
 
 
 
 
 
 
 
 
 
 
 
 MARGINAL COMPARISONS WITH THE BEST 
 
 AND THE EFFICIENCY MEASUREMENT PROBLEM 
 
 
 
 
 
 
 
 
 
 Yangseon Kim 
 East-West Center 
 
 
 
 Peter Schmidt 
 Michigan State University 
 
 
 
 December, 1998 
 
 This version:  December, 2006 
 
 
 
 
 
The second author acknowledges support under a Marie Curie Transfer of Knowledge Fellowship 
of the European Community under contract MTKD-CT-014288. 
 
 
 



1.  INTRODUCTION 

 Suppose that we have data on each of a set of N populations, indexed by a parameter θi, i 

= 1, 2, ..., N.  The parameterization is such that a larger value of θi is "better" than a smaller value. 

 Suppose that we order the θi as follows: 

(1)  θ(1) ≤ θ(2) ≤ ... ≤ θ(N) , 

so that population (N) is best.  The identity of the best population is not assumed to be known, 

which is the challenging aspect of the problem.  Let θ ≡ (θ1, θ2, ... , θN)′ be the (unordered) vector 

of parameters.  We presume that we have data on each of the populations and correspondingly 

there is an estimate θ̂  of θ.  Based on this estimate we wish to say which populations might be 

best, and to construct confidence intervals for the differences θ(N) - θi, which measure the amount 

by which a given population differs from the best.  Thus we are interested in the problem of 

comparisons with the best population. 

 One case where comparisons with the best arise naturally is the measurement of productive 

efficiency.  Following Schmidt and Sickles (1984) and much subsequent literature, we consider a 

fixed effect panel data production function of the form: 

(2)  yit = θi  + xit′β + vit  ,  i = 1,…,N ,  t = 1,…,T, 

where i indexes firms and t indexes time.  The production frontier is defined by the best firm, 

which is the one with the largest value of θi, and one measure of the technical inefficiency of a 

given firm is the difference between the best firm’s intercept and the given firm’s intercept.  We 

will consider this case in more detail in Section 4 below.  However, there are many other settings 

in which comparison with the best may be appropriate.  One example is a drug trial, in which θi is 

the mean survival time (or some similar parameter where a larger value is better) given treatment 

with drug i.  Suppose there is an existing standard drug plus a number of new possible drugs.  We 

might be interested in comparing any one of the new drugs to the existing standard drug.  

However, we might also be interested in comparing new drugs with the best drug in the set.  For 

example, a comparison with the best might be appropriate if one of the new drugs is very 

expensive and therefore is justified only if it is clearly best.  Hsu (1996) gives a number of other 
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examples, such as the effectiveness of insect traps and the comparison of SAT scores across 

academic units. 

 One solution to the comparison with the best problem is given by the technique of multiple 

comparisons with the best, or MCB.  MCB constructs a set S of possibly best populations, and a set 

of intervals (Li,Ui), such that:  

(3)  P[ (N) ∈  S  and  Li ≤ θ(N) - θi ≤ Ui for all i ] ≥ 1-α , 

where 1-α is a chosen confidence level (e.g. 0.95).  Thus with a given confidence level we have a 

set of populations that includes the best, and joint confidence intervals for all differences from the 

best.  MCB was developed by Hsu (1981, 1984) and Edwards and Hsu (1983).  A general 

exposition can be found in Hochberg and Tamhane (1987), Hsu (1996) and Horrace and Schmidt 

(2000). 

 An alternative to the multiple confidence intervals in (3) is a marginal (i.e., univariate) 

confidence interval for θ(N) - θi, for a single given value of i.  In the efficiency measurement 

example, this would amount to a confidence interval for the technical inefficiency of a given firm, 

which is a natural and useful object of interest.  Perhaps surprisingly, the construction of a 

marginal confidence interval for θ(N) - θi is a previously unsolved problem.  In this paper we show 

how to construct these marginal confidence intervals.  More precisely, for a given value of i, we 

provide a set S and and interval ( m
iL , m

iU ) such that P[ (N) ∈  S  and  m
iL ≤ θ(N) - θi ≤ m

iU ] ≥ 1-α.  

The point is that marginal confidence intervals are natural to consider, and also that we would 

expect marginal confidence intervals to be narrower than joint ones. 

 Horrace and Schmidt (1996, 2000) have applied MCB to the efficiency measurement 

problem.  In this paper we provide similar applications of marginal comparisons with the best. 

2.  MARGINAL COMPARISONS UNDER STANDARD ASSUMPTIONS 

 Throughout the paper we will maintain the following two assumptions.  First, we have an 

estimate θ̂  distributed as N(θ,σ2C) with the N×N matrix C known.  Second, either σ2 is known, or 
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we have an estimate σ̂ 2, independent of θ̂ , such that σ̂ 2/σ2 is distributed as χυ2/υ.  In any 

applications we envision, there will be enough degrees of freedom (υ will be large enough) that 

we can effectively take σ2 as known. 

 The above assumptions put us squarely in the finite sample setting, since we require that θ̂  

be unbiased and normally distributed.  One could alternatively pursue an analysis in terms of 

asymptotics (as T increased with N fixed) in which θ̂  was consistent and asymptotically normal, 

with known asymptotic variance matrix.  However, the MCB literature typically does not pursue 

the details of this, and neither will this paper. 

 Standard MCB proceeds under the further assumption, which we will maintain in this 

section, that C = kIN with the scalar k known.  This assumption is usually motivated by discussion 

of the "balanced one way model" (e.g., Hsu (1996), p. 43) in which we have independent 

observations yit (i = 1,...,N, t = 1,...,T) distributed as N(θi,σ2).  In this case iθ̂  = iy , and so we have 

C = IN and k = 1/T.  This is also the case in the panel data regression model with fixed individual 

effects, if we treat the slope coefficients as known, as will be discussed below. 

 We define the following notation, which is more or less standard in the MCB literature. 

E(½) is the N-1 × N-1 correlation matrix with all correlations equal to ½ (i.e., diagonal elements 

equal one, off-diagonal elements equal ½).  Let z be a multivariate random variable distributed as 

student-t with dimension N-1, degrees of freedom υ, and correlation matrix E(½).  Define d*(α) as 

the α-level critical value of maxi=1,...,N-1 │zi│;  i.e., P[maxi │zi│ ≤ d*(α)] = 1-α.  Tabulations of 

d*(α) can be found in Hsu (1996) or Horrace (1998).  Define h(α) = d*(α)(2k 2σ̂ )½, and define the 

set S(α) = {i│ iθ̂   ≥ maxj=1,...,N jθ̂  - h(α)}.  Define Li and Ui as follows: 

(4)  Li = max[0, minjεS(α) jθ̂  - iθ̂  - h(α)] , Ui = max[0, maxj≠ i  jθ̂ - iθ̂  + h(α)] 

Then MCB provides the statement (3) above, with S = S(α).  See, e.g., Horrace and Schmidt (2000, 

p. 6).    

 Our marginal comparison with the best is given by the following theorem. 
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 THEOREM 1:  Let t*(α) be the two-sided α-level critical value of the (univariate) 

student-t distribution with υ degrees of freedom;  i.e., if z is distributed as student-t with υ degrees 

of freedom, then P[│z│ ≤ t*(α)] = 1-α.  Define g(α) = t*(α)(2k 2σ̂ )½.  Define the set S(α) as above. 

 Define m
iL and m

iU as follows: 

(5) m
iL  = max[0, minjεS(α)  ij θθ ˆˆ −  - g(α/2)], m

iU = max[0, maxj≠ i ij θθ ˆˆ − + g(α/2)] . 

Then 

(6)  P[ (N) ∈  S(α)  and  m
iL  ≤ θ(N) - θi ≤ m

iU  ] ≥ 1-α. 

 The proof is given in the Appendix.  It is a relatively straightforward application of the 

Bonferroni inequality and the method of proof used to establish the MCB result.. 

 We can note that the marginal comparison (6) uses the α/2-level critical value of a 

univariate student-t while the multiple comparison (3) uses the α-level critical value of an N-1 

dimensional student-t.  There is no general inequality between these, but for commonly chosen 

values of α (e.g. 0.05 or 0.10) the marginal intervals are narrower than the multiple intervals except 

when N is quite small.  For example, for α = 0.05 and υ = ∞, the univariate α/2-level critical value 

is 2.24, while the N-1 variate α-level critical value is 2.21 for N=3, 2.35 for N=4, 2.44 for N=5, 

2.69 for N=10, 3.01 for N=30, 3.30 for N=100, and so forth. 

 We may also wish to consider one-sided confidence intervals.  One of the possible 

motivations for doing so is the following.  In many applications, the lower bound for θ(N) - θi turns 

out to be zero for many observations, because the set S of possibly best populations is large.  We 

might choose to forgo the calculation of a lower bound, in which case a tighter upper bound is 

possible.  This result is given in the following theorem. 

 THEOREM 2:  Let g(α) be defined as in the statement of Theorem 1.  Then the following 

are true: 
(7)  P[ (N) ∈  S(α) and θ(N) - θi ≤ max[0, maxj≠ i  ij θθ ˆˆ −  + g(α)] ]  ≥ 1-α 

(8)  P[θ(N) - θi ≤ max[0, maxj≠ i ij θθ ˆˆ −  + g(2α)]] ≥ 1-α . 
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 The proof is given in the Appendix, but we can note the following.  Comparing (7) to (6), 

the fact that we make only one statement instead of two allows us to use the α/2-level one-sided 

univariate student-t critical value, which is the same as the α-level two-sided critical value, instead 

of the α/2-level two-sided critical value.  (For example, for α = 0.05 and υ = ∞, we use 1.96 instead 

of 2.24.)  Considering (8), we note that the upper bound does not require the definition of the 

possibly best set S(α).  If we do not wish to consider S(α), we can devote the full confidence level 

1-α to the upper bound, and we can use the α-level one-sided critical value of student-t, which is 

the same as the 2α-level two-sided critical value.  (Thus, for example, with α = 0.05 and υ = ∞, we 

can now use the critical value 1.64 instead of 1.96 or 2.24.)  As a result we get more a precise upper 

bound. 

3.  MARGINAL COMPARISONS WITH GENERAL COVARIANCE STRUCTURE 

 The previous section considered the commonly-assumed special case that the covariance 

matrix of θ̂  is proportional to an identity matrix.  In this section we consider the general case that 

θ̂  is distributed as N(θ,σ2C) with C known but unrestricted.  This arises in, among other cases, the 

panel data regresson model with nontrivial regressors. 

 We first need to define a little notation.  For a given value of i, define δi as the (N-1)×1 

vector whose typical element is of the form θj - θi, for j = 1,...,N, i≠ j.  Formally δi = Diθ where Di 

is an (N-1)×N differencing matrix.  The covariance matrix of iδ̂  is σ2Bi, where Bi = DiCDi′. Let 

Ri be the corresponding correlation matrix.  In the special case that C is proportional to identity, 

Ri = E(½), as discussed in the previous section.  In the general case, Ri will depend on i and has no 

special structure, but it is easily calculated.  Define di*(α) as the two-sided α-level critical value of 

the multivariate student-t distribution with dimension N-1, degrees of freedom v, and correlation 

matrix Ri.  This critical value will typically depend on i and will generally need to be calculated 

numerically (e.g. by a simulation), since tabulation is impossible except in special cases. 
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 Now define 22 ˆˆ jiij σσ =  = [ 2σ̂  (Cii+Cjj-2Cij)], hji(α) = dj*(α) ijσ̂ , Li
j = ij θθ ˆˆ − - hji(α), Ui

j = 

ij θθ ˆˆ − + hji(α), the possibly best set S(α) = {i │ Uj
i ≥ 0 ∀j≠ i} = {i │ iθ̂  ≥ jθ̂ - hij(α) ∀ j≠ i}, and 

the lower and upper bounds Li = max[0, minjεS(α) Li
j] and Ui = max[0, maxj≠ i Ui

j].  Then MCB 

provides the statement (3) above, with S = S(α).  See, e.g., Horrace and Schmidt (2000, p. 10). 

 We now provide the corresponding marginal comparison result. 

 THEOREM 3:  Define the set S(α) as above, and let t*(α) be the two-sided α-level critical 
value of the univariate student-t distribution.  Define gij(α) = t*(α) ijσ̂ .  Define Li

m and Ui
m as 

follows: 
(9) Li

m = max[0, minjεS(α) ( ij θθ ˆˆ − - gij(α/2))], Ui
m = max[0, maxj≠ i ( ij θθ ˆˆ − + gij(α/2))]. 

Then 

(10)  P[ (N) ∈  S(α)  and  Li
m ≤ θ(N) - θi ≤ Ui

m ] ≥ 1-α. 

 The proof is similar to the proof of Theorem 1 and is therefore omitted. 

 As in the standard case, we may also consider one-sided confidence intervals.  The 

following Theorem (also presented without proof) is the result corresponding to Theorem 2. 

 THEOREM 4:  The following are true: 
(11)  P[ (N) ∈  S(α) and θ(N) - θi ≤ max[0, maxj≠ i ( ij θθ ˆˆ − + gij(α))]]  ≥ 1-α  

(12)  P[ θ(N) - θi ≤ max[0, maxj≠ i ( ij θθ ˆˆ − + gij(2α))]]  ≥ 1-α . 

 As in the previous section, one possible motivation for one-sided confidence intervals is 

that they yield more precise upper bounds.  However, in the case of general covariance structure 

the one-sided intervals given in equation (12) also offer considerable computational advantages, 

because they do not require the calculation of the possibly best set S(α).  The calculation of S(α) 

requires the N critical values di*(α), i = 1,...,N, each of which is from an N-1 dimensional student-t 

distribution and is generally calculable only numerically (via simulation).  Especially when N is 

large, this is a very complicated and time-consuming set of calculations. 

4.  THE EFFICIENCY MEASUREMENT PROBLEM 
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 In this section we discuss the application of our marginal comparisons with the best to the 

efficiency measurement problem.  Horrace and Schmidt (1996, 2000) applied MCB to this 

problem, and we wish to compare the marginal and multiple confidence intervals.  Here we will 

give a very brief discussion of the problem.  More detail can be found in Horrace and Schmidt 

(2000). 

 We begin with the fixed-effect panel data regression model: 

(13)  yit = θi + xit′β + vit ,  i = 1,...,N ,  t = 1,...T. 

This is the same as equation (2) above.  For purposes of exposition we assume a "balanced" panel 

(T is the same for all i).  We assume that the vit are iid N(0,σv
2) and we treat the explanatory 

variables xit as fixed.  The parameters of interest are the intercepts θi.  In our applications the 

estimator of β, say β̂ , is the fixed-effect or "within" estimator obtained by least squares of ity&&  on 

itx&&  , where iitit yyy −=&&  and where iy  is the mean of the T observations on ity  for firm i; and 

similarly for itx&&  and ix .  Then we obtain an estimate of θi as .ˆ'ˆ βθ iii xy −=   These are standard 

results from the panel data literature.  More detail in the present setting can be found in Schmidt 

and Sickles (1984). 

 In the context of the efficiency measurement problem, y is the logarithm of output and x is 

a vector of functions of inputs into the productive process.  Larger θi is better because it 

corresponds to more output for the same inputs.  We define ui = θ(N) - θi, where θ(N) is the largest 

of the N θi's, and the technical efficiency of firm i is typically defined as TEi = exp(-ui). Since ui ≥ 

0, 0 ≤ TEi ≤ 1.  MCB and our marginal comparisons with the best procedures will provide 

confidence intervals for ui, and these are easily converted into confidence intervals for TEi.  In 

particular, if (with a given probability) L ≤ ui ≤ U, then exp(-U) ≤ TEi ≤ exp(-L), so that lower 

bounds for ui convert to upper bounds for TEi and conversely. 

 Let θ= (θ1, θ2,..., θN)′.  Under our assumptions the covariance matrix of θ̂  is not 

proportional to an identity matrix and so we should allow for a general covariance structure.  
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Specifically, V(θ̂ ) = ( 2
vσ /T)IN + X V( β̂ ) X ′, where V( β̂ ) is the covariance matrix of β̂  and X  

is the matrix whose ith row is ix ′.  Furthermore V( β̂ ) = 2
vσ ( XX &&&& ′ )-1 where X&& is the matrix whose 

typical row is itx&& ′.  Therefore 

(14)  V(θ̂ ) = 2
vσ C  ,  where C = (1/T)IN + XXXX ′′ −1)( &&&&  . 

Finally, evaluating this requires an estimate of 2
vσ , for which the standard choice is 2ˆ vσ = 

SSE/[N(T-1)], where SSE is the unexplained sum of squares in the “within” regression (regression 

of y&& on X&& ). 

 The methods of section 2 ("standard" MCB or marginal comparisons) would apply if β 

were known, since then the term arising from V( β̂ ) disappears and C = (1/T)IN.  Therefore 

standard MCB can be viewed as applying approximately if the proportion of V( β̂  ) due to the 

variance of β̂  is small.  This may generally be so when N is large relative to T, as discussed in 

Horrace and Schmidt (2000).  However, in this paper we present only the results that allow for the 

general covariance structure. 

5.  EMPRICAL RESULTS 

5.1 Indonesian Rice Farms 

 We first analyze the data of Erwidodo (1990), which contain information on N = 171 rice 

farms for T = 6 growing seasons.  Output is the physical quantity of rice grown, and inputs 

included are seed, fertilizer, labor, land, and some dummy variables.  A Cobb-Douglas (linear in 

logarithms) functional form is assumed.  More detail can be found in Erwidodo (1990) or Horrace 

and Schmidt (1996). 

 Our results are given in Table 1.  We choose α = 0.10 (hence 90% confidence intervals).  

We give results for the three most efficient (best) firms, the 75th percentile, 50th percentile 

(median) and 25th percentile firms, and the two least efficient (worst) firms.  For each firm, we 

present the value of θ̂  ; the estimate of  technical efficiency; the confidence intervals 

corresponding to the marginal and multiple comparisons with the best; and the corresponding 
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one-sided marginal and one-sided multiple comparisons with the best.  The one-sided marginal 

comparisons correspond to equation (12) of section 3.   

 In these data we do not estimate the intercepts θi very precisely.  This occurs because we 

have only six observations per firm and because the value of 2
vσ turns out to be large relative to the 

variation in the θi.  (Our estimate of 2
vσ  is 0.108 and the sample variance of the iθ̂  equals 0.031.) 

 Correspondingly, our confidence intervals are rather wide.  In fact, they are wide enough to 

suggest that the efficiency measurement exercise has more or less failed to distinguish efficient 

and inefficient firms.  The possibly best set S contains 92 of the 171 firms, and the other 79 firms 

are sufficiently close to being in the possibly best set that the upper bounds for TEi equal one for 

all firms, even for the two-sided intervals.  (For the one-sided intervals, the upper bound is 

automatically one, but this is an identity, not a data-determined outcome.)   

 The marginal comparison intervals are considerably shorter than the MCB intervals, as 

they should be.  They use the 5% critical value of the univariate student-t distribution, 1.96, while 

the multiple intervals use 10% critical values of the 170-dimensional student-t distribution, which 

vary a little over comparison populations (i.e. di* above depends on i) but equal 3.18 on average. 

 The greater precision of the marginal as opposed to multiple confidence intervals is most 

noticeable for the more efficient firms.  For example, for the most efficient firm compare the 

marginal interval of [0.74,1] to the multiple interval of [0.58,1].  The extra width of the MCB 

intervals is the price one has to pay for making a multiple statement, of course (the so-called 

"multiplicity effect").   

5.2 Texas Utilities 

 We next analyze the data of Kumbhakar (1994).  We observe the output of electrical power 

and the use of labor, capital and fuel as inputs by N = 10 major privately-owned electric utilities in 

Texas.  There are T = 18 yearly observations.  We estimate the production function (Kumbhakar 

estimated the cost function) in Cobb-Douglas form. 
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 The results are given in Table 2.  The format of this Table is the same as that of Table 1 

except that now we are able to show results for all of the firms.  The confidence intervals (both 

marginal and multiple) are much narrower for this data set than for the previous one.  We are now 

able to make statements about efficiencies that are precise enough to be meaningful.  For example, 

only two observations are in the possibly best set, and the confidence interval for the efficiency of 

the (apparently) most efficient firm is [0.95,1].  This occurs primarily because 2
vσ  is smaller and 

T is larger here than in the previous data set.  (Our estimate of 2
vσ  is 0.003 and the sample variance 

of the iθ̂  equals 0.007.  Also now we have T =18 rather than T = 6.   As a result the iθ  are estimated 

more precisely.)  The marginal intervals are narrower than the multiple intervals but the difference 

in width is not as large as it was in the previous data set, because the multiplicity effect is weaker 

with N = 10 than with N = 171.  Numerically, the marginal intervals use the univariate student-t 

5% critical value of 1.96, while the multiple intervals use 10% nine-variate student-t critical 

values, which are on average equal to 2.38. 

5.3 Some Specification Issues 

 The empirical analyses above, and many other empirical analyses in the efficiency 

measurement literature, rely on some strong assumptions, and in this section we consider how to 

test and (if necessary) relax some of these assumptions.  Specifically, we will consider two issues. 

The first issue is the assumption of strict exogeneity, which is the assumption that vit is 

uncorrelated with xis for all t and s.  This assumption is necessary for the within estimator to be 

consistent.  It is implied by our assumption above that the xit can be treated as fixed; that is, that 

they are independent of the errors.  It is a strong assumption because it rules out the possibility that 

current v can affect future x, that is, the possibility that current noise could affect future input 

choices.  The second issue is the assumption of white noise errors, that is, the assumption that 

var(vit) is constant and that cov(vit, vis) = 0 for t ≠ s.  This assumption is necessary for the form of 

C given in equation (14) to be correct. 
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 We first consider the strict exogeneity assumption.  This can be tested in a large number of 

ways.  The simplest is to add xi,t+1 to the regression (13), and then to do an F-test of the significance 

of these variables after fixed effects estimation.  When we do this, we accept the null hypothesis 

of strict exogeneity for the Indonesian rice farm data (F8,667 = 1.65 vs. the 95% critical value of 

1.94), but we reject the null hypothesis for the Texas utility data (F3,164 = 3.13 vs. the 95% critical 

value of 2.60).  These tests are conducted under the assumption that the errors are white noise, but 

the use of a robust variance matrix for the estimated regression coefficients did not change the 

results of the tests 

 For the Texas utility data, we therefore proceed to estimation by instrumental variables 

(IV), whose consistency requires only weak exogeneity (vit is uncorrelated with xis for s ≤ t).  

Specifically, we take first differences of the regression (equation (13), and then estimate by IV, 

where the instrumental variables are the lagged x terms:  xi,t-1, xi,t-2,…,xi,t-p.  We did this for p = 1, 

2 and 3 and the results were not very different.  Table 3 gives the confidence intervals for the case 

of p = 3.  The results are relatively similar to those in Table 2.  (For example, for firm number 8, 

which is one of the median efficiency firms, we now have a MargCB interval of [0.756, 0.972] 

instead of [0.764, 0.964].) We conclude that, even though we have rejected the strict exogeneity 

assumption, relaxing it does not affect the results very much. 

 Next we test the white noise assumption.  We use the minimum MCS test of Arellano 

(1990, p. 130), for his case (ii), white noise errors.  For the Indonesian rice farm data, we reject the 

white noise hypothesis ( 2
14χ  = 166.50 vs. the 95% critical value of 23.7).  For the Texas utility 

data, the test statistic is not defined because N is too small relative to T.  (The estimated variance 

matrix of the first differenced errors is singular.)  So we based the test just on the leading 3 by 3 

submatrix of the variance matrix of the first differenced errors.  This test accepted the white noise 

hypothesis ( 2
5χ  = 6.21 vs. the 95% critical value of 11.1).   
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 For the Indonesian rice farm data, we therefore would like to construct confidence intervals 

that are robust to the failure of the white noise assumption.  This is a non-trivial task.  Although it 

is easy to construct a robust variance matrix estimate for the fixed-effects estimates of the 

regression coefficients, there is no robust variance matrix for the vector θ̂  of estimated individual 

effects.  However, we can estimate an upper bound for V(θ̂ ).  Technical details can be found in the 

Appendix.  Using this upper bound, we get conservative but valid confidence intervals.  These are 

given in Table 4.  They are modestly wider than the corresponding intervals in Table 1.  (For 

example, for firm 15, the median efficiency firm, we now have a MargCB interval of [0.339, 1] 

instead of [0.379, 1].)  So using a conservative robust variance matrix forθ̂  makes a little 

difference but not much. 

6.  CONCLUDING REMARKS 

 In this paper we have considered the general problem of creating confidence intervals for 

measures of the difference between a given population and the best population.  More precisely, 

population i is characterized by a parameter θi, and we wish to construct a confidence interval for 

the difference θ(N) - θi, where θ(N) = maxj=1,...,N θj.  This is a challenging problem because we do not 

know which population is best.  One solution is given by MCB, which provides the complete set 

of N such confidence intervals, all of which hold simultaneously with at least a specified 

confidence level.  Perhaps surprisingly, the seemingly simpler problem of providing a confidence 

interval for a single difference θ(N) - θi had not previously been solved.  In this paper we provide 

these confidence intervals, and refer to them as marginal comparisons with the best. 

 Whether one prefers multiple or marginal comparisons will no doubt depend on the 

context.  For an example of the arguments in favor of multiple comparisons, see Hsu (1996, p. 7). 

However, in some cases a marginal comparison may be natural.  It seems reasonable to be able to 

perform either type of inference, just as one may wish to be able to test a set of hypotheses either 

individually or jointly. 



 

 
 
 13

 In the context of the efficiency measurement problem, marginal comparisons correspond 

to the construction of the confidence interval for a given firm's technical efficiency level, and this 

is indeed a natural thing to consider.  For example, models that assume a distribution for ui yield 

marginal confidence intervals, constructed in somewhat more straightforward ways than here.  See 

Horrace and Schmidt (1996) or Koop et al. (1997) for some examples.  A marginal comparison 

with the best is directly comparable, and provides evidence on the gain in precision from assuming 

a distribution for ui.  These comparisons are harder when MCB is used because the multiplicity 

effect and the effect of assuming or not assuming a distribution become confounded. 

 There is a literature on Bayesian methods for the efficiency measurement exercise, to 

which a good introduction is Koop et al. (1997).  Bayesian methods also allow comparisons with 

the best, and do so in a methodologically straightforward and consistent way, though at the cost of 

considerable computational complexity.  We are not aware of Bayesian comparisons with the best 

outside of the efficiency measurement literature, but there is no reason why the methodology could 

not be applied more widely.   



 
 

 

 

 APPENDIX A 

 Proof of Theorem 1 

 As in the text, suppose that z is a multivariate random variable distributed as student-t with 

dimension N-1, degrees of freedom v, and correlation matrix E(½).  Define d1*(α) as the α-level 

critical value of maxi=1,...,N-1 zi;  i.e., P[maxi zi ≤ d1*(α)] = 1-α.  Note that d1*(α) is the one-sided 

critical value corresponding to the two-sided critical value d*(α) used in MCB, and that d1*(α/2) 

= d*(α).  Similarly define h1(α) = d1*(α)(2k 2σ̂ )½ and note that h1(α/2) = h(α), with h(α) = 

d*(α)(2k 2σ̂ )½, as used in MCB. 

 Consider the event E1(α) = {θ(N) - θj ≤ jN θθ ˆˆ
)( − + h1(α) ∀ j≠ (N)}.  This is the one-sided 

multiple comparisons with a control (MCC) event, with (N) as control, and is constructed so that 

P[E1(α)] = 1-α.  See Dunnett (1955, 1964) or the discussion in Hsu (1996, chapter 3).  The event 

E1(α) implies the event {(N)∈S1(α)}, where S1(α) is the set of indices S1(α) = {i │ iθ̂  ≥ maxj=1,...,N 

jθ̂  - h1(α)}.  Note that S1(α/2) = S(α) ⊆ S(α/2).  Therefore 

(A1)  P[(N)∈S1(α/2)] = P[(N)∈S(α)] ≥ 1-α/2, 

a standard result of the "ranking and selection" literature;  e.g., see Gupta (1965).  
 Now pick a value of i (= 1,...,N), and consider the event Ai(α) = { iN θθ ˆˆ

)( −  - g(α)  ≤ θ(N) - 

θi  ≤  iN θθ ˆˆ
)( − + g(α)}, where g(α) was defined in the statement of the Theorem.  Note that g(α) was 

constructed so that P[Ai(α)] = 1-α.  By the Bonferroni inequality, it follows from (A1) and 

P[Ai(α/2)] = 1-α/2 that 

(A2)  P[ (N)∈S(α) and Ai(α/2) ] ≥ 1-α . 

 This inequality is not immediately useful because it is not in terms of observable quantities, 

since (N) is unknown.  So, we need to show that the event {(N)∈S(α) and Ai(α/2)} implies the 

marginal comparison event given in (6) of the main text.  Consider first the lower bound.  The 

event whose probability is given in (A2) implies that  
(A3)  minjεS(α) ij θθ ˆˆ −  - g(α/2) ≤ iN θθ ˆˆ

)( −  - g(α/2) ≤ θ(N) - θi.   

Also 0 ≤ θ(N) - θi.  Thus the event whose probability is given in (A2) implies the lower bound 



 
 

 

 

(A4)  max[0, minjεS(α) ij θθ ˆˆ −  - g(α/2)] ≤ θ(N) - θi. 

 The treatment of the upper bound is similar.  If (N) = i, then θ(N) - θi = 0.  If (N)≠ i, the event 

in (A2) implies 
(A5)  θ(N) - θi ≤ maxj≠ i ij θθ ˆˆ −  + g(α/2).  

Therefore we have the upper bound 
(A6)  θ(N) - θi ≤ max[0, maxj≠ i ij θθ ˆˆ − + g(α/2)]. 

 Finally, since the event {(N) ε S(α)} and the bounds (A4) and (A6) are implied by the event 

in (A2), they hold with at least the probability of that event;  that is, with a probability no smaller 

than 1-α. 

 Proof of Theorem 2 

 As in the proof of Theorem 6, we have P[(N)∈S(α)] ≥ 1-α/2.  Now we also have P[θ(N) - 
θi  ≤ iN θθ ˆˆ

)( − + g(α)] = 1-α/2, since g(α) is based on the α-level two-sided student-t critical value, 

or equivalently the α/2-level one-sided critical value.  Thus the Bonferroni inequality implies that 
P[(N)∈S(α) and θ(N) - θi  ≤  iN θθ ˆˆ

)( − + g(α)] ≥ 1-α.  Then the same logic as was used in the 

discussion leading up to (A6) yields the result in (7). 

 To establish equation (8), we note that the upper bound does not require the definition of 
the possibly best set S(α).  We simply start with the statement:  P[θ(N) - θi ≤ iN θθ ˆˆ

)( −  + g(2α)] = 

1-α, which follows from the fact that the two-sided 2α-level critical value in g(2α) is the same as 

the α-level one-sided critical value.  Then we again apply the same logic as was used in the 

discussion leading up to (A6) to obtain (8). 

Robust V(θ̂ ) 

 We still treat the exogenous variables as fixed, but now we allow the T-dimensional errors 

vi to have an unrestricted variance matrix Σ.  We avoid any assumptions about the form of Σ, other 

than that it is positive definite, and in order to do so we treat T as given (fixed).  Thus any 

asymptotic arguments, such as consistency, need to be as N → ∞ with T fixed.  However, the 

arguments below about what can and cannot be estimated do not really require asymptotics. 



 
 

 

 

 It is well known that under these assumptions we can construct a robust variance matrix for 

the fixed effects estimates of the regressions coefficients ( β̂ ).  It does not seem to be realized in 

the literature that this is not possible for the vector of estimated individual effects (θ̂ ).  To 

understand this point, we note that θθ −ˆ  = ),ˆ( ββ −− Xv  and therefore 

(A7)  V(θ̂ ) = A + B + C + C' 

where  

(A8a)  A = V( v ) = a·IN , where a = e'Σe/ 2T  and where e is a vector (of dimension T) of 

  ones; 
(A8b)  B = V( )ˆ( ββ −′X ) = X ′V( β̂ ) X , and V( β̂ ) = 11 )()( −− ′Σ′′ ∑ XXXXXX ii i

&&&&&&&&&&&& ; 

(A8c)  C = -E vX ′− )ˆ( ββ  = - XXXX ′′ −1)( &&&& [IN eQΣ⊗ ] where Q is the differencing 

matrix  of dimension T×T. 

 In (A8b), we can write iiii QXQXXX Σ′=Σ′ &&&& .  Thus, apart from observables, in order to 

evaluate A, B and C we need the three quantities e'Σe, QΣQ and QΣe.  From Kiefer (1980), it is 

known that we can estimate QΣQ consistently; for example, a consistent estimate of QΣQ  is 
Nvv ii i /ˆˆ ′∑ &&&&  where β̂ˆ

itii xyv ′−= &&&&&&  are the within residuals.  From Kiefer it is also known that we 

cannot estimate Σ consistently.  Since knowledge of Σ is equivalent to knowledge of e'Σe, QΣQ 

and QΣe, it follows that it must be impossible to estimate e'Σe and/or QΣe.  Thus in equation (A7), 

we can evaluate the term B but one or more of the terms A and/or C cannot be evaluated. 

 It turns out that we can estimate QΣe consistently.  Define β̂ˆ iii xyv ′−=  which are the 

residuals in the levels equation based on the within estimate β̂ .  It is easy to see that Nvv ii i /ˆˆ ′∑  

is a consistent estimate of Σ + ee ′2
θσ , where 2

θσ  = 2)(lim θθ −∑∞→ i iN  is interpreted as the 

variance of the iθ .  It follows that eNvvQ ii i )/ˆˆ( ′∑  is a consistent estimate of Q(Σ + ee ′2
θσ )e = 

QΣe, where the last equality is due to the fact that Qe = 0.  Thus term C in equation (A7) can also 

be evaluated. 

 This leaves the quantity a = e'Σe/ 2T  as the thing that cannot be estimated consistently 

from the within regression, and the term A in equation (A7) as the term that cannot be evaluated. 



 
 

 

 

 Fundamentally this is because A is the variance matrix of v , and v  is orthogonal to the within 

regression.  However, we can find (estimate) an upper bound for the quantity.  Specifically, 
2/)/ˆˆ( TeNvve ii i ′′ ∑  is a consistent estimate of e′ (Σ + ee ′2

θσ )e/ 2T  = 22/ θσ+Σ′ Tee  > 2/Tee Σ′ . 

 Thus, using a consistent estimate of the terms B and C, and using a consistent estimate of 

an upper bound for term A, we can find a consistent estimate for an upper bound for V(θ̂ ).  Using 

this upper bound leads to conservative but valid confidence intervals. 



 
 

 

 

Table 1 

 

90% Confidence Intervals for Technical Efficiency 

Indonesian Rice Farms 

 

 

Firm No. 

 

iθ̂  

 

TEi 

 
MargCB 

 
LB           UB 

 
MCB 

 
      LB            UB 

 
1-Sided  MargCB 

 
LB           UB 

 
1-Sided  MCB 

 
LB          UB 

           
164 5.556 1 0.737 1 0.583 1 0.840 1 0.615 1 
118 5.486 0.932 0.642 1 0.508 1 0.730 1 0.534 1 
163 5.484 0.930 0.643 1 0.509 1 0.729 1 0.535 1 

: : : : : : : : : : : 
31 5.072 0.616 0.421 1 0.328 1 0.478 1 0.346 1 
: : : : : : : : : : : 

15 4.966 0.554 0.379 1 0.300 1 0.432 1 0.315 1 
: : : : : : : : : : : 

16 4.859 0.498 0.340 1 0.266 1 0.387 1 0.280 1 
: : : : : : : : : : : 

117 4.586 0.379 0.259 0.974 0.203 1 0.295 1 0.214 1 
45 4.550 0.365 0.250 0.940 0.197 1 0.285 1 0.208 1 

 

 



 
 

 

 

Table 2 

 

90% Confidence Intervals for Technical Efficiency 

Texas Utilities 

 

 

Firm No. 

 

iθ̂  

 

TEi 

 
MargCB 

 
LB           UB 

 
MCB 

 
LB          UB 

 
1-Sided  MargCB 

 
LB          UB 

 
1-Sided  MCB 

 
LB         UB 

           
5 -4.995 1 0.960 1 0.945 1 1 1 0.967 1 
3 -5.083 0.916 0.806 1 0.797 1 0.842 1 0.815 1 
10 -5.145 0.861 0.773 0.979 0.765 0.984 0.802 1 0.780 1 
1 -5.176 0.835 0.775 0.976 0.769 0.984 0.795 1 0.780 1 
8 -5.194 0.820 0.764 0.964 0.759 0.973 0.783 1 0.769 1 
9 -5.211 0.806 0.759 0.961 0.755 0.972 0.775 1 0.763 1 
2 -5.218 0.801 0.740 0.934 0.735 0.942 0.760 1 0.745 1 
7 -5.236 0.786 0.722 0.913 0.716 0.920 0.743 1 0.728 1 
6 -5.237 0.786 0.720 0.910 0.715 0.917 0.742 1 0.726 1 
4 -5.267 0.762 0.711 0.901 0.707 0.910 0.728 1 0.716 1 

 



 
 

 

 

Table 3 

 

90% Confidence Intervals for Technical Efficiency 

Texas Utilities 

IV Estimation Using Three Lagged Values 

 

 

Firm No. 

 

iθ̂  

 

TEi 

 
MargCB 

 
  LB         UB 

 
MCB 

 
LB          UB 

 
1-Sided  MargCB 

 
LB          UB 

 
1-Sided  MCB 

 
LB         UB 

           
5 -4.988 1 0.943 1 0.929 1 0.993 1 0.953 1 
3 -5.078 0.915 0.789 1 0.780 1 0.830 1 0.803 1 
10 -5.140 0.859 0.760 0.982 0.753 0.987 0.793 1 0.771 1 
1 -5.170 0.834 0.765 0.984 0.761 0.992 0.788 1 0.773 1 
8 -5.188 0.819 0.756 0.972 0.751 0.980 0.777 1 0.763 1 
9 -5.204 0.806 0.752 0.972 0.749 0.982 0.770 1 0.759 1 
2 -5.212 0.800 0.730 0.942 0.725 0.949 0.754 1 0.738 1 
6 -5.231 0.785 0.709 0.915 0.704 0.921 0.734 1 0.718 1 
7 -5.231 0.785 0.713 0.920 0.708 0.926 0.737 1 0.721 1 
4 -5.261 0.761 0.703 0.908 0.699 0.916 0.723 1 0.710 1 



 
 

 

 

Table 4 

 

90% Confidence Intervals for Technical Efficiency 

Indonesian Rice Farms 

Robust Variance Matrix for the Effects 

 
 

Firm No. 

 

iθ̂  

 

TEi 

 
MargCB 

 
LB           UB 

 
MCB 

 
LB            UB 

 
1-Sided  MargCB 

 
LB           UB 

 
1-Sided  MCB 

 
LB          UB 

           
164 5.556 1 0.660 1 0.487 1 0.781 1 0.522 1 
118 5.486 0.932 0.573 1 0.424 1 0.678 1 0.452 1 
163 5.484 0.930 0.574 1 0.425 1 0.678 1 0.453 1 

: : : : : : : : : : : 
31 5.072 0.616 0.375 1 0.275 1 0.445 1 0.294 1 
: : : : : : : : : : : 

15 4.966 0.554 0.339 1 0.250 1 0.402 1 0.267 1 
: : : : : : : : : : : 

16 4.859 0.498 0.303 1 0.223 1 0.360 1 0.238 1 
: : : : : : : : : : : 

117 4.586 0.379 0.231 1 0.170 1 0.274 1 0.181 1 
45 4.550 0.365 0.224 1 0.165 1 0.265 1 0.176 1 
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