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Abstract

We develop a biologically correct cost system for production systems facing invasive pests that

allows the estimation of population dynamics without a priori knowledge of their true values. We

apply that model to a data set for olive producers in Crete and derive from it predictions about

the underlying populations dynamics. Those dynamics are compared to information on population

dynamics obtained from pest sampling with extremely favorable results.
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1 Introduction

Accurate representation of supply-response relationships is essential to the scientific management

of natural-resource industries. An important challenge to modelling supply-response in many of

those industries is lack of population data for the biological entity that affects output. For example,

the population of invasive pests is an important determinant of both pest damage and crop harvest

(Lichtenberg and Zilberman, 1986; Babcock, Lichtenberg, and Zilberman, 1992; Underwood and

Caputo, 1996; Bulte and Rondeau, 2007; Coburn et al., 2011). But data on pest populations are

typically unavailable in many practical instances. This creates a dilemma. Use models that ignore

this basic biological component of the technology. Or, maintain biologically correct models that

cannot be estimated without extreme assumptions on population behavior.

This paper, following Chambers and Strand (1999), proposes a potential solution. The key

observation is that the separability properties of many biologically-grounded models of the under-

lying production processes, when combined with information on rational producer supply response,

can be used to circumvent this obstacle. While biologists have focused on the development of ac-

curate yield-response relationships, economists instead have concentrated on developing estimable

production systems. Natural synergies should emerge from combining these efforts into a common
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framework. We show how biological models can be combined with information on supply response

to make inferences on population dynamics and to estimate correctly specified biological production

response behavior even in the absence of direct observations on underlying population variables.

The intuition is unabashedly simple: if a yield-response relationship is correctly specified, then

once other factors affecting production levels (for example, input use) are properly controlled for,

yield effectively indexes of the underlying biological population. We use agricultural data to illus-

trate and evaluate our procedures. And so, for concreteness sake, the conceptual treatment is for

an agricultural producer facing an invasive pest species. But because the basic principle behind

our approach is so simple, the procedures outlined here can be readily extended, after suitable

adaptation, to a host of other applications. If biological populations truly affect supply response,

information on supply (as well as derived demands) should mirror that effect and thus provide an

avenue for recapturing information on the underlying population.

In what follows, we first specify the production model and the producer’s objective function.

Then we briefly characterize optimal producer behavior to establish a direct link between popula-

tion variables and observable economic phenomena such as prices, supply, and derived demand. We

then follow with a parametric specification of pest damage to crops and show how that choice yields

a variable cost function, consistent with biological behavior, that is estimable without direct knowl-

edge on pest population. It also yields a procedure for approximating pest-population dynamics.

An empirical specification and description of the data is followed by an empirical application of our

ideas. That empirical application takes advantage of a unique characteristic of our data set, direct

observations on population variables. Those data are not used in estimation, but they allow us

to compare the population dynamics our procedure yields with actual population dynamics. Once

our empirical results are presented, we then discuss related literature. In particular, we compare

our empirical results with those from an alternative approach that is grounded in the biological

literature but that is applied to our data set. The paper then concludes.

2 The Model

2.1 Structure of Production and Producer Objective

Production of a single crop, y, in period t is characterized by

y = g (b, z) f (x,K, t)

where x ∈ RJ+ represents variable productive inputs, K ∈ RK+ quasi-fixed productive inputs, b ∈ R+

the pest population, z ∈ R+ a damage-control or abating input, f (x,K, t) is (maximal) potential

supply in the absence of pests, and g (b, z) , g : R2
+ → (0, 1], represents the percentage of maximal

potential output that is realized in the presence of pest population b when the damage-control input

is applied at level z.
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The producer’s short-run problem is to choose variable productive and damage control inputs

(x, z) to maximize profit. Notationally,

max
x,z

{
pg (b, z) f (x,K, t)− w′x− v′z

}
(1)

where p ∈ R++ is output price, w ∈ RJ++ is a vector of variable productive input prices, and

v ∈ R++ is the damage-control input price.

We rewrite this problem as

max
x,z

{
pg (b, z) f (x,K, t)− w′x− v′z

}
= max

y,x,z

{
py − w′x− v′z : y = g (b, z) f (x,K, t)

}
= max

y,x,z

{
py − w′x− v′z :

y

g (b, z)
= f (x,K, t)

}
= max

y,z

{
py − c

(
w,

y

g (b, z)
,K, t

)
− v′z

}
. (2)

Here

c (w, f,K, t) := min
x

{
w′x : f = f (x,K, t)

}
is minimum variable-cost associated with the productive inputs, x, producing f in the absence of

pests. The first-order conditions for an interior solution to (??) require:

pg (b, z) = cf

(
w,

y

g (b, z)
,K, t

)
,

cf

(
w,

y

g (b, z)
,K, t

)
ygz (b, z)

g (b, z)2
= v,

where cf

(
w, y

g(b,z) ,K, t
)

denotes the partial derivative of c (w, f,K, t) with respect to f . Solving

gives:

py
gz (b, z)

g (b, z)
= v. (3)

Expression (??) can also be obtained directly as a first-order condition for (??). The solution to

these first-order conditions yields: optimal product supply, y (p, w,K, t, v, b), and optimal derived

demands for x and z, x (p, w,K, t, v, b) and z (p, w,K, t, v, b), respectively.

2.2 The Damage-Control Specification and Population Dynamics

The choice of a parametric specification for g (b, z) has been widely discussed (Lichtenberg and

Zilberman, 1986; Babcock et al., 1992; Carasco-Tauber and Moffit, 1992; Fox and Weersink, 1995;

Carpentier and Weaver, 1997; Hennessy, 1997; Oude Lansink and Carpentier, 2001). We follow

Lichtenberg and Zilberman (1986) and Fox and Weersink (1995) and formulate g (b, z) as comprising
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two components, control and damage:

g (b, z) = exp (−λb exp (−δzz)) , (4)

where λ and δz are parameters. In this specification, C := exp (−δzz) represents the control

component of the technology, and exp (−λbC) the damage-component given control at level C.

Choosing a parametric specification for g (b, z) establishes via (??) a direct (and typically in-

vertible) link between the underlying pest population, b, and y (p, w,K, t, v, b). That link yields a

closed-form solution for the pest population (up to proportional transformation), b. Mathemat-

ically, this simply reflects some version of the implicit-function theorem. From that perspective,

the insight is not terribly sophisticated. Economically, the intuition is that once the presence of

other conditioning factors is taken into account, realized output is an index of b expressed in units

of the produced output. Effectively, observed output represents a monotonic transformation of

the population and thus provides an ordinal measure of it. The effect of the conditioning factors

(x, z,K) is accounted for by the assumption of rational economic behavior, and cardinal identifica-

tion is permitted by knowledge of the parametric structure. Hence, the approach is a simple, but

practical, melding of biological information with economic theory.

Using (??) in (??) and rearranging gives

λb =
v

δzpy (p, w,K, t, v, b) exp (−δzz (p, w,K, t, v, b))
. (5)

Given information on p, y (p, w,K, t, v, b) , z (p, w,K, t, v, b) , v, and the parameter δz, λb can be

calculated from (??). Substituting (??) into (??) gives

g (b, z (p, w, v, b)) = exp

(
− v

δzpy (p, w,K, t, v, b)

)
(6)

Conditional on the assumption of profit maximization, a strategy for inferring λb is now appar-

ent. From (??), given observations on supply response and price, the essential problem is to obtain

an estimate for δz, which is the parameter determining the effectiveness of pesticides in controlling

pests. Optimal variable input cost (conditioned on z and y) for the variable productive inputs

equals c
(
w, y

g(b,z) ,K, t
)
, which depends upon b. Substituting from (??) gives

c

(
w,

y (p, w,K, t, v, b)

g (b, z (p, w,K, t, v, b))
,K, t

)
= c

w, y

exp
(
− v
δzpy(p,w,K,t,v,b)

) ,K, t
 .

Therefore, once a parametric specification for c (w, f,K, t) is chosen, substituting y

exp
(
− v
δzpy(p,w,K,t,v,b)

)
for f in that form, gives an expression for variable-productive input cost that can be combined with

information on w, p,K, and y (p, w,K, t, v, b) to estimate both the parameters of c (w, f,K, t) and

δz. Once that information is obtained, the estimate of δz can be used with (??) to approximate λb.
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3 Data and the Practical Problem

Our data are from survey of 50 olive-growers during the 1999-04 cropping period that was conducted

by extension personnel of the Greek National Agricultural Foundation. The survey was designed to

examine empirically the effectiveness of six-pesticide ingredients against the olive-fruit fly Bactocera

Oleae (Gmellin) in the Western part of Crete, Greece. The olive-fruit fly is the only serious

pest towards olives, and it significantly threatens olive-oil production in most olive growing areas

(Burrack and Zalom, 2008).1 Worldwide olive trees number about 800 million and occupy a surface

area of approximately 10 million hectares. They produce about 1.6 million metric tonnes per

annum of olive-oil. The losses attributed to the olive-fly have been set as high as 15-20 per cent of

production, which equates to roughly $800 million annually. This estimated damage occurs despite

annual expenditures (worldwide) of approximately $100 million annually to combat the olive-fruit

fly. About 50 per cent of that expenditure corresponds to chemical pesticides (Guerbaa, 1987;

Kiritsakis, 1990).

The olive-fruit fly survives best in cooler coastal climates, but they are also found in hot,

dry regions of Greece, Italy, Spain, Mexico, and California. The optimum temperature for larval

development is between 20 and 30◦C. Temperatures above 40◦C are detrimental to adult flies and

to maggots in the fruit. However, because the flies are very mobile they have the ability to seek out

cooler areas of the orchard and trees. Reports of fly movement range from 600 ft in the presence

of an olive host to as much as 2.5 miles to find hosts. During rainy winter weather, the number of

flies usually drops off significantly, but stings and damage can still continue.

The biological cycle of Bactocera Oleae is closely linked to the microclimate and the state of the

olives (Wang et al., 2009). Within a year, there are generally three to five generations, but in many

years there can be a sixth generation, which grows in the spring on the olive tree. The population

size varies throughout the year, but there are two peaks: one at the end of spring (April to May), at

the development of the winter generation of adults. The second, more intense peak, occurs in early

autumn (late August to early October) when the olives are most vulnerable, the temperatures drop

slightly and the climate becomes more humid. The olive-fruit fly causes damage to both quantity

and quality of fruit produced. From a quantity point of view the damage is caused by the removal

of the significant proportion of the pulp. This, in turn, results in a reduction in yield. Part of

the lost production is due to premature falling of the attacked fruit. For table olives, however, the

damage also extends to the sterile punctures which cause the variation in production. There is also

a significant deterioration in the quality of the oil extracted from olives with a high percentage of

attacks by the olive-fruit fly. The olive-oil obtained from infected olives has a high acidity level

(expressed as oleic acid, from 2 to 10 percent depending on the level of pest infestation) and a lower

shelf life.

For our empirical model, output is measured in kilograms and consists of olive-oil quantities

1In fact, olives are the only breeding host plants.
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sold off the farm, quantities consumed by the farm household during the crop year, and the portion

of output kept by olive mills as a fee for extraction services.2 Farmers use a mixture of fertilizers

including nitrate, phosphorous, and potassium. These different fertilizers were aggregated into a

single aggregate Tornqvist fertilizer index with the cost shares of each type of fertilizer defining

the relevant weights. Intermediate inputs consist of goods and materials used during the crop

year, whether purchased off-farm or withdrawn from beginning inventories. These include fuel and

electric power, storage expenses, and irrigation measured in Euros. The price of hired labor was

computed as the average hourly wage including social security and taxes paid by farmers. The

computed hourly wage varies across farms as the demand for hired workers differs significantly

during harvesting season (harvesting season usually starts from the late October until the end of

January with significant fluctuations depending on the maturity stage and pest infestation among

farms). Family labor devoted to productive activities was treated as a quasi-fixed input and is

measured in hours worked on-farm. Capital stock was computed using the perpetual-inventory

method as described by Ball et al., (1993) and data on depreciation rates obtained from the Greek

Ministry of Agriculture for different farming equipment.

The survey contains farm-level information on six different pesticide ingredients, which are

applied approximately every two weeks depending on the pest population levels observed in the

olive fields. These consist of data on expenditures and quantities used measured in litres. We

use these data to construct an aggregate pesticides input quantity and price index using again

Tornqvist procedures with cost shares of each ingredient to total pesticides expenditures being the

relevant weights. Finally, information on the pest population was obtained by means of chemical

traps (i.e., McPhail traps) that are installed (for our sample) on every 500 square meters of the

farm’s plot. Our information on pest population was derived by following the standard practice

of olive growers and biologists of using the number of olive flies captured in these traps to proxy

the whole pest population in each plot. The number of pests were converted to biomass equivalent

using the empirical study by Genc (2008) (see Table ??).

Adult olive fruit fly populations are typically monitored using yellow sticky traps that are baited

with sex pheromone and ammonium bicarbonate. The sex pheromone is attractive to male flies

while the ammonium bicarbonate is primarily attractive to females. Both sexes are attracted to

the trap’s yellow colour. Thus, the population numbers used in our empirical analysis are not

biased with respect to fly gender and can be expected to reflect, as closely as possible, the actual

pest situation in each olive orchard. Trap catches may vary in response to numerous variables,

including temperature, humidity, physiological status of the fly and, of course, population size

(Economopoulos, 1979). Nevertheless, monitoring populations using sticky traps is commonly

used in timing pesticide applications and is generally believed to produce a close approximation

to actualy olive-fruit fly populations. This practice is particularly wide-spread in Europe, where

2Output is measured in quantities of olive-oil produced and therefore it does not take into account the quality
effects of pest infestation. Our model though can be extended to that direction using Babcock et al., (1992) modelling
approach in a straightforward manner.
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pesticide applications are routinely made on the basis of threshold trap counts (Haniotakis et al.,

1986).

Summary statistics for all variables used in the empirical analysis are presented in Table ??. Fi-

nally, prior to econometric estimation, and to avoid problems associated with units of measurement,

all variables were converted into indices, with the basis of normalization being the representative

olive-oil farm. The representative farm was the one with smallest deviation of all variables from

the sample means.

4 Empirical Model and Econometric Estimation

In our empirical application, the variable cost function takes the following flexible, transcendental

logarithmic (translog) form:

lncit (wit, fit,Kit, t) = α0 + αylnfit +
∑
j

αwj lnwjit +
∑
k

αqklnKkit +
∑
j

αywj lnfitlnwjit

+ αtt+
∑
k

αyqk lnfitlnKit + αytlnfitt+
∑
j

∑
k

αwqjk lnwjitlnKkit

+
∑
j

αwtj lnwjitt+ 0.5

[
αyylnf2it +

∑
j

∑
h

αwwjh lnwjitlnwhit (7)

+
∑
k

∑
l

αqqkl lnKkitlnKlit + αttt2

]
+
∑
k

αqtk lnKitt+ ε0it

Here i subscripts correspond to the ith farm and t subscripts to the tth year, wjit is the price for the

jth variable input, Kkit is the kth quasi-fixed input used in farm production and, t is a time index

capturing changes in farming technology. This translog cost function is converted to estimable form

by using (??) and making the following substitution:

lnfit = lnyit +
vit

δzpityit

where vit is the price of pesticide materials, pit the output price, and yit is realized output. Symmetry

and linear homogeneity in variable-input prices imply the following parameter restrictions on our

cost function: αwwjh = αwwhj , αqqkl = αqqlk ,
∑

j α
w
j = 1,

∑
h α

ww
jh = 0 ∀j,

∑
j α

yw
j = 0,

∑
j α

wq
jk = 0 ∀k

and
∑

j α
wt
j = 0. By Shephard’s lemma, the variable-input cost share for input j is given from the

following expression:

Sjit = αwj + αywj

(
lnyit +

vit
δpityit

)
+
∑
h

αwwjh lnwhit + αwtj t+
∑
k

αwqjk lnKkit + εjit (8)

where Sjit = (wjitxjit)/cit denotes the share of the jth variable-input in total cost of farm produc-

tion.
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The system of variable-input cost shares was estimated together with the cost function using

the random effects model suggested by Bjørn et al. (2003) and Bjørn (2004) adapted to a balanced

panel data setting.3 Assuming that farm heterogeneity is captured by the constant terms in both

the cost function and cost share equations, the random terms in (??) and (??) can be expressed,

respectively, as:

ε0it =
∑
j

ujilnwjit + u0i + e0it and εjit = uji + ejit

where ui and eit are independently and identically distributed random terms, i.e., ui ∼ N(0,Σu)

and eit ∼ N(0,Σe). Further it is assumed that ui and eit are mutually uncorrelated and unrelated

with variable-input prices, quasi-fixed inputs, and t. In this framework the random coefficient

structure implies: α0i = α0 + u0i and αwji = αwj + uji, ∀j. Under these assumptions Bjørn (2004)

showed that the variance-covariance matrix of εit is given by:

Σε = xitΣux
′
it + It ⊗Σe

where xit is the augmented matrix of constants and variable-input prices and, It is the t dimensional

identity matrix. Parameter estimates of the above system are obtained in three steps (see Bjørn et

al. (2003), Bjørn (2004)) when both variance-covariance matrices are unknown.

First, the system is estimated as a simple SUR model and the residuals from each equation (i.e.,

cost function and variable-input cost shares) are used to calculate the unknown variance-covariance

matrices, Σu and Σe, from the following:

Σe =
We

N (T − 1)
and Σu =

Be −
(

N−1
N(T−1)

)
We

T (N − 1)

where We =
∑

i

∑
t(ε

s
it − ε̄si )(εsit − ε̄si )′ and Be =

∑
i(ε̄

s
i − ε̄s)(ε̄si − ε̄s)′ with εsit being the obtained

residuals from the first step and ε̄si = (1/T )
∑

t ε
s
it ∀i, ε̄s = (1/N)

∑
i ε̄
s
i .

In the second step, parameter estimates are obtained by maximizing the following likelihood

function with respect to the parameter vector α (Bjørn, 2004) :

L = −GN
2
ln(2π)− 1

2

∑
i

∑
t

ln |Σε| −
1

2

∑
i

∑
t

(yit − xitα) Σ−1ε (yit − xitα)′

where G is the number of equations in the translog cost system above and yit, xit are the stacked

matrices over all equations of the dependent and independent variables, respectively. For given Σu

and Σe this is identical with the GLS estimation of the system.

In the third step, using the estimates of the parameter vector α, the likelihood function above

is again maximized with respect to Σu and Σe to obtain estimates of the two covariance matrices.

The whole process is repeated again from the second step until parameter estimates of the translog

3We are indebted to a reviewer of an earlier version of this paper for suggesting this estimation procedure.
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cost system converges. Oberhofer and Kmenta (1974) and Breusch (1987) have shown that this

sequential procedure ensures that convergence is achieved, even if the likelihood function is not

globally concave. After convergence, the best linear unbiased predictor of the random coefficients

is given by (Bjørn et al., 2003):

α̂i = α̂+ Σ̂ux
′
it

(
xitΣ̂ux

′
it + It ⊗ Σ̂e

)−1
(yit − xitα̂) (9)

whereˆindicates the corresponding GLS estimates of the expected coefficient vector and variance-

covariance matrices obtained from the above procedure.

5 Empirical Results

Although our variable-cost function specification treats farm output as predetermined, econometri-

cally it is endogenous. To accommodate this endogeneity, before the GLS estimation of the translog

cost system, we ran a first-stage OLS regression of realized output against variable input and output

prices as well as two environmental variables (humidity rates and air temperature), the altitude of

farm location, and two farm-specific characteristics (average household education level and number

of extension visits on-farm). High temperature and humidity levels4 create favorable micro-climatic

conditions for pest occurrence and their reproduction. Moreover, more educated farmers can more

easily digest technical information and read bulletins or manuals related with the appropriate ap-

plication of pesticide materials on-farm. At the same time, extension agents can provide to the

farmers useful information on the levels of pest infestation and the maturity stage of pests during

their biological cycle. After running the OLS regression, the predicted values of realized output

were used in the econometric estimation of the cost system as explained in the previous section.

The GLS parameter estimates of the conditional translog cost system are reported in Table

??. Consistent standard errors for these estimated parameters that are robust to heteroscedasticity

and serial correlation were obtained using the stationary bootstrapping technique of Politis and

Romano (1994). Specifically, farms in the dataset were grouped randomly in a number of blocks

of five farms and reestimating the model leaving out each time one of the blocks of observations

and then computing the corresponding standard errors. Most of the estimated parameters are

statistically different from zero at standard confidence levels. We note, in particular, that δz, the

parameter determining the effectiveness of pesticides, appears to have been very precisely estimated

and that it appears significantly different zero (the corresponding t-ratio is 6.049, well above the

critical value at the 5 per cent significance level).

To assess the econometric performance of our estimated translog cost system, we conducted a

series of statistical tests. First, we used the Hausman test to examine statistically whether output

4It should be noted here that humidity rates are not related with irrigation application by olive farmers and mostly
reflect the microclimatic conditions in olive orchards. Olive trees are usually irrigated 5 to 6 times during the summer
period and therefore irrigation practices are not related directly with pest infestation.
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is endogenous or not in the econometric estimation of the translog cost system. The result strongly

supports our treatment of it as endogenous.5 Next, an application of Sargan’s test validates our

choice of instruments in the first-stage as it rejects the hypothesis that the error term is uncorrelated

with the instruments (the test statistic is 18.5 well above the corresponding critical value of the

chi-squared distribution at the 5% significance level with 4 degrees of freedom). We also checked

for the presence of serial correlation. Although the time-span in our data is only six years, we

followed Wooldridge’s (2002) approach of regressing the estimated residuals from each equation

in the translog cost system against their one-period lagged value. In each case, the estimated

coefficient of the lagged residuals was not statistically significant different from zero suggesting that

serial correlation is not a problem. Finally, the Hausman specification test suggests that individual

farm effects are uncorrelated with the other regressors in the translog cost system validating our

choice of the random coefficient model.6

Tables ?? and ?? report the estimated variance-covariance matrix of the random coefficients and

variable-input demand elasticities evaluated at sample means, respectively. The estimated variance-

covariance matrix is positive definite (at sample means) as the calculated eigenvalues of the matrix

are positive. Furthermore, all estimated own-price elasticities are negative, as required by theory,

and less than one indicating rather inelastic own-price responses for hired labor, chemical fertilizers

and intermediate inputs.7 All estimated cross-price effects are positive suggesting that hired labor,

fertilizers and intermediate inputs are substitutes in olive-oil production. The magnitudes of these

point elasticity estimates all appear plausible and are consistent with existing results on input-

demand elasticities (see Table ??).

We now turn to the main focus of our analysis, inferring information on the underlying popu-

lation of olive-fruit fly. From (??), one can obtain point estimates of the compound term, λbit, for

each observation (i.e., farm or period) as

λbit =
vit

δ̂zpityit exp
(
−δ̂zzit

) ,
whence

bit
bit−1

=
vit
vit−1

pit−1yit−1 exp
(
−δ̂zzit−1

)
pityit exp

(
−δ̂zzit

)
where δ̂z represents the estimate of δz reported in Table ??. Point estimates of pest-population

growth rates for each olive farm in the sample can now be obtained by taking natural logarithms

5The Hausman test involves a simple F -test that the residuals of the first-stage OLS regression are jointly equal
to zero in the econometric estimation of the translog cost system. In our case the test statistic was 13.45 well above
the corresponding critical value at the 0.05 significance level with (7,293) degrees of freedom.

6Fixed-effects estimation of the model was done by maximizing the likelihood function including simple farm-
specific dummies in both the cost function and the cost share equations.

7Given that the cost shares depend on the random coefficients, in calculating the variable-input demand elasticities
reported in Table ?? we use their estimated expectations provided by (??).
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of the above expression, i.e., ḃit = lnbit − lnbit−1.
Table ?? reports the resulting estimates of annual average olive-fly population growth rates for

the period 1999 to 2004 along with the actual growth rates computed from our sample estimates of

olive-fly population. According to both the survey data and our estimates, olive-fruit fly infestation

has grown over the sample period, but its growth has been quite erratic. With the exception of

the first year, the agreement between our estimate of the olive-fly population growth rate and the

actual growth rate is quite close. In each year that the actual pest population grew our estimate also

indicates growth, and in each year that the pest population fell our estimate also indicates a decline.

The correlation coefficient between the two distributions is 0.908. The calculated Kolmogorov-

Smirnov test statistic, which examines whether the two empirical distributions differ, is well above

its critical value at the 5 per cent significance level. That result supports the hypothesis that the

actual and estimated olive-fly growth rates are drawn from the same distribution (see last row in

Table ??). Figure ?? presents the point estimates of these average growth rates visually. Their

associated 95 per cent confidence intervals, constructed by using the bootstrapping methods of

Politis and Romano (1994) technique and the observed olive-fly population growth rates, are also

depicted on common axes. Only the observed growth rate for 2000-01 falls outside the interval

estimate derived from our model.

Table ?? reports average observed olive-fly population levels converted to biomass equivalent

(6.8 mg per adult weight), average observed pesticide application rates, average observed olive-fly

population growth rates, and average estimated olive-fly population growth rates at different times

over the same crop year. Values in Table ?? were calculated as the average values over olive farms

for the six-years of the survey. They refer to specific days that olive-fly measures were taken by

the extension agents from the yellow sticky traps on the field. In total there are twelve different

data points covering the whole cycle of olive-fly reproduction during cropping seasons, May to

October.8 The observed olive-fly population measures reported in the first column,exhibit the two

peaks observed every cropping season (late spring and early autumn) as expected. Growth rates

decline from May until the end of July, following then an increasing trend until the last measure

taken in the 1st of October.

Figure ?? presents our point estimates of these same growth rates, their bootstrapped 95 per

cent confidence intervals, and the actual observed values on a common axes. It illustrates that,

apart from the intertemporal population growth rates, the seasonal pattern of olive-fly infestation

in olive orchards in our sample is well captured by our procedures as all observed values fall within

our interval estimates. In late spring and early autumn pest infestation rates are higher due to the

prevailing low temperatures and high humidity rates. The same pattern is followed by pesticide

application rates as farmers respond to increased infestation levels. Although the absolute figures

exhibit some variations around the true values, our model predicts directional change accurately in

all instances. Our point estimates under-predict slightly the early stages of larval development (May,

8During winter season chemical traps are removed from the olive orchards.

11



June and August) and over-predict the late stages of its maturity (July, September and October).

But overall the fit is close. The correlation coefficient between observed and estimated growth

rates is quite high, 0.942. This high correlation value is further confirmed by the corresponding

Kolmogorov-Smirnov test statistic that indicates no statistically significant differences between the

two empirical distributions, i.e., observed and estimated growth rates (see the last row of Table

??).

Finally, Table ?? reports averages of estimated values for output realization (i.e., g (b, z)),

estimated olive-fly population growth rates, and observed olive-fly population growth rates for each

one of the fifty olive farms in the sample. The average farm realizes approximately 82.5 per cent of

maximum potential output so that average pest damage is 17 to 18 per cent. The lowest value is

34.2 per cent and the highest 99.9 per cent. Besides some notable differences in the magnitude of

change in some olive farms, in every instance, our model predicts accurately the direction of average

olive-fly population growth. The average predicted olive-fly population growth was found to be

0.40 percent as compared to the observed value of 0.29 per cent. As Figure ?? illustrates, in some

instances, the difference between estimated and observed growth rates is negligible. The correlation

coefficient between the observed and the estimated series is 0.982. Again the Kolmogorov-Smirnov

test statistic is well above the corresponding critical value indicating no statistically significant

differences among the two empirical distributions (see Table ??).

6 Discussion and Related Literature

We have developed a framework that integrates information from biological yield response rela-

tionships into economic production models to make inferences on pest population dynamics in the

absence of actual observations on the underlying pest population while also estimating supply-

response models. Although our empirical analysis focuses on a specific pest-host relationship (i.e.,

olive-fruit fly), our analyses can be extended to a broader class of environmental and resource

problems by making suitable adjustments to accommodate the biological relationships underlying

the specific production process being studied. As long as an identifiable relationship exists between

the biological population and production, observations on supply data (both input demands and

supply), which are conditional on the biological population, must have that information embedded

in them. So, even if the population data are not directly available, knowledge of the underlying

biological relationship permits making inferences on the underlying pest population.

Models that ignore that linkage ignore an important source of information on the associated

production system. The result is a less-efficient approximation. Ideally, the more biological infor-

mation available on the population’s demographics and how those factors interact with observable

supply behavior that can be incorporated in the modelling process, the more precise the resulting

model. Economists routinely rely on relatively simplistic production structures precisely because

they lack such structural information. The choice is not between using purely biological approaches
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to estimating population dynamics and using a purely economic approach. Rather the challenge is

to combine economic and biological approaches in a truly synergistic fashion.

Cobourn et al. (2011) have suggested that modellers frequently misrepresent causality in the

damage relationship. This is due to conflating the role that the pest population plays in the damage

relationship with the role that it plays on pest reproduction. Frequently, the cause is a lack of

appropriate data. For example, empirical models may link the adult pest population to yield losses,

even though in many cases (like olive-fruit fly in our case study and in theirs) adult pest populations

are only indirectly responsible for the crop damage. Such problems become more intense the more

complex the predator-prey interactions and in multi-species pest populations. Their solution is to

incorporate information beyond the pest population into the damage relationship (what they refer

to as host characteristics). We lack such information for our data set. However, our procedure

can be augmented to incorporate that type of empirical information, when available, to refine our

analysis even further. It can also be applied to more complex biological relationships for longer-lived

species in heterogeneous or non sedentary pest populations.

What our model cannot do is to make out-of-sample predictions and to define biological reference

points. To do so, one must specify a full biological model specific to the pest population under study.

For the olive-fruit fly, a series of alternative biological models of its spatial or temporal population

dynamics have been developed following procedures introduced in the seminal paper of Comins

and Fletcher (1988) (see, for example, Yonow et al., (2004), Gutierrez et al., (2009), Castrignano

et al., (2012) and the references cited therein). These models are typically highly structural and

require detailed data on the microclimatic conditions in the field to ensure accurate prediction

of olive-fly population dynamics. Some use huge simulation tools demanding experimental data

for pest reproduction. This effectively prohibits their practical application in studies such as the

current one where only limited information is available.

To illustrate the problems of fitting such models with limited data, as well as to provide a basis

for comparison with our model, we have fit the Gutierrez et al., (2009) biological model for olive-fly

reproduction. Their model is able to compute many aspects of the structural dynamics of olive flies

and olive production (that is, olive-tree development, seasonal yield and olive-fly reproduction).9

Our interest is in olive-fly reproduction during the May-October season for which the necessary

data were available from secondary sources. All biological processes in the Gutierrez et al., (2009)

model, are driven by climatic conditions making the model independent of time and place (this

is important for our case study because detailed data from olive growers in the sample were not

available).

Entomologists from National Agricultural Research Foundation of Greece (NAgREF) provided

us with the necessary data on olive-fly phenology and assisted us in running the simulation tool

in their premises. We maintained the same non-linear olive-fly development rate model of Gutier-

9More details on the development of this particular model of olive-fly population dynamics can be found in
Gutierrez (1996).
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rez et al., (2009) as well as those for egg-larval and pupal stages development which were fitted

using experimental data provided from NAgREF and the prevailing climatic conditions (that is,

temperature and humidity rates) obtained from the local meteorological stations. As our survey

was completed many years ago, it was not possible to get the exact climatic conditions (that is,

temperature, humidity rates) on each plot in the sample. Hence, we used historical data from the

network of local meteorological stations in the island.

The resulting average values of olive-fly population growth rates for each one of the farms in

our sample are presented in Table ??. Their model was able to predict accurately within season

population dynamics of olive-fly suggesting four summer generations and a partial one occurring

after harvesting. However, it was not able to predict between seasons pest population changes

and as a result individual pest infestation levels for olive growers in our sample were not predicted

accurately. As depicted in Table ?? for the majority of olive growers, both the direction and the

magnitude of change is not captured by the fitted biological model. On the average, it predicted a

2.30 per cent olive-fly population growth which is considerably higher than the observed value of

0.29 per cent. The correlation coefficient between fitted and observed is very low (only 36.87 per

cent) and statistically insignificant. The computed Kolmogorov-Smirnov test statistic also suggests

statistically significant differences among the two empirical distributions (see the last row in Table

??).

This poor performance of the fitted biological model in this setting is not due to any theoretical

flaws in the model. In fact, this model has been successfully applied in many olive-oil producing

regions around the globe. Rather its poor performance here is due to its reliance on accurate data

for olive-fly phenology that were not available for our sample of olive growers. Biologically grounded

models can be very accurate when reliable and consistent data are available. But they can be very

inaccurate when those data are missing. Our approach, which relies observable economic data and

makes inferences based on rational producer behavior has shown to be quite accurate in such a

setting. Its accuracy can only be enhanced when it is combined with even more precise information

on olive-fly phenology that are necessary to the successful implementation of biological models.

7 Concluding Remarks

We developed a biologically correct cost system for production systems facing invasive pests that

allows the estimation of population dynamics without a priori knowledge of their true values. We

applied that model to a data set for olive producers in Crete, Greece and derived from it estimates of

the underlying population dynamics. Those dynamics were compared to information on population

dynamics obtained from pest sampling with extremely favorable results.

These results suggest that our method offers an appealing alternative in modelling supply

response systems that depend upon unobserved population variables. Obviously, the empirical

findings cannot be extrapolated beyond the current application. But the basic theoretical procedure
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for using information from biological models can easily be extended to other applications. That

procedure essentially marries economic analysis with prior biological information. Biologists have

expended considerable effort in developing biologically plausible specifications of the interactions

between populations and yield response. Similarly, economists have expended generations of effort

in developing and estimating production systems. It seems natural that synergies should arise from

combining these efforts.

From a production perspective, biological specifications often define natural separable struc-

tures that can be exploited in analytic and econometric modelling. Incorporating this biological

information into our models potentially improves modelling efficiency. But there is another natural

by-product: it should also enhance our ability of economists to communicate economic analysis to

other disciplines. Our results suggest that other studies on natural-resource industries could benefit

by incorporating biologically correct models to provide more accurate supply-response modelling.
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Tables and Figures

Table 1: Summary Statistics of the Variables

Variable Mean Maximum Minimum

Olive-Oil
- Quantity (kgs) 21,051 111,168 1,658
- Price (euros) 2.62 3.62 1.63
Labor
- Quantity (hrs) 578 2,985 48
- Price (euros) 20.33 29.85 13.79
Fertilizers
- Quantity (kgs) 16,037 87,266 846
- Price (euros) 0.236 0.350 0.113
Intermediate Inputs

- Total Cost (euros) 2,813 13,587 350
- Price (euros) 3.19 4.41 1.85
Capital (euros) 25,214 142,543 2,341
Education (years) 8 16 2
Extension Visits (no) 8 37 1
Temperature (◦C) 24.91 37.32 12.38
Humidity (percentage) 0.43 0.88 0.20
Altitude (meters) 316 995 6
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Table 2: Parameter Estimates of the Translog Cost Function

Parameter Estimate StdError Parameter Estimate StdError

α0 0.9796 (0.2341)
αwL 0.3572 (0.0087) αwqLC 0.0141 (0.0074)
αwF 0.1533 (0.0068) αwqLH -0.0029 (0.0089)
αwI 0.4895 (0.0932) αwqFC 0.0207 (0.0059)
αqC -0.3358 (0.0237) αwqFH -0.0036 (0.0071)
αqH -0.0812 (0.0284) αwqIC -0.0348 (0.0036)
αy 0.9584 (0.1022) αwqIH 0.0066 (0.0023)
αt -0.0328 (0.0124) αywL -0.0092 (0.0393)
αwwLL -0.1879 (0.1078) αywF 0.0728 (0.0315)
αwwFF -0.0736 (0.0124) αywI -0.0635 (0.0231)
αwwII -0.2345 (0.1053) αwtL 0.0016 (0.0095)
αwwLF 0.0135 (0.0221) αwtF 0.0154 (0.0074)
αwwLI 0.1744 (0.1324) αwtI -0.0170 (0.0143)
αwwFI 0.0601 (0.0266) αyqC -0.1079 (0.0275)
αtt 0.0861 (0.0572) αyqH 0.1642 (0.1124)

αqqCC -0.1810 (0.0605) αqtC -0.0217 (0.0269)

αqqHH 0.0146 (0.0098) αqtH 0.0415 (0.0212)
αqqCH 0.0941 (0.0518) αyt -0.1790 (0.0924)
αyy 0.2854 (0.0875) δz -0.6128 (0.1013)

LnL 189.321

where, L stands for labor, F for fertilizers, I for intermediate inputs, C for capital,
H for household labor, Z for pesticides and Y for output (i.e., olive-oil). α0, αwL ,
αwF and αwI are the mean expectations of α0i, α

w
Li, α

w
Fi and αwIi, respectively. In

parentheses are the corresponding standard errors obtained using block resampling
techniques (Politis and Romano 1994).

Table 3: Variance-Covariance Matrix of the Random Coefficients

Constant (α0i) Labor (αwLi) Fertilizers (αwFi)

Constant (α0i) 12.3424 - -
Labor (αwLi) -2.1442 1.0524 -
Fertilizers (αwFi) -1.7462 0.8732 2.1382

All entries are multiplied by 100.
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Table 4: Variable Input Demand Elasticities

Variable-Input Demands wL wF wI
Labor (L) -0.9244 0.3831 0.5414

(0.1764) (0.0887) (0.1143)
Fertilizers (F ) 0.1626 -0.8183 0.6557

(0.0514) (0.1443) (0.1298)
Intermediate Inputs (I) 0.2092 0.5440 -0.7532

(0.0512) (0.1125) (0.1873)

Elasticities are computed at the mean values of all exogenous variables
and mean random coefficient estimates. In parentheses are the corre-
sponding standard errors obtained using block resampling techniques
(Politis and Romano 1994).

Table 5: Estimated and Observed Pest Population Growth

Pest Population Growth 1999-00 2000-01 2001-02 2002-03 2003-04 Mean rho

Observed 6.03 -8.69 7.85 -3.27 -0.27 0.29
91.31

Estimated 1.90 -5.84 9.71 -1.39 -2.39 0.40

Kolmogorov-Smirnov test-statistic: 0.3219 Critical value (α=0.05, n=300): 0.1110

Table 6: Pest Biomass, Pesticide Materials and Pest Population Growth During the Cropping
Season

Date Pest Biomass Pesticide Materials Pest Population Growth

(6.8 mg of adult weight) (in grams) Observed Estimated

May 15th 929.9 278 - -
June 1st 813.0 254 -13.9 -9.8
June 15th 624.5 214 -26.4 -22.7
July 1st 349.9 169 -57.9 -63.1
July 10th 161.9 76 -77.1 -84.0
July 20th 75.0 31 -77.0 -84.6
August 1st 108.4 22 36.9 33.1
August 10th 279.5 48 94.7 84.2
August 20th 591.9 98 75.0 83.4
September 1st 754.3 182 24.2 33.5
September 15th 871.2 244 14.1 17.3
October 1st 950.1 280 8.7 11.2

Mean 542.4 158 0.26 0.41

rho 88.5 96.3

Kolmogorov-Smirnov test-statistic: 0.1432 Critical value (α=0.05, n=600): 0.0785
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Figure 1: Observed and Estimated Pest Population Growth: Average Values of the 2000-2004
Period

2000 2001 2002 2003 2004
-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

12

P
es

t
P

op
u

la
ti

o
n

G
ro

w
th

(%
)

Observed

Estimated

Confidence Intervals

Figure 2: Observed and Estimated Pest Population Growth: Average Values of the Cropping
Season
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Figure 3: Observed and Estimated Pest Population Growth: Average Farm Values
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Table 7: Average Farm Values of Output Realization and Pest Population Growth

Farm Output Pest Population Growth Farm Output Pest Population Growth

No Realization (1) (2) (3) No Realization (1) (2) (3)

1 94.78 -0.43 -0.53 3.14 26 52.44 0.58 0.95 -4.56
2 53.12 -4.94 -5.11 -0.34 27 95.68 10.73 9.24 23.45
3 48.74 3.31 2.67 8.98 28 34.15 -21.76 -21.95 -43.23
4 93.33 -11.36 -7.85 9.34 29 71.07 2.41 2.34 14.53
5 91.85 1.73 1.83 -7.63 30 69.80 2.01 3.76 -4.56
6 59.08 -2.04 -2.78 -6.53 31 98.70 -9.69 -6.58 6.34
7 99.78 -3.41 -2.51 -15.34 32 36.52 1.19 2.01 -6.75
8 99.43 18.20 12.98 4.54 33 98.81 14.97 11.86 30.21
9 96.28 2.60 2.57 8.96 34 81.02 1.84 2.27 -8.76
10 96.00 4.12 4.18 11.32 35 71.60 7.54 6.78 21.23
11 99.40 6.75 7.54 -4.32 36 98.09 4.57 2.65 14.35
12 77.28 -18.04 -12.10 -31.23 37 62.79 0.56 0.71 -7.65
13 89.56 17.58 12.78 21.32 38 99.46 -6.78 -3.93 -17.65
14 69.79 0.03 0.28 -2.34 39 99.81 -1.10 -3.32 4.35
15 99.46 -0.87 -0.93 -8.54 40 92.86 -4.14 -4.20 8.79
16 81.19 -18.29 -13.53 -2.94 41 75.49 10.75 7.40 -3.42
17 79.98 -0.84 -0.56 4.56 42 99.99 11.96 10.40 0.09
18 99.81 3.78 2.42 9.77 43 99.98 3.47 4.32 23.45
19 90.07 2.72 3.48 8.96 44 82.88 2.33 3.24 -11.23
20 99.99 1.20 1.51 10.34 45 99.99 -1.12 -1.93 8.65
21 80.97 -0.65 -0.67 6.54 46 72.18 3.73 4.23 15.43
22 99.96 5.32 4.91 12.83 47 50.81 10.45 8.42 1.21
23 83.31 -2.89 -2.31 7.65 48 92.61 5.13 2.85 13.45
24 26.67 -16.94 -13.13 -2.34 49 87.71 -1.99 -1.37 -12.65
25 96.66 -4.96 -3.63 3.45 50 92.36 -15.82 -11.68 -0.16

Mean Values 82.47 0.29 0.40 2.31

Correlation Coefficient (rho): 96.31 36.87

Kolmogorov-Smirnov test-statistic (CV α=0.05, n=50: 0.2720): 0.3073 0.1983

(1) observed values, (2) estimated values from our supply-response model, (3) estimated values from Gutierrez et
al., (2009) biological model.
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