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Measuring Technical Efficiency in the Stochastic Varying Coefficient 

Frontier Model 
 

 

Abstract 

Due to the assumption that the best practice methods refer to each input separately 
instead of the whole set of inputs used by a firm, the benchmark technology as defined 
in the stochastic varying coefficient frontier model may be infeasible and theoretically 
improper whenever the maximum response coefficients are not coming from the same 
production unit.  To overcome this problem we suggest an alternative procedure for 
measuring output-oriented and input-specific technical efficiency inspired from the 
maximum likelihood formulation of the non-neutral frontier model.  The empirical 
results indicate that there are significant differences between the two procedures in 
terms of both the estimated efficiency scores (i.e., their means as well as of their 
frequency distribution) and the ranking of firms. 
 

Keywords: stochastic varying coefficient frontier model, input specific technical 

efficiency, olive farming, Greece. 

JEL Codes: C33, D21, D24. 

 
 
1. Introduction 

 
In an output oriented manner, technical efficiency is measured as a ratio of realized 

output to the potential output.  The reliability of this measure of technical efficiency 

depends on how accurately the potential output is measured.  It is in general assumed 

that the potential output is obtained by following the best practice methods, given the 

technology.  This implies in turn that the potential output is determined by the 

underlying production frontier, given the level of inputs.  Since by definition technical 

efficiency is the discrepancy of the actual (realized) output from the production 

frontier, its measurement cannot proceed without the estimation of the production 

frontier.  

 The estimated frontier depends on the assumptions about the nature and the 

determinants of best practice methods.  The former is related to the question of 

whether the best practice is a realized method inherent in the data or it may not be 

realized yet.  Consequently, the potential output used to measure technical efficiency 

may or may not be realized.  Up to now in the efficiency measurement literature, all 

but Kalirajan and Obwona (1994a) have agreed that the frontier results from observed 
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output levels, produced by the firms using the best practice methods.1  In contrast, 

Kalirajan and Obwona (1994a) suggested that the potential output need not 

necessarily be observed in the data at hand.  They attempted to justify that by arguing 

that the best practice method varies from input to input and thus not every firm would 

be applying all input efficiency.  However, it seems more reasonable whatsoever to 

think of best practice as referring to the whole set of inputs used by a firm instead of 

each input separately.  

 On the other hand concerning the determinants of best practice methods, two 

alternative models have been developed, which are referred to as neutral and non-

neutral frontier models.  The former assumes that technical efficiency is independent 

of the levels of input used but is dependent on the method of application of inputs.  

Thus, even for identical levels of the same inputs, output differs due to differences in 

the methods of application.2   In turn the effectiveness of the methods of application is 

determined by various organizational factors, which are influenced by socioeconomic, 

demographic etc characteristics that affect the managerial ability of firms.  In such a 

case, the estimated frontier is modeled as a neutral shift of the traditional “average” 

production function.  In contrast, the non-neutral frontier model assumes that both the 

methods of application of inputs as well as the level of inputs (i.e., scale of operation) 

determine the potential output and thus, the estimated frontier is modeled as a non-

neutral shift of the traditional “average” production function.  The non-neutral shift is 

related to that firms may acquire more information, knowledge and experience with 

respect to one input’s productivity than the other (Huang and Liu, 1994).  Apparently, 

it seems intuitively more appealing to argue that technical efficiency stems from two 

sources: firm-specific intrinsic characteristics and input levels.           

 Two alternative approaches have been used to model non-neutral production 

frontiers.  On the one hand, Kalirajan and Obwona (1994a) developed the stochastic 

varying coefficient frontier (SVCF) model that related the notion of the non-neutral 

frontier with cross-sectional and possibly temporal variation in production response 

coefficients, which include not only the intercept term as in the traditional frontier 

framework but also the slope coefficients.  The idea of slope varying coefficients is 

consistent with the methods of application of inputs to depend on the level of inputs.  

On the other hand, Huang and Liu (1994) accommodated the notion of the non-neutral 

frontier by modeling the one-sided error term measuring technical efficiency as a 
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function of not only the variables affecting the managerial and organizational ability 

of firms but also of input levels, including interaction terms between them.   

Besides conceptual differences, these two non-neutral frontier models require 

quite different econometric estimation techniques.  In particular, Huang and Liu’s 

(1994) model is estimated with maximum likelihood, which necessitate the imposition 

of particular distributional assumptions regarding the one-sided error term.  In 

contrast, the SVCF model dispenses with this assumption as it can be estimated with 

generalized least squares by using Hildreth and Houck’s (1968) random coefficient 

regression procedure but the additive error term (appended to account for statistical 

noise) cannot be distinguished from the randomly varying intercept when only cross-

section data are available (Kalirajan and Obwona, 1994b; Tsionas, 2002).  Thus, in a 

cross-sectional setting, SVCF is deterministic frontier model.  This is not true 

however with panel data as it is possible to have a (cross-sectional) random intercept 

and noise at the same time (Kalirajan, Obwona and Zhao, 1996; Tsionas, 2002)).    

 Despite its attractiveness as a non-neutral frontier model, SVCF’s assumptions 

about the nature of best practice methods raise doubts about the reliability of the 

resulting efficiency measures.  In particular, it is shown that as long as the best 

response coefficients are coming from different firms in the sample, which as noted 

by Kalirajan and Obwona (1994a) is quite likely to happen in empirical applications, 

the resulting frontier is not well defined in theoretical grounds and infeasible for any 

sample participant.  Consequently, by using it to compute the maximum attainable 

output yields misleading results regarding both the magnitude of technical efficiency 

and the ranking of firms according to their efficiency scores.  Moreover, Kalirajan and 

Obwona’s (1994a) measure of single factor technical efficiency (defined as the ratio 

of the actual to the maximum response coefficient for each input) also raises concerns 

about its appropriateness as an efficiency measure.    

In this paper, by relying on stochastic frontier methodology, output-oriented 

and single-factor technical efficiency measures for the SVCF model are developed 

that overcome the above shortcomings.  The former is adapted from the error 

component literature and is adjusted accordingly to the stochastic nature of the SVCF 

model.  In that sense, it is conceptually analogous to the measure used in Huang and 

Liu (1994) non-neutral stochastic frontier model.  On the other hand, the proposed 

single factor measure of efficiency is based on Kopp’s (1981) notion of non-radial 

technical efficiency and it is shown that in the context of the SVCF model it could 
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provide firm-specific estimates even with inflexible production frontiers, such as the 

Cobb-Douglas.  After these adjustments, the SVCF model may be seen as a promising 

alternative to Huang and Liu (1994) non-neutral frontier model.   

The remainder of this paper is organized as follows: the proposed efficiency 

measures for the SVCF model are presented in the next section.  The data concerning 

a sample of 190 olive-growing farms in Greece during the 1992-93 crop year are 

described in the third section.  Comparative empirical results for the proposed and the 

Kalirajan and Obwona’s (1994a) efficiency measures are discussed in the fourth 

section.  Concluding remarks follow in the last section.  

   
2. Measuring Technical Efficiency in the SVCF Model 

 
Following Kalirajan and Obwona (1994a), let the production frontier of the SVCF 

model in a cross-sectional setting be approximated by the Cobb-Douglas form: 

 

                                                      0
1

K

i i ik ik
k

ln y ln xβ β
=

= +∑                                          (1) 

 
where y refers to output produced, i is used to index firms and k to index inputs x, and 

β  corresponds to firm-specific technology parameters to be estimated.  Following the 

random coefficient formulation of the SVCF model, ik k ikvβ β= +  for 0 1k , , ,K= …  

where ( ) 0ikE v  = for all i and k, ( )i jE v v′ = Δ  for i=j and ( ) 0=′jivvE  for ji ≠ .  

Then, the term 0i i ik iku v v ln x= +∑  has a mean value of zero and a covariance matrix 

given by equation (5) in Kalirajan and Obwona (1994a).  In this specification, 

parameter moments rather than parameters themselves are fixed.  Consistent estimates 

of parameter moments can be obtained by generalized least squares and individual 

parameters are calculated by using the mean parameter vector and the estimates of 

individual iv  (Griffiths, 1972).3        

Having estimated (1), Kalirajan and Obwona (1994a) followed the tradition of 

the frontier literature and measured output-oriented technical efficiency by the ratio of 

actual to potential output, i.e., ( )O *
i i iTE y exp l n y= .  However, in calculating the 

potential output that serves as a benchmark, they used the maximum of the estimated 

values of the response coefficients for each input, which are defined as 
*
k iki

max{ }β β=  for 0 1k , , ,K= … .  Then, the frontier is given as: 
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The idea behind this formulation is that both the intercept and the slope coefficients 

for those who are using the best practice methods would be larger than for those who 

are not following the best practice methods (Huang and Kalirajan, 1997).   

There are two equally possible roots for the origin of the maximum response 

coefficients.  On the one hand, it may be argued that not every firm would be applying 

all the inputs efficiently and thus the maximum response coefficients need not come 

from a single firm.  The main reason for this is that best practice methods vary from 

input to input.  On the other hand, we may argue that a firm which uses same inputs 

efficiently may also use all inputs efficiently and thus the possibility that all 

maximum response coefficients may come from the same firm cannot be completely 

ruled out.  The implications of these two possibilities for the measurement of 

technical efficiency are very different, however.   

In the case where all maximum response coefficients are coming from the 

same firm, (2) represents an apparently well defined frontier and it can be used to 

provide reasonable estimates of technical efficiency as well as a consistent ranking of 

firms according to their efficiency scores.  However, when the maximum response 

coefficients are coming from different firms in the sample, which as was noted by 

Kalirajan and Obwona (1994a) is quite likely to happen in empirical applications, two 

problems arise.  First, the frontier described by (2) might not be feasible for any 

sample participant, implying that none of the firms in the sample operates with full 

efficiency.4  For a deterministic frontier model, this contradicts with the cornerstone 

assumption in efficiency measurement literature, namely that efficiency is a relative 

concept measured with reference to observed best practice outcomes and a benchmark 

that is determined by some peer firms in the sample.5  Second, the resulting frontier in 

(2) may not be well defined in the sense that it violates certain theoretical properties.  

Consequently, the estimated technical efficiency scores are inconsistent.   

The implications of these problems are illustrated further by the following two 

examples.  The first was initially mentioned by Kalirajan and Obwona (1994a) and 

refers to the case where all firms in the sample exhibit (or are enforced to exhibit) 

constant return to scale.   Then if the maximum response coefficients are coming from 

different firms we cannot ruled out the possibility that the frontier is characterized by 
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increasing returns to scale.  But then the best practice output might not be feasible if 

all firms had to have constant returns to scale.  The same argument also applies to 

cases where all firms are characterized by decreasing returns to scale.  Thus in general 

if all firms in the sample exhibit either decreasing or constant returns to scale and the 

maximum response coefficient are coming from different firms, there is no guarantee 

that the resulting frontier will also exhibit the same scale structure.     

The second example considers the case where a cost rather than a production 

frontier is used as a benchmark.  In a manner analogous to (2), the cost frontier would 

be constructed by using the minimum (instead of the maximum) response coefficients.  

If the minimum response coefficients are coming however from different firms in the 

sample, there is no guarantee that the resulting cost frontier will satisfy the linear 

homogeneity property even though the individual cost functions are by definition 

linearly homogeneous in input prices.  But if the resulting cost frontier is not linear 

homogeneous in input prices, the best practice technology described by an equation 

analogous to (2) is not well defined.6   

Even though the aforementioned problems are not meet at the empirical results 

reported by Kalirajan and Obwona (1994a) and Salim and Kalirajan (1999) as the 

maximum response coefficients are coming for same firm, there are inherent in other 

studies.7  For example, Kalirajan and Obwona (1994b), Huang and Kalirajan (1997), 

Kalirajan and Huang (2001), as well as the present study, found that the maximum 

response coefficients are coming from different firms.   

A different procedure for calculating technical inefficiency scores is proposed 

in this paper to resolve the above shortcomings of the SVCF model, which relies on 

the idea that best practice methods refer to the whole set of inputs used by a firm 

instead of each input separately.  Starting with the basic relation that ( ) O
i iy f TE= ⋅ , 

where ( )f ⋅  refers to the production frontier, we can rewrite it for the Cobb-Douglas 

form as: 

 

                                            0
1

K
O

i k ik i
k

ln y ln x lnTEβ β
=

= + +∑                                     (3) 

     
On the other hand, by explicitly considering the random coefficient formulation of (1) 

it may be written as:8   
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= + + +∑ ∑                              (4) 

 
Then by comparing (3) and (4) yields: 

 

                                                0
1

K
O
i i ik ik

i
lnTE v v ln x

=

= +∑                                            (5) 

 
Notice that (5) is completely analogous to the measure of technical efficiency used by 

Huang and Liu (1994) in the maximum likelihood formulation of the non-neutral 

frontier model. 

Given the assumptions about iv , it is clear that the expected value of O
iTEln  

in (5) is equal to zero implying that the expected value of O
iTE  is equal to one.  This 

means that the estimated values of O
iTE  may be less or greater than one.  To ensure 

that estimated values of O
iTE  are bounded above by one, the following normalization 

suggested by Schmidt and Sickles (1984) is employed:    

 

                          0 0
1 1

K K
O
i i ik ik i ik iki i i

ˆ ˆ ˆ ˆlnTE max v v ln x v v ln x
∧

= =

⎧ ⎫ ⎛ ⎞= + − +⎨ ⎬ ⎜ ⎟
⎩ ⎭ ⎝ ⎠

∑ ∑                      (6) 

 
where ^ denotes estimates values.  This normalization amounts to counting the most 

efficient firm in the sample as fully efficient and to compare efficiency across firms in 

a consistent manner.  

On the other hand, Kalirajan and Obwona (1994a, 199b) used the ratio of the 

actual to the maximum response coefficients for each input to obtain firm-specific 

estimates of input-specific technical efficiency.  That is, 

 

                                                        
{ }

k ik
i

iki

ITE
max

β
β

=                                                 (7) 

      
where values less than one indicate inefficiency.  The inappropriateness of (7) as an 

efficiency measure arises from the fact that is based on production elasticities, which 

following Forsund (1996) are frontier measures.  Thus (7) lacks any theoretical 

foundation for being an appropriate efficiency measure.  

Instead Kopp’s (1981) notion of k
iITE  may be used to identify in a theoretically 

consistent way the technical efficient use of individual inputs.  In particular, Kopp’s 
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(1981) measure of k
iITE  is defined as the ratio of minimum feasible to observed use 

of each input conditional on the production technology and the observed levels of 

output and other inputs, i.e., k I
i ik ikITE x x= .  The minimum feasible use I

ikx  for the kth 

input coincides with that quantity necessary to ensure technical efficiency without 

altering the quantities of other inputs and the level of output produced.  Then, it is 

clear that Kopp’s (1981) measure of k
iITE  is non-radial and has an input-conserving 

orientation, which however cannot be converted into a cost-saving measure. 

According to Reinhard, Lovell and Thijssen (1999), the minimum feasible use 

of the K input for the ith firm can be computed through the fitted frontier function 

assuming 0O
ilnTE =  , i.e.,       

   

                                              
1

0
1

K
I

i k iK
k

ˆ ˆ ˆln y ln x ln xικβ β β
−

Κ
=

= + +∑                                  (8) 

 
Then, there are two alternatives: either we can solve (8) for I

iKln x  and then compute 

k
iITE  using the observed iKx , or we can combine (8), (3) and (5) to shown that 

 

                                         
O

K I i
i iK iK

K

lnTEln ITE ln x ln x
β̂

= − =                                       (9) 

 

or equivalently, ( )1 K
ˆ

K O
i iITE TE

β
= .  Then, by using again Schmidt and Sickles (1984) 

normalization, we can compute input-specific technical efficiencies as: 

 

                     
0 0

1 1

K K

i ik ik i ik ik
K i i
i i

K K

ˆ ˆ ˆ ˆv v ln x v v ln x
ln ITE max ˆ ˆβ β

∧
= =

⎧ ⎫ ⎛ ⎞+ +⎜ ⎟⎪ ⎪⎪ ⎪ ⎜ ⎟= −⎨ ⎬
⎜ ⎟⎪ ⎪ ⎜ ⎟⎪ ⎪⎩ ⎭ ⎝ ⎠

∑ ∑
                       (10) 

 

which ensures that they lie in the interval ( ]0 1, .    

 
3. Data  
 
The data used in the empirical application were extracted from a survey undertaken 

by the Institute of Agricultural Economics and Rural Sociology of Greece.  The 

analysis focuses on a sample of 190 olive-growing farms, located in the three most 
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productive regions of Greece (Peloponissos, Crete and Sterea Ellada).  Observations 

were obtained for the 1992-93 crop year.  The sample was selected with respect to 

production area, the total number of farms within the area, the number of olive trees 

on the farm, the area of cultivated land and the share of olive oil production in farm 

output.  

The dependent variable is the olive-oil production measured in kilograms.  The 

inputs included as explanatory variables are: (a) labor, comprising hired (permanent 

and casual), family and contract labor, measured in working hours.  It covers farm 

activities such as plowing, fertilization, chemical spraying, harvesting, irrigation, 

pruning, transportation, administration and other services; (b) fertilizers, including 

nitrogenous, phosphate, potash, complex and others, measured in kilograms; (c) other 

intermediate inputs expenses, consisting of pesticides, fuel and electric power, 

irrigation taxes, depreciation, interest payments, fixed assets interest, taxes and other 

miscellaneous expenses, measured in drachmas (constant 1990 prices); (d) land, 

including only the share of farm’s land devoted to olive-tree cultivation measured in 

stremmas (one stremma equals 0.1 ha).  

Aggregation over the various components of the above input categories 

(except of land input) was conducted using Divisia indices with cost shares serving as 

weights.  To avoid problems associated with units of measurement, all variables were 

converted into indices, with the basis for normalization being the representative olive-

growing farm. The choice of the representative farm was based on the smallest 

deviation of the variables (i.e. output and input levels) from the sample means.  The 

econometric estimation of the model was carried out using Gauss (ver 3.2.26).  

 
4. Empirical Results 
 
Parameter estimates of the Cobb-Douglas SVCF model for olive-growing farms in 

Greece are presented in Table 1.  The hypothesis of random coefficient variation 

cannot be rejected by the Breusch-Pagan LM-test lending support to SVCF model.  

Indeed, individual response coefficients vary considerably among sample farms (see 

Table 1) implying that farmers are using quite different farming practices.  Mean 

response coefficients along with the corresponding t-ratios are presented in the first 

two columns of Table 1.  These estimates indicate that land exhibited the highest 

output elasticity (0.516) followed by labor (0.399), other intermediate inputs (0.106), 

and fertilizers (0.036).  For land input the relevant range of variation is between 0.539 
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and 0.441, for labor between 0.586 and 0.309, for other intermediate inputs between 

0.134 and 0.098 and for fertilizers between 0.153 and 0.011.  Mean estimate of 

returns to scale is found to be close to unity (1.057) varying from a maximum of 

1.285 to a minimum of 1.012.9   

The results on Table 1 indicate that the maximum response coefficients are not 

coming from the same farm in the sample.  Hence, the estimates of farm-specific 

output-oriented technical efficiency using Kalirajan and Obwona’s (1994a) procedure 

may not lead to meaningful results.  However, for comparison purposes we present 

also the corresponding estimates using Kalirajan and Obwona’s (1994a) procedure.  

The results are presented in Table 2 in the form of frequency distribution within a 

decile range. 

According to the proposed measure, mean output-oriented technical efficiency 

was found to be 88.60% (upper panel of Table 2).  As it is shown there is a great 

concentration of farms in the upper tail of the distribution as almost the 81% of the 

farms exhibit mean output-oriented technical efficiency above 80%.  Estimates of 

input-specific technical efficiencies, obtained from (10), indicate that land is utilized 

more efficiently in the production process (80.68%) followed by labor (76.79%), 

other intermediate inputs (52.22%) and fertilizers (32.90%).  Further, all individual 

measures of input-specific technical efficiencies indicate a considerable variation 

among farms in the sample, which is more intense in other intermediate inputs and 

fertilizers.  

On the other hand, farm-specific estimates of output-oriented and input-

specific technical efficiencies based on the Kalirajan and Obwona (1994a) procedure 

are presented in the lower panel of Table 2.  As it is shown, there are considerable 

differences in all four alternative measures both in their mean estimates as well as in 

their frequency distribution.  Mean output-oriented technical efficiency was found to 

be 66.51%, almost 14% lower than the estimates obtained from the proposed measure.  

This is rather expected as we have shown that, whenever the maximum response 

coefficients are coming from different farms, the frontier as defined by Kalirajan and 

Obwona (1994a) is at the end infeasible for all of them.  Mean input-specific technical 

efficiencies were also found to have significant differences: for land is 93.53%, for 

intermediate inputs is 84.09%, for labor is 75.42%, and for fertilizers is 35.81%.  The 

variation among farms is not so large except for fertilizers where the minimum value 
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is 11.49%.  It is noteworthy the fact, that for land and intermediate inputs, all the 

sample participants have technical efficiency scores above 80 and 70%, respectively.  

Besides the differences in average estimates, the correlation between the two 

sets of technical efficiency estimates is very low suggesting that the ranking would 

also be different.  Table 3 presents the ranking of the ten most and least efficient 

farms according to alternative measures discussed previously.  Regarding the output-

oriented measure, it can be seen that farms that are found to be technically efficient 

according to the proposed procedure are not also technically efficient using Kalirajan 

and Obwona’s (1994a) procedure.  Nevertheless, there exists a relative concordance 

between the two indices concerning the least efficient farms.  The Spearman 

correlation coefficients reported in Table 2 confirm this finding.  They also show an 

insignificant correlation between the estimated input-specific technical efficiencies of 

land.   On the other hand, there is a significantly negative correlation between the 

input-specific estimates for labor, fertilizers, and other intermediate inputs as the 

relevant Spearman correlation coefficients were found to be statistically significant at 

the 1% level.  This means that farms that are found to be technically inefficient 

according to Kalirajan and Obwona’s (1994a) input-specific technical efficiency 

measures for these inputs are also among the most efficient according to the proposed 

input-specific measure.  

Moreover, as it is shown in Table 3, the concordance between output-oriented 

and all input-specific efficiency measures, estimated by using the proposed procedure, 

is very high although there are some exceptions (first 6 columns of table 3).  This 

indicates that a farm which is technical efficient (inefficient) according to output-

oriented measure is also among the most (least) efficient farms according to all input-

specific measures.  However, the same is not true when the Kalirajan and Obwona’s 

(1994a) procedure is used.  As it can be seem from the last 5 columns of Table 3, 

farms that are technically efficient in an output-oriented perspective they are not 

efficient in the use of labor, fertilizers and other intermediate inputs.  There is, 

however, a concordance between output-oriented efficiency and the input-specific 

efficiency for land.   

 
5. Concluding Remarks  
 
The SVCF model developed by Kalirajan and Obwona (1994a) have all interesting 

features of a non-neutral frontier model, but their procedure for estimating both the 
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output-oriented and the input-specific technical efficiency measures is not free of 

theoretical and methodological problems.  Specifically, it has been shown that the 

frontier as defined by Kalirajan and Obwona (1994a) is in practice infeasible for any 

sample participant and theoretically improper whenever the maximum response 

coefficients are not coming from the same production unit.  Consequently, by using it 

to compute the maximum attainable output yields misleading results regarding both 

the magnitude of technical efficiency and the ranking of firms according to their 

efficiency scores.  The main reason behind these problems is Kalirajan and Obwona’s 

(1994a) assumption that the best practice methods refer to each input separately 

instead of the whole set of inputs used by a firm.       

In order to overcome these problems, we suggest an alternative procedure for 

measuring output-oriented and input-specific technical efficiencies within the SVCF 

model.  The proposed measures are respectively analogous to those used by Huang 

and Liu (1994) in the maximum likelihood formulation of the non-neutral frontier 

model and Kopp’s (1981) definition of single-factor efficiency measure.  After these 

adjustments, the SVCF model may be seen as a promising alternative to Huang and 

Liu (1994) non-neutral frontier model.   

The empirical results of the present study indicate that there are significant 

differences in efficiency score estimates (in terms of their means as well as of their 

frequency distribution) between the proposed measures and those used by Kalirajan 

and Obwona (1994a), as the maximum response coefficients are not coming from the 

same farm in the sample.  This is true for both the output-oriented and the input-

specific technical efficiency scores.  In addition, ranking of farms according to their 

efficiency scores is also found to be different.  Thus, different conclusions are drawn 

which may mislead policy-makers in designing appropriate measures for improving 

individual performance.   
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TABLE 1 

Parameter Estimates of the Cobb-Douglas Stochastic Varying Coefficient Frontier Model 
 

Parameter Estimate t-stat Max Coefficients1 Min Coefficients1 Std Dev 

Constant 0.164 (2.114) 0.197 (70) 0.144 (94) 0.006 

βA 0.516 (2.592) 0.539 (109) 0.441 (94) 0.017 

βL 0.399 (1.798) 0.568 (94) 0.309 (30) 0.039 

βC 0.036 (1.241) 0.153 (94) 0.011 (109) 0.025 

βO 0.106 (1.277) 0.134 (23) 0.098 (77) 0.006 
RTS 1.057 1.285 (94) 1.012 (30) 0.051 

LM-test: 514.02 69232
05014 .., =χ    

  
where, A stands for land, L for labour, C for fertilizers, O for other intermediate inputs and RTS for returns 
to scale.  
 
1 The numbers in parentheses are the corresponding farms with the maximum or minimum coefficient.  
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TABLE 2 

Frequency Distribution of Output- and Input-Oriented Multiple- and Single-Factor Technical 

Efficiency Estimates 

(%) O
iMFTE  I

AiSFTE  I
LiSFTE  I

CiSFTE  I
OiSFTE  

Present Study 
<10 0 (0.0) 0 (0.0) 0 (0.0) 78 (41.1) 35 (18.4) 

10-20 0 (0.0) 1 (0.5) 3 (1.6) 16 (8.4) 18 (9.5) 
20-30 0 (0.0) 3 (1.6) 10 (5.3) 12 (6.3) 13 (6.8) 
30-40 0 (0.0) 10 (5.3) 9 (4.7) 16 (8.4) 7 (3.7) 
40-50 3 (1.6) 9 (4.7) 9 (4.7) 13 (6.8) 11 (5.8) 
50-60 8 (4.2) 10 (5.3) 10 (5.3) 6 (3.2) 14 (7.4) 
60-70 12 (6.3) 14 (7.4) 22 (11.6) 8 (4.2) 17 (8.9) 
70-80 15 (7.9) 21 (11.1) 13 (6.8) 6 (3.2) 23 (12.1) 
80-90 32 (16.8) 29 (15.3) 32 (16.8) 12 (6.3) 13 (6.8) 
90-100 120 (63.2) 93 (48.9) 82 (43.2) 23 (12.1) 39 (20.5) 
Mean 88.60 80.68 76.79 32.90 52.22 
Max 100 100 100 100 100 
Min 40.71 17.53 10.53 0.05 0.08 

Kalirajan and Obwona (1994a) 
<10 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.5) 0 (0.0) 

10-20 0 (0.0) 0 (0.0) 0 (0.0) 16 (8.4) 0 (0.0) 
20-30 0 (0.0) 0 (0.0) 0 (0.0) 82 (43.2) 0 (0.0) 
30-40 35 (18.4) 0 (0.0) 0 (0.0) 34 (17.9) 0 (0.0) 
40-50 56 (29.5) 0 (0.0) 0 (0.0) 25 (13.2) 0 (0.0) 
50-60 45 (23.7) 0 (0.0) 3 (1.6) 11 (5.8) 0 (0.0) 
60-70 4 (2.1) 0 (0.0) 19 (10.0) 10 (5.3) 0 (0.0) 
70-80 5 (2.6) 0 (0.0) 131 (68.9) 8 (4.2) 39 (20.5) 
80-90 7 (3.7) 27 (14.2) 28 (14.7) 1 (0.5) 138 (72.6) 
90-100 38 (20.0) 163 (85.8) 9 (4.7) 2 (1.1) 13 (6.8) 
Mean 66.51 93.53 75.42 35.81 84.09 
Max 92.57 100 100 100 100 
Min 30.46 81.81 54.37 11.49 72.94 
Rho1 0.388 -0.388* -0.898* -0.667* -0.916* 

N 190 190 190 190 190 
 

where, A stands for land, L for labour, C for fertilisers and pesticides and O for other capital inputs. In 
parentheses are the corresponding percentage values. Rho stands for Spearman correlation coefficient. (*) 
indicate statistical significance at the 1% level.  
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TABLE 3 

Ranking of Farms According to the Suggested Output-Oriented MFTE Index 
 

Present Study Kalirajan and Obwona (1994a) 
O
iTE  A

iITE  L
iITE  C

iITE  O
iITE  O

iTE  A
iITE  L

iITE  C
iITE  O

iITE  

1 1 1 1 1 38 40 167 151 170 
2 4 2 2 6 39 35 169 153 162 
3 3 3 5 3 61 31 159 162 174 
4 5 8 4 4 31 34 156 157 180 
5 2 5 8 8 48 23 158 164 176 
6 6 6 6 11 37 24 171 155 166 
7 7 11 7 7 27 37 150 166 172 
8 8 7 13 5 36 32 157 168 157 
9 11 9 10 9 44 56 151 149 178 
10 14 13 9 10 78 25 146 170 181 
181 181 177 181 181 171 10 10 11 11 
182 182 182 176 177 175 9 9 10 10 
183 183 185 183 183 186 8 8 9 9 
184 184 184 182 187 184 7 7 8 8 
185 185 183 185 185 181 6 6 7 7 
186 186 186 186 186 183 5 5 6 6 
187 184 187 189 184 179 4 4 5 5 
188 188 188 188 189 188 3 3 4 4 
189 189 190 187 188 187 2 2 3 3 
190 190 189 190 190 190 1 1 2 2 
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 Endnotes 
                                                 
1 This should not be confused with that, in most efficiency measurement approaches 

with the exception of Free Disposable Hull, inefficiencies are calculated with respect 

to unobservable input-output combinations, because of the convexity assumption. 
2 This implies that all inefficient firms suffer a uniform reduction in input productivity 

without altering their input bundle (Huang and Liu, 1994). 
3  The hypothesis of firm-specific coefficients could be tested by using the standard 

Breusch-Pagan LaGrange multiplier test (Breusch and Pagan, 1979).   
4   It is obvious that when all best response coefficients are coming from the same 

firm, there is at least one firm in the sample that operates efficiently.  If however the 

best response coefficients are coming from different firms, none of the firms in the 

sample operates with full efficiency.  This is a rather simply way to check the origin 

of the best response coefficients.   
5  In a stochastic frontier model it is quite likely that none of the firms in the sample 

operates with full efficiency, but this is due to stochastic disturbances and not because 

the frontier is not feasible to sample participants.   
6  Since the Cobb-Douglas is self-dual, the same argument can be applied to (1).  Let 

suppose that after having estimated (1) we would like to use the dual representation of 

the best practice technology (i.e., cost frontier) as a benchmark.  Then we have first to 

compute the corresponding individual cost functions by relying on (1) and then to use 

these individual cost functions to construct the underlying cost frontier.   This cost 

frontier will not satisfy the property of linear homogeneity if the minimum response 

coefficients are coming from the different firms.  
7 For the Kalirajan and Obwona (1994a) study in particular, which reports estimates 

of the potential and actual output for each firm separately, it can be seen that the 

maximum response coefficients are from the firm with identification number 43. 
8  Notice that this formulation is observationally equivalent to a (fixed coefficient) 

neutral frontier model with heteroscedastic statistical noise (Salim and Kalirajan, 

1999; Tsionas, 2002), but it is estimated with a completely different method.  Here we 

follow Kalirajan and Obwona (1994a) and regard (4) as a non-neutral frontier model.    
9  As noted by Kalirajan and Obwona (1994a) the hypothesis of constant returns to 

scale cannot easily be tested since the imposition of the corresponding restrictions in 

the model complicates its estimation.  


