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1. Introduction 
 

The recent development of risk management tools is the result of the need for 

comprehensive measures in order portfolio managers and financial institutions to be 

able to calculate market risk. This need has become more evident during the 1990s 

which has witnessed the bankruptcy of major financial institutions like the BCCI and 

Barrings international banks as well as the increased volatility in equity markets as a 

result of the dramatic rise of investment in emerging markets.  

The Basel Committee of Banking Supervision through the 1988 Basel Accord 

and the 1996 Amendment of the Basel Accord (or Basel II) which will be in force in 

2007 has set the regulation framework for the world financial system. There are three 

main tools available to regulators for the measurement and control of financial risk, 

namely minimum risk capital requirements; inspections and reporting requirements 

and public disclosure and market discipline. Risk management is mainly linked with 

the minimum risk capital requirements which are imposed by the regulatory body. 

The Basel Committee currently recommends two types of models for measuring 

market risk on a daily basis, with VaR being the most popular one. 

Value-at-Risk has become the standard tool used by financial analysts to 

measure market risk. VaR is defined as a certain amount lost on a portfolio of 

financial assets with a given probability over a fixed number of days. The confidence 

level represents ‘extreme market conditions’ with a probability that is usually taken to 

be 99% or 95%. This implies that in only 1% (5%) of the cases will lose more than 

the reported VaR of a specific portfolio. VaR has become a very popular tool among 

financial analysts which is widely used because of its simplicity. Essentially the VaR 
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provides a single number that represents market risk and therefore it is easily 

understood.1 

During the last decade several approaches in estimating the profit and losses 

distribution of portfolio returns have been developed and a substantial literature of 

empirical applications have emerged. The first approach is based on  parametric 

models such as Riskmetrics (1996) and GARCH models.2 The second approach for 

the estimation of the distribution of profits and losses is the non-parametric historical 

simulation. The group for the estimation of the VaR are the semiparametric models 

including the extreme value theory and the conditional autoregressive value-at-risk 

with regression quantile method.3 

The estimation of multivariate GARCH models is an extensively used 

approach for risk management. However, it is recognized that such estimation is very 

demanding because we are required to estimate large number of parameters whose 

number increases exponentially as the number of variables increases. Recently, 

Manganelli et al. (2002) and Manganelli (2004) have developed an approach which 

provides a solution to the multivariate problem with the GARCH estimation. This 

approach is based on the estimation of univariate portfolio models and then with the 

use of certain statistical tools we are able to recover the multivariate dimension which 

is lost in the estimation of the univariate models. The key idea to this new 

methodology is to consider that the estimated univariate portfolio variance is a 

function of the weights of the assets that form the portfolio. Then next step of this 

approach is to take the first and second derivatives of the variance subject to these 

                                                 
1 See also Bank for International Settlements (1988, 1999a,b,c, 2001). 
2 Since their introduction by Engle (1982), ARCH models have been used extensively to estimate the 
volatility of financial assets. 
3 Jorion (2000) and Alexander (2002, 2005) provide a comprehensive analysis of the VaR models.  
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weights. This will assist us to deduce important information with respect to the local 

behaviour (i.e. around the portfolio weights) of the estimated variance. 

The idea of employing measures of sensitivity to the weights of the portfolio 

allocation has previously used in a number of alternative models of estimating VaR. 

Thus, Garman (1996) argues that the computation of the derivative of the VaR with 

respect to the individual elements of a specific portfolio in order to evaluate the 

potential influence of trading on the VaR of a financial institution or a company. 

Moreover, Gourieroux et al. (2000) have adopted the proposal set forth by Garman 

(1996) to provide an analysis of its theoretical implications to alternative VaR 

specifications. Manganelli (2004) argues that the same type of analysis can be done 

for the case of the variance of a portfolio given that the corresponding variance-

covariance matrix.     

Manganelli (2004) makes a significant contribution to the issue of using the 

sensitivity analysis for achieving optimal asset allocation within the context of 

univariate GARCH models as we already explained above. Their approach has a 

number of significant implications. First, the GARCH sensitivity analysis can be used 

by portfolio managers and investors to test whether their actual portfolio has 

minimum variance. According to Manganelli (2004) this test amounts to a value of 

zero for all derivatives with respect to portfolio weights. Second, this methodology 

can also be used if we want to examine the effect that any asset has on the variance of 

the portfolio. This will provide valuable information to portfolio managers in order to 

identify the main sources of market risk and/or to investigate the influence that a 

specific transaction exercises on the portfolio variance. Finally, Manganelli (2004) 

develop a simple method for the estimation of the full variance–covariance matrices 

of portfolio assets.      
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VaR models as well as sensitivity analysis has mostly applied on mature 

markets. However, during the 1990s there has been a growing significance of 

emerging markets for investors. At the same time these markets exhibit substantial 

volatility as opposed to that of the mature markets. Such observed volatile behaviour 

od stock prices in these new markets have made investors to become more cautious in 

their investment decisions while it has also led for the increased need for a more 

careful study of price volatility in stock markets. Indeed, recently we observe an 

intensive research from academics, financial institutions and regulators of the banking 

and financial sectors to better understanding the operation of emerging markets. 

This paper focuses on the issue of asset allocation to one European emerging 

market the Athens Stock Exchange (ASE). We use daily data for 30 companies listed 

in ASE for the period 14 January 1997 to 10 February 2005. We apply the sensitivity 

analysis proposed by Manganelli (2004) and we provide an evaluation of this 

approach with the results obtained from the estimation of three alternative models, 

namely the Dynamic Conditional Correlation model (DCC), the Orthogonal GARCH 

model (OGARCH) and the Exponentially Weighted Moving Average (EWMA) 

model. For this application we first estimate the variance sensitivity for a portfolio 

with two assets traded at ASE and then we estimate minimum variance portfolios for 

any given point of time. The main finding of our analysis is the use of sensitivity 

analysis for asset allocation at this emerging market provides a suitable measure for 

the diversification opportunities at any given point of time and it leads to substantial 

efficiency gains. 

The rest of the paper is organized as follows. Section 2 presents the theoretical 

aspects of sensitivity analysis. In section 3 we discuss the alternative GARCH 

specification and the estimation of minimum variance portfolios. Section 4 reports the 
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empirical results with the summary and the concluding remarks given in a final 

section. 

 

2. GARCH models and variance sensitivity analysis 

In this and the next section we draw on Manganelli (2004) and we provide a 

description of the theoretical consideration of the variance sensitivity analysis within 

the univariate portfolio GARCH models and show how the multivariate dimension of 

the portfolio allocation problem may be recovered from the univariate approach. The 

starting point of the analysis is the argument made by Nijman and Sentana (1996) that 

a linear combination of variables generated by a multivariate GARCH process will 

only be a weak GARCH process. An implication of this result is that an attempt to fit 

GARCH processes directly to portfolio returns will generally lead to a model 

misspecification. 

Manganelli (2004) developed an alternative methodology based on the notion 

of “quasi-maximum-likelihood” introduced by White (1994), assuming that any 

GARCH model is only a rough approximation of the true relationship among the 

observed data. The basic proposition put forward by Manganelli (2004) is that when 

we change the weights of a portfolio this will lead to a change of the time series of 

portfolio returns. This change will then lead to an alteration of the information 

available for the estimation of the univariate GARCH process. A result of this 

procedure will be that the derived variance can be considered as function of the 

portfolio returns via two channels, the first being the vector of portfolio returns and 
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the second being the estimated parameters.4 Drawing on Maganelli (2004, p373-374) 

we briefly sketch the basics theoretical derivations.5 

Let ty  denotes the return of the portfolio consisted by 1+n  assets and let ity .  

be the i th stock return, for Tt ,.....,1= and 1,.......,1 += ni . Denoting the weight of 

asset i  by ia , the portfolio return at time t  is it

n

i
it yay ,

1

1
∑
+

=

= . Given that the weights ia  

must sum to one, we can express one weight as a function of the others, 
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Then, let us assume that ty   follows a zero-mean process with a 

GARCH ),( qp  conditional variance th :    
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a  denotes the n -vector of portfolios weights.6 It is clear from the definition of the 

                                                 
4 As Manganelli (2004, p. 373) points out that the estimated parameters depend on the time series of 
portfolio returns used in estimation).   
5 For a full analysis of the mathematical and statistical derivations, (Manganelli, 2004). 
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information set that a change in the vector of portfolio weights implies a change in the 

information set. This is due to the fact that the actual series of the stock returns are 

included in the information. Since, the problem to evaluate the potential influence of a 

transaction on the estimated variance can become extremely complicated as a result of 

the required re-estimation of the complete model, Manganelli (2004) suggest an 

alternative simple method.  

This method calls for the calculation of the first derivative of the variance with 

respect to the weights. Thus, a positive derivative would indicate that the change in 

weights due a trade on a particular asset will result to an increase of the variance of 

the portfolio while a negative derivative will lead to a reduction in the portfolio’s 

variance. To analyze this point let us define 
^^^
θtzh

′

=  to be the estimated variance. The 

computation of the first derivative of th
^

 is based on the recognition that both the 

vectors tz
^

 and 
^
θ  (the vector of the estimated coefficients) are functions of  the 

weight a . Then the first derivative is derived as follows: 
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In order to analyse carefully the local behaviour of the estimated variance with respect 

to the portfolio allocation we derive the second derivative, which will allows us to 

examine the concavity its concavity. This is given by: 

 

                                                                                                                                            
6 As Manganelli (2004, p. 373) notes, that the )1( +n  weight equals one minus the sum of the other 
weights. The respective )1( +n asset is considered to be the benchmark asset against which the 
sensitivity is conducted.   
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where ⊗ indicates the Kronecker product and nI  is an ( nxn ) identity matrix. 

Manganelli (2004, p. 374-375 and Appendix B) provide a full mathematical 

analysis of the evaluation and properties of the first and second derivatives. 

 
 
 
3. Asset allocation and variance sensitivity  

The sensitivity analysis approach discussed in section 2 can now be employed 

in order to estimate large variance-covariance matrices as well as to analyze the 

optimal conditional portfolio allocation in a mean-variance framework. Again, we 

draw on Manganelli (2004).  

Using the standard mean-variance model due to Markowitz we consider the 

following portfolio allocation problem: 

 

)][)((var][)]([max 2
tttttttta

yEykyEyuE +−=     (5) 

where ∑
+

=

1

1
,

n

i
itit yay , is the portfolio return at time t , a  is the n -vector of weights, and 

tE  and tvar  denote, respectively, the conditional expectation and conditional variance 

at time t , given the information set tΩ . We maximize a function of the conditional 

mean and the conditional variance with respect to portfolio weights.7 

The maximization problem given by (9) can be solved by maximizing a 

function n  variables, in this case the portfolio weights, of which the first and second 

derivatives. These derivatives can be derived from the corresponding likelihood using 

                                                 
7 As before, we assume that the weights sum to one. 
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the same procedure described in section 2. As Manganelli (2004) points out the 

solution of this maximization problem is straightforward under the assumption that 

the function is sufficiently well behaved and we are not required to estimate a 

variance covariance matrix. Furthermore, it is important to know a priori the potential 

misspecification of the univariate GARCH models, although this is not feasible on 

theoretical grounds.  

Following Manganelli (2004) we describe how the sensitivity analysis can be 

used to estimate large variance-covariance matrices as well. This is a three-step 

procedure: 

The first step involves the minimization of portfolio variance with respect to 

the weights. Essentially this is considered as a special case of equation (5), in which 

we set the conditional mean equal to zero. This may be a good approximation in 

applications with daily data. In the second step we calculate the second derivatives of 

the portfolio variance with respect to the weights. Theoretically, these derivatives 

should be constant and independent of the values of the weights. However, in practice 

this does not hold as a result of the misspecification of the univariate GARCH(1,1) 

model. A possible correction of this problem is offered by the computation of the 

second derivative that corresponds to the minimum-variance portfolio derived in step 

1. The final step involves the definition and derivation of the variance-covariance 

matrix at time t  (see Manganelli, 2004, p. 376-377; and Manganelli et al. 2002; for a 

complete analysis of the derivation of the full system). Thus, we define 

]1,[ ′′−′= aa ιω to be the )1( +n -vector of weights corresponding to each asset 

included in the portfolio, where i  is an n -vector of weights of ones. Then, we derive 

the variance-covariance matrix ( tΣ ) which is the solution to the following system: 
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where tK  is an )(nxn  matrix consisting of the estimated second derivatives whereas 

** ,ωa  are the optimal weights associated to the minimum-variance portfolio 

computed in step 1. 

We also note that the variance-covariance matrix tΣ  has 2/)1)(2( ++ nn  

parameters to be estimated. Specifically, from condition (a) we obtain one parameter; 

from condition (b) we obtain n  parameters; and from condition (c) we obtain     

2/)1( +nn  parameters. Moreover, Manganelli (2004) argues that the solution to the 

system described by (a)-(c) results to coefficients of a paraboloid with vertex that 

corresponds to the minimum-variance portfolio and curvature tK . Given that the 

minimum variance is strictly positive then the estimated variance-covariance matrix 

must be positive definite.8 

The analytic solution to the system given by conditions (a)-(c) takes the 

following steps. We partition the variance-covariance matrix as follows: 
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8 Manganelli (2004, p.374) provides a proof to this result. 
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Therefore, we have  
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If we combine the relationships given by (6)-(8) with conditions (a)-(c) we get the 

following values for the elements of the variance-covariance matrix tΣ (Manganelli, p. 

374): 

 

ιιιιιι ***** 5.05.05.0)(5.0 ′′′ −−′+′+= aKKaaKaahKA ttttt     (9) 

**** 5.05.0)( aKaKaahb tttt −+= ′ ιι                  (10) 

*** 5.0)( aKaahc ttt
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4. Empirical results 

We implement the sensitivity analysis described in the previous sections using 

a sample of selected stocks traded at the Athens Stock Exchange (ASE). The 

empirical application of the methodology developed by Manganelli (2004) is twofold. 

First, we estimate the sensitivity of GARCH variances within a two asset portfolio 

framework. Second, we calculate the minimum-variance portfolios for five different 

portfolios (two assets, five assets, ten assets, twenty assets and thirty assets) and we 

then compare its performance with that of the Dynamic Conditional Correlation 
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model, the Orthogonal GARCH model and the Exponentially Weighted Moving 

Average model. 

We begin our empirical analysis with the estimation of the first and second 

derivatives of GARCH variances using a two-asset portfolio composed of the stocks 

of IATRIKO (medical services) and CHIPITA (food services) traded at the ASE. 

Daily data is used obtained from the Athens Stock Exchange database and the sample 

covers the period 14 January 1997 to 10 February 2005.9 

We estimate univariate GARCH (1,1) models for 31 portfolios constructed 

from these two assets. The weight )(a for IATRIKO ranges from -1 to 2, with a step 

increase of 0.1. For each estimated GARCH model, the first and second derivatives of 

the estimated variance with respect to the weight (a) have been calculated. The 

estimated variances on 10 February 2005 for the 31 portfolios with respect to the 

weight (a) along with the first and second derivatives are illustrated in Figure 1. There 

are several points to be made regarding these plots. The variance corresponding to 

0=a is the variance of CHIPITA whereas the variance corresponding to 1=a is that 

of IATRIKO. Furthermore, those portfolios that have a weight greater than 1 are short 

of CHIPITA and those which have a weight less than zero are short of IATRIKO. The 

shape of the estimated variance shown in Figure 1 as we have already explained in 

section 2 is tied with the potential gains from portfolio diversification. Thus given that 

the estimated variance is considered to be a parabolic and convex function of portfolio 

weights a  this implies that there are substantial gains from portfolio diversification 

measured in terms of risk reduction.  

Assuming that the true variance-covariance matrix is known then the 

corresponding estimated variance would be exactly a parabola. Our univariate 

                                                 
9 All estimations have been run with the Matlab codes developed by Manganelli. 
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GARCH estimates produce results close to the theoretical considerations and 

therefore we may argue that they are good approximations of the unknown true 

model. This argument is further strengthened by examining the shape of the first and 

second derivatives (see Manganelli, 2004). In the function was an exact parabola then 

the first derivative would be a straight line with a positive slope and the second 

derivative would be a straight line with a slope equal to zero. From Figure 1 we 

observe that both derivatives are near to the values implied by theory. 

Figure 2 shows the plots of the first derivatives of the estimated variance, 

a
aht

∂
∂ )(

^

, for the two degenerate portfolios, i.e. CHIPITA ( 0=a ) and IATRIKO 

)1( =α .These plots show the magnitude by which the variance would decrease or 

increase over time, in the case that an investor moves away from the corner solution 

of holding either stock. Similar patterns can be derived for any portfolio weight. 

Therefore, the investor or the portfolio manager has a complete set of information 

with respect to the effects in terms of risk when a change in the composition of the 

current portfolio is considered. 

Figure 2 also shows that the first derivative of CHIPITA is always positive 

whereas the corresponding one for IATRIKO is mostly negative. This finding implies 

that during the period under investigation the minimum variance portfolio was formed 

by a convex combination of these two assets (Manganelli, p. 379). Moreover, we 

observe that towards the end of the sample both first derivatives were positive and this 

is an indication that during those days the portfolio manager is required to take a short 

position on CHIPITA in order to attain the minimum variance portfolio. 

Finally, Figure 2 provides useful information with respect to the sources of 

risk of a particular portfolio. Thus, Manganelli (2004) shows that the greater in 
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absolute value the first derivative is, the greater the risk reduction following a 

portfolio reallocation will be. The first derivative of the portfolio which is only 

composed by the IATRIKO stock is much higher on average (in absolute value) than 

the first derivative of the portfolio including only the CHIPITA stock. Thus, we may 

conclude that during the 1990s an investor could gain more in terms of risk reduction  

if he/she diversified away from the portfolio with only IATRIKO stock than from the 

CHIPITA portfolio.  

Next we consider the information obtained from Figure 3. We report the plots 

of the second derivative of CHIPITA as well as its difference from the average second 

derivatives computed over all 31 portfolios. Theory suggests that in the case of a 

model which is correctly specified the second derivative should be a flat line since it 

should not depend on the portfolio composition. In this case if we take the difference 

between the average second derivatives and that of CHIPITA should be zero. Indeed, 

in Figure 3 we observe that the derived difference is quite smooth around zero and 

this evidence tied with our analysis of Figure 1 provides further support in favour of 

our univariate GARCH model as being a good approximation of the true variance.10 

As with the first derivative, the second derivative provides important 

information to the risk manager with respect to the size of change of the variance 

sensitivity when a change in the portfolio allocation takes place. This implies that the 

greater is the size of the second derivative, the greater the change in the variance 

sensitivity will be and this will lead to the need for a smaller portfolio reallocation in 

order to attain a given size of variance reduction. In Figure 3 we observe that in the 

last five years the impact on variance due to portfolio reallocations is much greater 

compared to that effect during the 1990s. Specifically, the average value of the second 

                                                 
10 The reason that the difference is not exactly equal to zero is certainly due to the misspecification of 
the univariate GARCH model. 
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derivative was 12.36 between 1990 and 1999, whereas in the period 2000 to 2005 a 

substantial increase has been documented. These findings suggest that there has been 

a significant increase in the concavity of the portfolio variance (as a function of 

weight a ) for the stocks of CHIPITA and IATRIKO over the last five years and risk 

managers active in the Athens Stock Exchange should take this information into 

consideration. 

The next stage of the present analysis deals with the implementation of the 

methodology developed by Manganelli (2004) and discussed in section 3. The 

purpose is to estimate full variance-covariance matrices and to find the allocation 

minimizing the portfolio variance. We test this approach with the use of different 

subsamples of the Athens Stock Exchange general index for the period 14 January 

1997 to 10 February 2005.  

The performance of the variance sensitivity methodology is then evaluated 

against three alternative specifications of multivariate models. These specification 

include the Dynamic Conditional Correlation (DCC), the Orthogonal GARCH 

(OGARCH) and the Exponentially Weighted Moving Average (EWMA). We briefly 

discuss these models. 

The Dynamic Conditional Correlation was proposed by Engle (2000) and 

Engle and Sheppard (2002) and is considered a generalization of the Constant 

Conditional Correlation developed by Bollerslev (1990). In this model instead of 

assuming that the conditional correlations are constant, these are directly 

parameterized. The estimation of this multivariate specification is done with the use 

of a two-step procedure as suggested by Engle (2000). The first step involves the 

estimation of the univariate GARCH models for each asset while in the second step 
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we fit the conditional correlation specification to the standardized residuals calculated 

in the first step.  

The Orthogonal GARCH model was developed by Alexander and Chibumba 

(1995) and Alexander (2000) and is based on a principal component GARCH 

methodology. This approach also involves a two-step procedure. In the first step we 

construct unconditionally uncorrelated factors which are linear combinations of the 

original returns series. The second step involves fitting the univariate GARCH models 

to the constructed principal components. Assuming that the conditional variance-

covariance matrix of the principal components series is diagonal (i.e. the conditional 

correlations are set to zero) it would be possible to recover, with the use of a fixed 

mapping matrix, the variance-covariance matrix of the original stocks.11 

Finally, the Exponentially Weighted Moving Average method has been 

extensively used during the 1990s as a tool for risk management. This method 

involves the computation of the variance-covariance matrix at time t  as a convex 

function of the lagged one period variance-covariance matrix and the matrix of 

squared and cross-product lagged returns. For daily data the weight (decay 

coefficient), λ , is usually set equal to 0.94.  

The estimation of the three alternative specifications starts with the estimation 

of the variance-covariance matrix on 10 February 2005. Next we compute the weights 

that lead to the derivation of the minimum-variance portfolio. Manganelli (2004) 

shows that if we partition the variance-covariance matrix following eq. (6), then we 

can derive the optimal weights if we set eq. (7) to zero.  

 
                                                 
11 The DCC approach has two shortcomings. The first is the inability to allow for homogeneous 
distributions across correlations while the second refers to the estimation of the identical pair of 
parameters for all equations under consideration. The OGARCH approach has also a limitation since it 
requires a very large sample in order to obtain a significant degree of variability of the variance-
covariance matrix. 
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We then estimate the univariate GARCH variance  associated to this portfolio and 

present the annualized estimated in Table 1. We conduct this exercise for the DCC, 

OGARCH and EWMA models and for five alternative portfolios with 2, 5, 10, 20 and 

30 portfolios.12 

The estimation of the variance sensitivity analysis (VSA) model is conducted with the 

direct minimization of the univariate GARCH variance with respect to portfolio 

weights.13 We observe that convergence is achieved very quickly and is very robust to 

the choice of the initial conditions and this implies that the objective function is 

behaves appropriately even when we consider the case of problems with high 

dimensions.14 Following Manganelli (2004) we choose as initial conditions of the 

variance sensitivity analysis model the optimal weights of exponentially weighted 

moving average model. Table 1 presents the complete results. 

The picture emerging from Table 1 is that the VSA model outperforms the 

three alternative models in comparison. This result is the outcome of the fact that the 

VSA model is constructed as to estimate the minimum-variance portfolio based on the 

univariate GARCH model. Furthermore, we observe the performance of the VSA 

model relative to the other competing models increases as the number of stocks 

increase.15 Thus, we see that while in the case of the two-asset portfolio the 

differences in the minimum variances are almost zero, as we move towards larger 

                                                 
12 A full list of the companies used in the analysis is given in Appendix A. Assets are progressively 
aggregated in the order reported in this Appendix. 
13 We use the function fminunc in Matlab and we insert as inputs the first and second analytical 
derivatives calculated in section 2.  
14 Convergence for a 30-asset portfolio occurs in less than 20 iterations for randomly chosen initial 
conditions. 
15 The outperformance of the VSA model is measured by the percentage difference in annualized 
volatility. 
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portfolios these differences get larger for both the DCC and OGARCH models. With 

five stocks, DCC and OGARCH overestimate the minimum-variance portfolio by 

about 4% and 3%. When we look into the case with ten stocks then the difference 

rises to 13% and 14%, respectively, while for the case of twenty and third stocks it 

ranges from 52% to approximately 143%. These results lead to the conclusion that as 

the number of stocks rises, the number of restrictions which the typical multivariate 

GARCH models rises and its solution becomes very complicated. 

In contrast the results for the EWMA model provide a rather different outcome 

since its performance does not deteriorate as much as well as quick as the DCC and 

OGARCH models. Manganelli (2004) explains this behaviour of the EWMA model 

on the grounds of its construction. Since we use the same weight λ for all variance 

and covariance terms this amounts to the estimation of this model’s portfolio variance 

directly, with coefficient λ . Certainly, this does necessarily imply that the EWMA 

model provides reasonable estimates of the variance-covariance matrix, (see 

Manganelli, 2004, p. 384).16                  

 

 
5. Summary and concluding remarks 

In this paper we provided a variance sensitivity analysis using daily data from 

the Athena Stock Exchange, a closely monitored emerging market. Variance 

sensitivity analysis has been recently proposed by Manganelli (2004) in order to 

resolve the problem that arises when we are trying to model asset volatility using 

multivariate GARCH models. These models become cumbersome since they require 

                                                 
16 It is worthwhile to note that the computation time of the VSA model for a thirty-asset portfolio it 
takes less than minutes to attain optimization . 
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strong assumptions to make estimations feasible while their dimension increase 

exponentially as the number of variables increases.  

A common procedure to avoid the problems raised by the estimation is to fit 

univariate GARCH models to the time series data of portfolio returns, but this 

approach has as a shortcoming the loss of the multivariate dimension of the portfolio 

allocation. Manganelli (2004) develops an approach which utilizes the GARCH 

environment giving at the same time tractable computations and clear-cut 

conclusions. He suggests to evaluate the impact of a portfolio reallocation on the 

estimated variance by calculating the sensitivity of the estimated variance with respect 

to the weight of the stock involved in the transaction. This task can be accomplished 

by using as a sensitivity measure the derivative of the estimated variance with respect 

to portfolio weights. Furthermore, this approach allows us to estimate full variance-

covariance matrix. 

Our sample consists of daily returns of thirty assets traded at the Athens Stock 

Exchange for the period 14 January 1997 to 10 February 2005. This is an emerging 

market which has been closely monitored by portfolio managers as a result of its high 

returns during the last decade. We conduct our analysis by constructing different 

portfolios with two, five, ten, twenty and thirty assets. First, we considered a two-

asset portfolio consisting of the stocks of two major firms, CHIPITA and IATRIKO, 

which are traded in the ASE. After the estimation of the variance sensitivity we 

examined how this sensitivity has been changing over time and emphasize its 

implications for risk management in this emerging stock market. Furthermore, we 

calculate the second derivative of the estimated variance for this portfolio with respect 

to the portfolio weights. The second derivative is a measure that provides an 
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indication of the benefits measured in terms of risks that arise from portfolio 

diversification between the two assets under examination.  

Second, following Manganelli (2004) we also compute the minimum variance 

portfolio at any given point of time for alternative portfolios constructed from the 

general index of ASE. The performance of this methodology was assessed against 

three popular multivariate GARCH specifications, namely DCC, OGARCH and 

EWMA models. The overall results of the present analysis leads to the conclusion that 

the adopted methodology provides more efficient results than the competing models. 

An important point to be made is that the degree of misspecification of the estimated 

univariate GARCH is insignificant. Finally, our results are in line with those reported 

by Manganelli (2004) for the NYSE suggesting that this methodology performs well 

on daily data derived from mature as well as emerging markets and thus it can be 

considered a useful tool for risk managers. 
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APPENDIX 
 

Table A.1 List of stocks used in the analysis 
A/A FIRMS NAME TICKER 

1 ALPHA ALPHA ΤΡΑΠΕΖΑ Α.Ε. ALPHA 
2 ATTIKA ATTICA Α.Ε. ΣΥΜΜΕΤΟΧΩΝ ATTICA 
3 ΤΣΙΠ CHIPITA INTERNATIONAL CHIP 
4 EEEK COCA-COLA Α.Ε. EEEK 
5 ΑΡΒΑ S&B ΒΙΟΜΗΧΑΝΙΚΑ ΟΡΥΚΤΑ Α.Ε. ARVA 
6 ΑΒΑΞ J&P ABAΞ Α.Ε.  ABAX 
7 ΑΕΓΕΚ ΑΕΓΕΚ AEGEK 
8 ΑΚΤΩΡ ΑΚΤΩΡ AKTOR  
9 ΑΛΕΚ ΑΛΟΥΜΙΝΙΟ ΤΗΣ ΕΛΛΑ∆ΟΣ ALEK 

10 ΒΙΟΧΚ ΒΙΟΧΑΛΚΟ Ε.Β. ΧΑΛΚΟΥ & ΑΛΟΥΜΙΝΙΟΥ BIOXK 
11 ΣΑΡ ΓΡ.ΣΑΡΑΝΤΗΣ Α.Β.Ε.Ε. SAR 
12 MYTIL ΜΥΤΙΛΗΝΑΙΟΣ Α.Ε. MYTIL 
13 ΤΙΤΚ Α.Ε. ΤΣΙΜΕΝΤΩΝ ΤΙΤΑΝ TITK 
14 ΓΕΝΑΚ ΕΘΝΙΚΗ ΑΞΙΟΠ.ΑΚΙΝ.& ΕΚΜ/ΕΩΣ ΓΕΝ.ΑΠΟΘ. Α.Ε. GENAK 
15 ΕΛΑΙΣ ΕΛΑΙΣ Α.Ε. ELAIS 
16 ΕΛΒΑ ΕΛΒΑΛ Α.Ε. ΕΠΕΞ.ΑΛΟΥΜΙΝΙΟΥ ELVA 
17 ΕΛΤΕΧ ΕΛΛΗΝΙΚΗ ΓΕΩ∆ΥΝΑΜΙΚΗ ELTEX 
18 ΕΤΕ ΕΘΝΙΚΗ ΤΡΑΠΕΖΑ ETE 
19 ΕΜΠ ΕΜΠΟΡΙΚΗ ΤΡΑΠΕΖΑ EMP 
20 ΕΕΓΑ "Η ΕΘΝΙΚΗ" ΑΣΦΑΛΕΙΩΝ  EEGA 
21 ΗΡΑΚ ΑΓΕΤ ΗΡΑΚΛΗΣ HRAK 
22 ΙΑΤΡ ΙΑΤΡΙΚΟ ΚΕΝΤΡΟ IATR 
23 ΙΝΤΚΑ ΙΝΤΡΑΚΟΜ Α.Ε. INTKA 
24 ΛΑΜΨΑ ΛΑΜΨΑ Α.Ε. ΕΛΛ.ΞΕΝΟ∆ΟΧΕΙΩΝ LAMPSA 
25 ΜΑΙΚ Μ.Ι.ΜΑΙΛΛΗΣ   Α.Ε.Β.Ε. MAIK 
26 ΡΟΚΚΑ ΜΕΤΑΛ. ΑΡΚΑ∆ΙΑΣ Χ.ΡΟΚΑΣ  ROKKA 
27 ΜΕΤΚ ΜΕΤΚΑ Α.Ε. METK 
28 ΜΗΧΚ ΜΗΧΑΝΙΚΗ  MHXK 
29 ΟΤΕ ΟΤΕ Α.Ε. OTE 
30 ΝΙΚΑΣ Π.Γ.ΝΙΚΑΣ Α.Ε. NIKAS 
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Table 1. Comparison between the VSA methodology and alternative multivariate GARCH models 
 
 
 
 
 
 
 
 Portfolio with 2 assets Portfolio with 5 assets Portfolio with 10 assets Portfolio with 20 assets Portfolio with 30 
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DCC 27.57% 0.81 6 19.64% 4.08 18 19.27% 13.18  24 13.07 52.64 43 10 112.23 79 

OGARC
H 

27.41% 0.25 3 19.39% 2.77 4 19.49% 14.47 8 16.51 92.77 15 13 143.19 23 

EWMA 27.62% 1.00 1 18.92% 0.25 1 17.96% 5.52 1 10.21 19.25 1 3 34.12 1 

VSA 27.34% 0 22 18.87% 0 21 17.02% 0 76 8.56 0 103 0 0 222 

Notes: DCC is the dynamic conditional correlation; OGARCH is the orthogonal GARCH; EWMA is the exponentially weighted moving average. 
For each portfolio we report the univariate GARCH annualized volatility associated with the minimum-variance weights implied by the 
estimated variance-covariance matrix, the percentage difference with respect to VSA and the computation time to estimate the model. 
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