be employed. b) Change of the loss function to the L1 norm, i.e. constrained minimization of the

sum of the absolute errors. c) Investigation of the ensemble learning in the α-SCLS model. Instead of

selecting one value of α combine the fitted values of many models produced by different values of α. d)

The possibility to add non-linear effects in the model, regardless of the loss function used, to increase

the flexibility of the model and escape the assumption of linear relationship.
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Appendix

A1 Example of the quadratic programming formulation

Table 12 illustrates an example of the sub-matrices A⊤
1 , A

⊤
2 and A⊤

3 of the matrix A⊤ and the vector

b0. In this case both simplicial response and predictor variables contain 3 components (Dr = Dp = 3).

A⊤ =

 A⊤
1

A⊤
2

A⊤
3

 =



1 0 0 1 0 0 1 0 0

0 1 0 0 1 0 0 1 0

0 0 1 0 0 1 0 0 1

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

−1 0 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0

0 0 0 0 −1 0 0 0 0

0 0 0 0 0 −1 0 0 0

0 0 0 0 0 0 −1 0 0

0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 −1



⊤

and b0 =



1

1

1

0

0

0

0

0

0

0

0

0

−1

−1

−1

−1

−1

−1

−1

−1

−1


A2 Information (entropy) of the coefficients

Figure A1 shows the negated entropy of data points in the 3-part simplex, S2. The entropy is maximized

(or the negated entropy is maximised) as we move towards the barycentre of the triangle, i.e. the center

of the simplex.

A3 A computationally efficient implementation of the linear test of indepen-

dence

Instead of calling the function ols.compcomp() from the R package Compositional multiple times, a

function was created minimizing the necessary to perform computations. The vector b0 is always the

same, and so is the matrix D since even by permuting the rows of the simplicial predictor X the cross-

product X⊤X remains the same. The only thing that changes is the d vector. Secondly, Eq. (11) was

computed excluding the trace of the matrix YY⊤ as this is constant.

A4 Details on the data generation for type II error and discrepancy of the

estimated coefficients

Random vectors xi, for i = 1, . . . , n, were generated from Dir (1, 1, 1), then transformed into µµµi = xiB

and finally random vectors yi were generated from Dir (5µ1, . . . , 5µDr
). The following 4 matrices B were

used.
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Figure A1: Negated entropy of data points in the simplex.

B3 =

 0.45 0.00 0.55

0.20 0.34 0.46

0.76 0.01 0.23


B5 =

 0.31 0.00 0.04 0.65 0.01

0.02 0.01 0.00 0.48 0.48

0.28 0.02 0.64 0.06 0.00


B7 =

 0.16 0.20 0.00 0.11 0.32 0.12 0.09

0.63 0.08 0.00 0.09 0.10 0.08 0.01

0.10 0.24 0.20 0.12 0.03 0.01 0.30


B10 =

 0.25 0.00 0.01 0.09 0.01 0.00 0.24 0.14 0.00 0.26

0.44 0.10 0.18 0.02 0.01 0.00 0.09 0.07 0.00 0.10

0.34 0.03 0.00 0.14 0.17 0.00 0.04 0.00 0.19 0.09


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