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Abstract 
 
This article examines a tracking problem, similar to the one presented in 
Pliska and Suzuki (Quantitative Finance, 2004): an investor would keep 
constant proportions of her wealth in different assets if markets were 
frictionless; however, in the presence of fixed and proportional transaction 
costs her implementation problem is to keep asset proportions close to the 
target levels whilst avoiding too much intervention costs. Instead of 
minimizing discounted tracking error plus transaction costs over an infinite 
horizon, the optimization objective here is minimization of long run tracking 
error plus intervention costs per unit time. This ergodic problem is treated via 
combining basic tools from diffusion theory and nonlinear optimization 
techniques. A comparative sensitivity analysis of the ergodic and discounted 
problems is undertaken. 
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1.Introduction 
 
This article examines the implementation problem of an investor who, in the 
absence of market frictions would adopt an investment strategy that places 
constant proportions of wealth in different assets. The investor may be 
passive, e.g. aiming to track an index (see Grinold and Kahn, 1995 chapter 5, 
and Focardi and Fabozzi, 2004 chapter 19) or active in the sense that constant 
proportions may be derived from a utility-maximizing or a probability-
maximizing objective1 under the frictionless market hypothesis. The problem 
is: what trading strategy should be implemented in the presence of fixed and 
proportional transaction costs? Our market setting consists of two assets, one 
riskless and one risky whose dynamics follow a geometric Brownian motion 
process2, and the investor’s objective is to minimize long run tracking error 
plus transaction costs per unit time.  
      This kind of tracking problem has been examined in Leland (2000) and 
Pliska and Suzuki (2004). Both articles essentially considered as state 
dynamics the risky fraction process (see section 2) and derived control bands 
that characterize transaction/no-transaction regions. The former used an 
approximation for the dynamics of the risky fraction process while assuming 
only proportional costs per adjustment whereas the latter analyzed the original 
risky fraction process and assumed both fixed and proportional costs per 
intervention. In both articles the investor’s objective was to minimize 
discounted tracking error plus transaction costs over lifetime. However, for the 
considered problem a discounted optimization criterion does not have a clear 
economic interpretation e.g. it’s not necessarily true that a given amount of 
tracking error is preferable to occur tomorrow than to occur today3. Thus it is 
more appropriate to adopt an ergodic optimization objective that minimizes 
long run tracking error plus transaction costs per unit time.  
       The plan of the paper is as follows. In section 2 we formulate our model 
and present a precise statement of the portfolio manager’s optimization 
objective. In section 3 we solve the ergodic problem via combining basic tools 
from diffusion theory and nonlinear optimization techniques. Jack and Zervos 
(2006) and Melas and Zervos (2006) solved a similar problem via 
characterizing it as a system of quasi-variational inequalities (QVI) but their 
methods cannot be applied here since the assumptions they state do not hold 
for the state dynamics and the objective function of our problem. Instead we 
adopt a more computationally intensive approach that follows the 
methodology presented in Karlin and Taylor (1981, section 15.4) for a simple 
example4. To compare the optimal policies derived with the ergodic criterion 
                                                 
1 A number of optimization objectives result into constant proportion policies under the 
frictionless market hypothesis. Examples include HARA utility maximization, see Merton 
(1971), minimization of the time to reach a goal and maximization of the probability to reach 
a target as in Browne (1999, 2000).  
2 Our methods can be modified in a straightforward way to analyze a market with two risky 
assets, similar to Pliska and Suzuki (2004). 
3 For a similar argument concerning control of an exchange rate see Jack and Zervos (2006) 
and Melas and Zervos (2006). 
4 Karlin and Taylor examined a simple cash management problem with cash dynamics 
following a Brownian motion with no drift. The optimization objective minimized tracking 
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with the ones derived with a discounted optimization criterion we also solve 
the corresponding discounted problem at the fourth section. Our approach is 
similar with the one presented in Pliska and Suzuki (2004) with two 
differences. First, our optimization objective solely penalizes tracking error  in 
contrast to the aforementioned article that includes a term related to excess 
return with respect to the benchmark strategy. Second, we adopt Nagai’s 
(2005) transformation for the risky fraction process which considerably 
simplifies computations as the nonlinear system that needs to be solved does 
not contain any hypergeometric functions. Section 5 presents a comparative 
sensitivity analysis for the ergodic and discounted problems and the sixth 
section  concludes the paper.   
 

  
2. Problem Formulation  

We consider the simple two-asset market model, in which the set of securities 
consists of one riskless asset, whose price  is described by the following 
ordinary differential equation: 

)(0 tS

 
,)0(,)()( 0000 sSdttrStdS ==                                       (2.1) 

 
and one risky asset with price  that is governed by the stochastic 
differential equation: 

)(1 tS
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where  is a standard Wiener process defined on a filtered probability space 

. We assume that  satisfies the usual conditions, namely it is 
right continuous and  includes all P-null sets in F, and that . Let 

tW
( tFPF ,,,Ω ) tF

0F 02 >σ
( ))(),( 10 tptp  be the shareholding process, to be chosen by the portfolio 
manager, each component of which represents the number of shares for the i-
th asset at time t. It is required to be a piecewise constant, adapted process. 

Denote by  the wealth process or value process, which is 

strictly positive for all . Now we may define the risky fraction process 
b
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error plus (fixed) transaction costs per unit time. The setting of their problem allowed them to 
obtain analytical expressions for the boundaries of the control band and the rebalancing point. 
For more complex dynamics (e.g. geometric Brownian motion, mean reverting processes) this 
approach is computationally very intensive and analytical expressions for the control 
boundaries are impossible to obtain. To our knowledge this is the first time this method is 
used to solve a stochastic impulse control problem with an ergodic optimization criterion after 
Karlin and Taylor’s seminal contribution. Alvarez (2004) and Alvarez and Virtanen (2004) 
developed similar ideas to derive optimal harvesting/dividend allocation policies with a 
discounted criterion.  
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and for later use we set b(t)=b1(t). We prohibit short selling and borrowing so 
for each t we require and 0)( ≥tb 1)( ≤tb . Under the condition of self-
financing V(t) satisfies 
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which may be alternatively expressed as 
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The risky fraction process was first studied by Morton and Pliska (1995). 
Using Ito’s formula, they showed that, for the two-asset case, it evolves 
according to the following stochastic differential equation 
 
 ( ) ( ) ttttttt dWbbdtbrbbdb σσμ −+−−−= 1)1( 2 .           (2.6) 
 
To ease calculations in later sections, we adopt the 1-1 transformation 
proposed recently by Nagai (2005), defined by 
 
 )                        (2.7) 1log(log:)( bbby −−==ψ
 
with the corresponding inverse mapping φ: 
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Using once again Ito’s formula, the evolution of y is formulated as a Brownian 
motion with constant drift 
  
                         (2.9) tt dWdtdy σκ +=
where  

2
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Figure 1. Nagai’s transformation and its inverse for the two-dimensional case. 
 
      Let b~  and y~ denote the target proportion of wealth in the risky asset in the 
original5 and the transformed scale respectively. If the transformed risky 
proportion is y and a transaction is made resulting the new risky proportion 

, then the transaction cost incurred at that time is1y 6

   
 ( ) 11 :, yykKyyc −+=                         (2.10) 
 
where K and k are two suitably chosen (so that the scale transformation is 
accounted for), strictly positive scalars. Thus, the linear component is 
proportional to the change in transformed proportions and not, as is common 
in much of the transaction cost literature, proportional to the dollar amount of 
the transaction. Because of the fixed cost component, it suffices to consider 
trading strategies of the form ( ){ }nn y,τ , where τn is the time of the nth 
transaction and yn the risky proportion that results from the nth transaction. 
({ nn y, )}τ  must satisfy some standard technical requirements: τn is a stopping 

time, τn< τn+1, ∞→nτ  as ∞→n , and yn  is -measurable. The advantage 
for such a specification for transaction costs is that it facilitates computations; 
a disadvantage is that for practical applications a portfolio manager should 
recalibrate transaction cost parameters for investors of different wealth levels. 

n
Fτ

       Deviations of the target proportion involve an opportunity cost since part 
of wealth in not optimally invested. We therefore suppose that holding stock at 
level  for the transformed risky fraction process incurs quadratic 
opportunity costs

ty
7 (in the original scale) that are expressed in the transformed 

scale by   

                                                 
5 The target levels of the risky fraction process in the original scale may for instance be equal 
to 

2σ
μ r− , the risky asset proportion that maximizes log utility and the portfolio’s exponential 

growth rate, { 0,1:,
)1( 2 ≠<ℜ∈

−
}− γγγ

σγ
μ r , the risky asset proportion that maximizes HARA 

utility with risk aversion parameter γ, 
2σ

μ rf −  with ]1,0(∈f , an efficient fractional Kelly 

strategy that maximizes capital growth and at the same time achieves a given probability of 
maintaining an accumulated risk free return (e.g., see Li, 1993), or a target proportion that 
follows an index as in Leland (2000) and Pliska and Suzuki (2004). 
6 Specification of the transaction cost is essentially the same as in Pliska and Suzuki (2004). 
7 Similar to Grinold and Kahn (1995), Leland (2000) and Suzuki and Pliska (2004). This 
choice is consistent with the findings of Cover (1991) and Rogers (2001) who observed that 
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where λ is a constant chosen by the portfolio manager to reflect his/her loss 
preferences. To proceed with formulating the ergodic optimization problem 
assume U and L be fixed subject to ∞<<<∞− UL , and define  be 
the hitting time of s for the y process. Throughout the paper we let 

sTsT =)(

  
                                  (2.12) { } )()()(),(min,
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be the first time the process reaches U or L and define  the following quantities 
for y: 
 
 { }yyLTUTyv =<= )0()()(Pr)(1 yL U<< ,                       (2.13) 
 
the probability the process reaches U before L starting from y,  
 
 [ ]yyTEyv == )0()( *

2 ,  UyL << ,                     (2.14) 
 
the mean time to reach U or L starting  from y and 
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      Now consider the following control band policy for the transformed risky 
fraction process: “If the transformed risky fraction process reaches level U 
above the target level y~ , reduce its level to u. This transaction incurs a cost of 

. If the transformed risky fraction process reaches level L below 
the target level 

( uUkK −+ )
y~ , increase its level to l. This transaction incurs a cost of 

.” Define a cycle to be from one intervention returning the level 
to l or u from L or U, to the next such intervention; the long-run cost per unit 
time will be the expected cost per cycle divided by the expected cycle time. 
The expected cycle time is expressed as  

( LlkK −+ )

 
 ( ) ( ) ( ) )()()(2)()()(,,, 211211 lvlvuvuvlvuvUulLA −−++=          (2.16) 
 
whereas the expected cost per transaction cycle is comprised by the sum of the 
expected transaction cost per cycle plus the expected opportunity cost/tracking 
error per cycle. The former is expressed as 
 
( ) ( ) ( ) ( ) ( )LlklvuvuUklvuvKUulLB −−−+−++= )()(2)()(,,, 1111         (2.17)                                    

 
with v1(.) given by (2.13). In words, the expected transaction cost per cycle is 
comprised by five components: a fixed part, two parts proportional to the 
                                                                                                                                
the payoff of a fixed proportion rule is quite insensitive to the chosen proportion in a 
neighborhood of the Merton proportion.  
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difference between the upper boundary and the upper rebalancing point 
weighted by the probabilities of reaching the upper boundary from the upper 
and lower rebalancing points and two parts proportional to the difference 
between the lower boundary and the lower rebalancing point weighted by the 
probabilities of reaching the lower boundary from the upper and lower 
rebalancing points. Similar to (2.16) expected opportunity cost/tracking error 
per cycle is expressed as  
 

( ) ( ) ( ) )()()(2)()()(,,, 311311 lvlvuvuvlvuvUulLC −−++= .         (2.18) 
 
Now the ergodic problem is formulated as follows 
 
Problem 2.1 The portfolio manager aims to find the inner and outer control 
band boundaries that minimize long run (opportunity plus transaction) cost 
per unit time. In particular, the investor aims to select the quadruplet (L, l, u, 
U) that minimizes the expression  
 

 ( ) ( ) ( )
( )UulLA

UulLCUulLBUulLh
,,,

,,,,,,,,, +
= .           (2.19) 

 
       
      In the discounted problem, the objective is to minimize the expected 
discounted squared tracking error plus transaction costs over an infinite 
planning horizon. Under an admissible trading strategy ( ){ }nn y,τ  and given an 
initial proportion vector b(0)=b0, the objective function in this case is given by 
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where 0>β  is the discount rate, λ is a constant chosen by the portfolio 
manager to reflect his/her loss preferences and ( )nn yyc ),( −τ  as in (2.10). In 
(2.20) the first term measures discounted tracking error/opportunity costs over 
lifetime and the second discounted transaction costs. The discounted problem 
can now be formulated as follows: 
 
Problem 2.2 The portfolio manager seeks an admissible trading strategy that 
minimizes discounted tracking error plus transaction costs over lifetime. 
Hence, she would like to compute the value function 
  
 

( ){ }
( ){ }( )nny

yyJyJ
nn

,,inf:)( 0,0 τ
τ

=                        (2.21) 

 
where the infimum is taken, over all admissible trading strategies, and find the 
trading strategy that attains this infimum.   
 
In section 4 it will be shown that the optimal strategy for problem 2.2 pertains 
to the estimation of a control band with two outer (L, U) and two inner 
boundaries (l, u).  
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3. The ergodic problem 

To solve problem 2.1, we use basic tools from the theory of diffusions (see 
Karlin and Taylor, 1981, or Borodin and Salminen, 2002) combined with 
nonlinear optimization techniques. To calculate the numerator and 
denominator in (2.19) we note that v1, v2, and v3 in (2.13)-(2.15) need to satisfy 
the following differential equations 
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To solve these problems, let the scale function of the y process be denoted as 
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where 
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Let also 
 [ ])(/1)( 2 ysym σ=                                       (3.6) 
 
denote the speed density of the process. The solution to (3.1) is given by 
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It is straightforward to observe that  (3.3) is a special case of (3.2) with g equal 
to the indicator function. The solutions to (3.2), (3.3) are formulated as 
follows: 
 

[ ] [ ] [ ]{ }∫∫ −−+−=
y

L

U

y
dmLSSyvdmSUSyvyv ξξξξξξ )()()()(1)()()()(2)( 112     

                                                                                                                      (3.8) 
[ ] [ ] [ ]{ }∫∫ −−+−=

y

L

U

y
dgmLSSyvdgmSUSyvyv ξξξξξξξξ )()()()()(1)()()()()(2)( 113

                                                                                                                      (3.9)  
      The scale function for the Brownian motion with drift (2.9) and the 
corresponding speed measure are expressed as 
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and  
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respectively. The expected time to reach the outer boundaries (L, U) starting 
from y is  
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and the expected tracking error of the process (starting at y) till it reaches one 
of the outer boundaries is formulated as   
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+−+−+−+−= −−−−
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and 
 .                       (3.15) ( )( )( ) 1222 2 −
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Hence one may calculate the expression in (2.19) by substituting  (3.7)-(3.14) 
to (2.16)-(2.18). 
      To find the quadruplet that minimizes (2.19) one may directly employ a 
nonlinear minimization algorithm like the quasi-Newton method (Fletcher, 
1980) the simplex search method (Lagarias et al., 1998) or a genetic algorithm 
(Dorsey and Mayer, 1995). Alternatively, one may take the corresponding 
derivatives, find the quadruplets  that equate them to zero via using an 
algorithm for solving nonlinear equations like the Newton-Raphson  and select 
among them the ones for which the Hessian is positive definite. We will 
present results based on the simplex search method at the fifth seaction. 
 
Remark 3.1. The scale function and speed measure of the (untransformed) 
risky fraction process are formulated as 
 
                         (3.16) ( ) ( )122 1)( +−− −= aa bbbS
and 
 ( )( )( ) 12 )1log()1log()log(2)( −

−−−−= bbbabm σ           (3.17) 
with 

 2σ
μ ra −

= . 
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Thus, computation of the integrals in (3.8), (3.9) is practically intractable for 
the problem in the original scale. 
 
Remark 3.2 Of particular interest (because of its computational tractability) is 
the following simplified version of problem 2.1 that abolishes the inner control 
boundaries resulting in a policy that adjusts the transformed risky fraction 
process to the target as soon as it reaches the outer boundaries of the control 
band. A similar practice has been adopted in Korn (2004). 
 
Problem 2.1’ The investor aims to find outer control band boundaries that 
minimize long run (opportunity plus transaction) cost per unit time. In 
particular, the investor aims to select the pair (L, U) that minimizes the 
expression  
 

 ( ) ( ) ( )
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,
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where  
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( ) ( ) ( ) ( )( ) ( )LykyvyUkyvKULB −−+−+= ~~1~~, 11                          (3.20) 
( ) (yvULC )~, 3= .              (3.21) 

 
 
4. The Discounted Problem 

 
In this section, we show how to solve the portfolio manager’s discounted 
problem (2.2) via characterizing it as a QVI. The problem could have been 
approached as in Pliska and Suzuki (2004) with a change in the objective 
function. Here, for computational simplicity we work with the transformed 
risky fraction process. Impulse control problems similar to ours (deviating 
mainly in the objective function) have been applied in Cadenillas and Zapatero 
(1999) for optimal control of an exchange rate, Buckley and Korn (1998) and 
Baccarin (2002) for cash management and in Plehn-Dujowich (2005) for 
optimal price changes for a firm that faces menu costs. 
 
4.1 Admissible Rebalancing Strategies 

      Since we want to minimize the functional J in (2.20), we should consider 
only those strategies for which J is well defined and finite. In order that  
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be well defined and finite, we need that the two expected values on the right-
hand-side be finite. It is straightforward to see that the condition  
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Now in order that 
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we need that 
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          (4.5) 
 
To obtain the inequality on the left-hand-side, we need that 
  
 [ ) { } .0lim:,0 =<∞∈∀

∞→
TPT nn

τ              (4.6) 

 
To obtain the inequality on the right-hand-side, we need that 
 
 [ ] 0)(lim =+−

∞→
TyeE T

T

β                            (4.7) 

 
which holds true for the state dynamics of our problem.  
 
DEFINITION 4.1 (Admissible controls): We shall say that an impulse control 
is admissible if the conditions (4.2), (4.6) are satisfied. 
 

4.2 Solution via a Quasi-Variational Inequality 

       Let J(.) denote the value function. That is for every ( )∞∞−∈ ,0y , 
 

( ){ }
( ){ }( )nnyy

yyJyJ
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,,inf:)( 0)(,0
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τ
τ Α∈
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and  denotes the set of admissible strategies when the transformed risky 
fraction process starts from y

)( 0yΑ

0. Define the minimum cost switching operator 
M, associated with any such function J(.) and the transaction cost function 
c(.,.) by taking 
 
 ( ){ }.,)(inf:)( zyczJyMJ

z
+=             (4.9) 
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MJ(y) represents the value of the strategy that consists in choosing the best 
immediate intervention. Recall equation (2.9) satisfied by the transformed 
risky fraction process and define the second order partial differential operator 
L by taking  
 

 )()()(
2
1:)( 2 yJyJyJyLJ βκσ −′+′′= .         (4.10) 

 
Suppose there exists an optimal strategy for each initial point. Then, if the 
process starts at y0 and follows the optimal strategy, the cost function 
associated with this optimal strategy is J(y0). On the other hand, if the process 
starts at y0, selects the best immediate intervention, and then follows an 
optimal strategy, then the cost associated with this strategy is MJ(y0). Since the 
first strategy is optimal, its cost function is smaller than the cost function 
associated with the second strategy. Furthermore, these two costs are equal 
when it is optimal to jump. Hence, )()( yMJyJ ≤ , with equality when it is 
optimal to intervene. In the continuation region, that is when the portfolio 
manager does not intervene, we must have )()( ygyLJ −= . 
      By standard methods for impulse control problems (e.g. see Bensoussan 
(1982), Bensoussan and Lions (1984), Korn (1998, 1999)) we are led to the 
following quasi-variational inequality: 

 
 { 0)()(),()(min }=−+ yvyMvygyLv .                       (4.11) 
 
Indeed, if v is a twice continuously differentiable function satisfying this QVI 
as well as the technical growth conditions depicted in the first part of this 
section, then 
  
 ( ){ }( )n

n yyJyv ,,)( τ≤                          (4.12) 
 
for all  and all admissible strategies ℜ∈y ( ){ }n

n y,τ . If, moreover, the strategy 
corresponding to v is admissible, then it is an optimal strategy and v(.) is 
identical to the value function J(.). The proof of this ‘verification theorem’ is 
lengthy, technical, and reasonably standard (e.g. see Korn (1998) or Bielecki 
and Pliska (2000)), so it will be omitted. The construction of the strategy 
corresponding to a solution v goes as follows. With 00 =τ  and  
one has 

0)0( yY =−

 
 ( ) ( ){ )()(:inf: 1 }−=−≥= − tyMvtyvt nn ττ            (4.13) 
and  
 ( ){ }zyczvy nz

n ),()(minarg −+=
Α∈

τ .           (4.14) 

 
Note that v defines a continuation region 
 
 { })()(:: yvyMvyC >ℜ∈= ,                         (4.15) 
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as no transactions occur as long as Cty ∈)( . But if Cty ∂∈)(  (e.g., if y(t) hits 
the boundary of C),  then a transaction immediately occurs, shifting the risky 
fraction process according to (4.14). 
   The infimum operator M, for our problem is  

 
 { }zykKzvyMv

z
−++=

ℜ∈
)(inf)(             (4.16) 

 
thus qvi (4.11) becomes 
 

( )( ) { }
⎭
⎬
⎫

⎩
⎨
⎧

−++−−−+−′+′′=
Α∈

zykKyvzvyyyvyvyv
z

)()(inf,1~exp)()()(
2

min0 2
2

λβκσ

                                                                                                                    (4.17) 
We now explain how this qvi can be solved. The ordinary differential equation 
corresponding to (4.17) has a general solution of the form 
  

)()( 21
21 ygeCeCyv yxyx ++= −−             (4.18) 

 
where g is the particular solution of the differential equation given by  
  

4

321 ))~(2exp()~exp(
)(

A
yyAyyAA

yg
−+−+

= λ           (4.19) 

where 
( ) ( )
( )
( )

( ) ( )βκσββσκ

βσκβ

βκσβ

κβσβσβσκ

2222

22
224

4256

22
4

2
3

2
2

22222
1

−+−+=

−+−=

−+=

+++−−=

A

A
A

A

.           (4.20) 

 
Here C1 and C2 are constants depending on boundary conditions and x1, x2 are 
formulated as follows 
 

 2

22

2,1

2
σ

βσκκ +±
=x .             (4.21) 

    
      For most values of the data parameters, it can be shown that there exist 
four parameters satisfying L<l<u<U such that the solution of the qvi (4.17) 
will be of the form 
 

                      (4.22) 
{ }

{ }⎪
⎩

⎪
⎨

⎧

∞∈+−+
∈

−∞∈+++−
=

),[)(
),()(

],()(
)(

UyKkuyvky
ULyyv

LyKklyvky
yv

 
Here (L, U) is the continuation region. For ],( Ly −∞∈  one should 
immediately rebalance to y=l, and for ),[ ∞∈ Uy  one should immediately 
rebalance to y=u. It remains to determine the values of the six parameters C1, 
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C2, L, l, u and U. On that purpose, one should solve a system of six nonlinear 
equations. To derive these equations we note that the function v(.) must be 
continuous at y=l, so   
 
 KkllvkLLv +++−= )()( .            (4.23) 
 
Similarly, we get a second equation for continuity at y=u, 
  

KkuuvkUUv +−+= )()( .            (4.24) 
 
The derivatives at y=L and U must be continuous, so 
  
 kLv −=′ )(               (4.25) 
and 
 kUv =′ )( .              (4.26) 
 
Since  minimizes ly = ( )LykKyv −++)(  the first order necessary condition 
gives 
  

klv −=′ )(               (4.27) 
 

and similarly the final equation is  
 
 .              (4.28) kuv =′ )(
 
The system of six equations can readily be solved by MATLAB for the six 
parameters; a detailed numerical illustration presented at the sixth section. 
 

 

5. Numerical Illustration 

In this section, we provide numerical solutions for the control problems 
considered in the third and fourth parts of the article. The reader should note 
that the associated nonlinear systems are quite complex and thus sensitive to 
the initial values provided as starting points for their solutions. For the 
sensitivity analysis conducted at the second part of this section, we first found 
appropriate initial values for a baseline experiment and then, for each 
perturbation of the parameters, we plugged in as initial values the outcomes of 
the previous run. MATLAB codes are available upon request from the authors.  
  

5.1 A Specific Example 

We first consider the following data for market characteristics and investor’s 
preferences 
 
 κ=0.1, σ=0.2, λ=1, β=0.05, y~ =0.5, k=0.05, K=0.005.  
 
For problem 2.1, application of the Nelder-Mead simplex method gives  
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 L1=0.4519,  l1=0.4731, u1=0.5018, U1=0.5446. 
 
For the simplified version of the ergodic problem, that is problem 2.1’, the 
outer boundaries of the control band are 
  

L1’= 0.435, U1’=0.5433, 
 
after transforming back to the original scale8. The corresponding solutions for 
the discounted problem are  

 
L2=0.4338,  l2=0.4746, u2=0.5023, U2=0.5456, C1=-43.7633, C2= -0.0388 

 
and errors are of the order 10-8.  
 
 
Figure 2. The value function for the minimization of discounted lifetime costs 

problem. 

 
 
      Figure 2 depicts the value function corresponding to this parameter 
selection for the discounted problem. The value function is depicted in the 
(transformed) continuation region (TL, TU). Outside this region, the value 
function is linear with slope –k in the intervention region ( ]TL,∞−  and a 
linear function with slope k in the intervention region [ )∞,TU . From (2.6) one 
observes that Merton’s optimal proportion for the problem of maximizing the 
portfolio’s exponential growth rate is an equilibrium point for the risky 
fraction process. In this example, Merton’s proportion is much larger than the 
target proportion; thus, the risky fraction process is expected to force portfolio 
holdings to the right of the no-transaction region. For this reason the minimum 
point of the value function is located to the left of the target9 proportion. When 
the investor intervenes on the weak side of the target (which corresponds to 
selling stock in this particular example) it is optimal to bring the portfolio 

                                                 
8 For problem 2.1’ the derivatives of  (3.18) w.r.t. L1’ and U1’ were calculated via MATLAB’s 
symbolic MATH toolbox. The solutions to the corresponding nonlinear system were obtain 
via a trust-region-dogleg algorithm. 
9 Zero in the tranformed scale corresponds to 0.5 in the original scale. This observation goes 
along the lines of Cadenillas and Zapatero (1999) who treated a similar problem for the 
control of an exchange rate. 
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levels much closer to the target than when she/he intervenes in the strong side. 
This difference between the target and Merton’s proportion also causes 
asymmetry between the left and right part of the no-transaction region: the 
distance between the target asset proportion and the left boundary is larger 
than the one between the target and the right boundary.  
 

5.2 Sensitivity Analysis 

To conduct sensitivity analysis, we perturb individual parameter values from 
their baseline values, thereby indicating how the optimal strategy is affected. 
Results are displayed at tables 1-5. Regarding the transaction costs parameters 
the intuition is clear: the investor rebalances more often with lower transaction 
costs. When fixed costs increase it is optimal to wait longer before intervening 
although the sizes of interventions will be larger. When proportional costs 
increase it is optimal to wait longer before intervening but unlike when fixed 
costs increase interventions tend to be smaller. As volatility increases the no-
transaction regions become wider and the magnitude of interventions becomes 
larger. As κ in (2.9) increases, optimal interventions resulting from hitting the 
“weak side” of the target tend to bring asset holdings to a level located lower 
than the target. The higher the pressure on the “weak side” of the target the 
sooner the investor should intervene; the opposite holds true at the “strong 
side” of the target. Finally, as λ increases, the investor becomes more 
concerned about tracking error; thus, the width of the no transaction region 
becomes narrower. 
       The above findings hold for both (ergodic and discounted) problems. 
Tables 1-5 indicate that the outer boundaries of the ergodic control bands are 
always within the outer boundaries of the control band that corresponds to the 
discounted problem. Thus an investor that adopts an ergodic criterion 
intervenes earlier than one that adopts a discounted criterion with discount rate 
equal to 0.05. Sensitivity analysis of the discounted problem with respect to 
the discount rate indicates that control bands tend to shrink for decreasing 
discount rate (table 6) but the ergodic control band lies always within the 
discounted one for all the discount rates examined. Figure 3 displays that 
control boundaries depend linearly to the discount rate. 
 

Table 1. Control bands  for the ergodic and discounted problems for different 

levels of K. 

K L1 l1 u1 U1 L2 l2 u2 U2 

0.003 0.4616 0.4714 0.5023 0.5389 0.4428 0.4735 0.5070 0.5395 

0.004 0.4551 0.4720 0.5021 0.5413 0.4392 0.4741 0.5051 0.5420 

0.005 0.4519 0.4731 0.5019 0.5446 0.4338 0.4746 0.5023 0.5456 

Note.  κ=0.1, σ=0.2, λ=1, β=0.05, y~ =0.5, k=0.05. 
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Table 2. Control bands  for the ergodic and discounted problems for different 

levels of k. 

k L1 l1 u1 U1 L2 l2 u2 U2 

0.03 0.4553 0.4763 0.5008 0.5438 0.4385 0.4808 0.4998 0.5444 

0.04 0.4521 0.4736 0.5018 0.5442 0.4360 0.4776 0.5011 0.5451 

0.05 0.4519 0.4731 0.5019 0.5446 0.4338 0.4746 0.5023 0.5456 

Note.  κ=0.1, σ=0.2, λ=1, β=0.05, y~ =0.5, K=0.005. 

 

Table 3. Control bands  for the ergodic and discounted problems for for 

different levels of σ.  

σ L1 l1 u1 U1 L2 l2 u2 U2 

0.1 0.4651 0.4767 0.4962 0.5281 0.4470 0.4746 0.4919 0.5290 

0.2 0.4519 0.4731 0.5019 0.5446 0.4338 0.4746 0.5023 0.5456 

0.3 0.4461 0.4681 0.5082 0.5581 0.4198 0.4708 0.5088 0.5584 

Note.  κ=0.1, λ=1, β=0.05, y~ =0.5, k=0.05, K=0.005. 

 

Table 4. Control bands  for the ergodic and discounted problems for for 

different levels of κ. 

κ L1 l1 u1 U1 L2 l2 u2 U2 

0.09 0.4521 0.4730 0.5020 0.5448 0.4346 0.4757 0.5031 0.5461 

0.10 0.4519 0.4721 0.5019 0.5446 0.4338 0.4746 0.5023 0.5456 

0.15 0.4431 0.4681 0.4924 0.5440 0.4294 0.4694 0.4981 0.5436 

Note. σ=0.2, λ=1, β=0.05, y~ =0.5, k=0.05, K=0.005. 

 

 

Table 5. Control bands  for the ergodic and discounted problems for  for 

different levels of λ. 

λ L1 l1 u1 U1 L2 l2 u2 U2 

0.5 0.4398 0.4609 0.5008 0.5531 0.4153 0.4634 0.4985 0.5534 

1 0.4519 0.4731 0.5019 0.5446 0.4338 0.4746 0.5023 0.5456 

1.5 0.4598 0.4804 0.5023 0.5416 0.4423 0.4795 0.5025 0.5416 

Note.  κ=0.1, σ=0.2, β=0.05, y~ =0.5, k=0.05, K=0.005. 
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Table 6. Sensitivity of the discounted problem with respect to β. 

 
β  L2 l2 u2 U2 

0.02 0.43396 0.47475 0.50220 0.54552

0.025 0.43394 0.47475 0.50222 0.54555

0.03 0.43391 0.47475 0.50225 0.54557

0.035 0.43389 0.47472 0.50227 0.54560

0.04 0.43386 0.47472 0.50227 0.54562

0.045 0.43384 0.47472 0.50230 0.54567

0.05 0.43382 0.47470 0.50232 0.54570

0.055 0.43379 0.47470 0.50232 0.54572

0.06 0.43377 0.47470 0.50235 0.54575

0.065 0.43374 0.47467 0.50237 0.54577

0.07 0.43372 0.47467 0.50237 0.54580

0.075 0.43369 0.47467 0.50240 0.54582

0.08 0.43367 0.47467 0.50242 0.54585

 
 

 
 

 
 

Figure 3. Regression fit for the control boundary-discount rate relationships.    
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6. Concluding Remarks 

The vast majority of stochastic impulse control models presented in the 
literature so far examine discounted optimization objectives. However there 
are problems like index tracking or control of an exchange rate that an ergodic 
criterion is more suitable. This article presented a methodology for treating a 
tracking problem with an ergodic criterion and compared the resulting optimal 
policies with the ones derived from a discounted criterion. This approach can 
be readily modified to examine other impulse control problems like control of 
an exchange rate, cash management, price adjustment with menu costs, etc. 
An advantage of the methodology is that it may easily accommodate policy 
constraints via Lagrange multipliers or constrained nonlinear optimization 
algorithms. 
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