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Abstract 

 
Despite the fact that the amount of datasets containing long economic time series with a spatial 

reference has significantly increased during the years, the presence of integrated techniques that 

aim to describe the temporal evolution of the series while accounting for the location of the 

measurements and their neighboring relations is very sparse in the econometric literature. This 

paper shows how the Hierarchical Bayesian Space Time model presented by Wikle, Berliner and 

Cressie (Environmental and Ecological Statistics, l998) for temperature modeling, can be 

tailored to model relationships between variables that have both a spatial and a temporal 

reference. The first stage of the hierarchical model includes a set of regression equations (each 

one corresponding to a different location) coupled with a dynamic space-time process that 

accounts for the unexplained variation. At the second stage, the regression parameters are 

endowed with priors that reflect the neighboring relations of the locations under study; moreover, 

the spatio-temporal dependencies in the dynamic process for the unexplained variation are being 

established. Putting hyperpriors on previous stages’ parameters completes the Bayesian 

formulation, which can be implemented in a Markov Chain Monte Carlo framework. The 

proposed  modeling strategy is useful in quantifying the temporal evolution in relations between 

economic variables and this quantification may serve for excess forecasting accuracy. 



 

1. Introduction 

 

Statistical and econometric models that aim to describe the temporal evolution and the 

interrelationships between variables that have a spatial reference are being referred as space-time 

models. Research in such modeling techniques has significantly increased during the last twenty 

years since it is closely related to the progress in computer technology and the existence of large 

databases. Despite researchers’ efforts, space-time modeling techniques do not lie in an 

integrated theoretical framework like for example the ARIMA methodology for time series; 

usually, the employed techniques vary according to the kind of application that needs to be 

performed. 

 

Cliff and Ord (1975) were the first to perform (in a regression framework) a model that was 

taking into account both spatial and temporal relationships; in the early eighties, Pfeifer and 

Deutsch (1980a, 1980b, 1981a, 1981b, 1981c) presented the Space-Time Autoregressive 

Integrated Moving Average (STARIMA) models, aiming to offer a tool for spatio-temporal 

modeling analogous to the ARIMA methodology for univariate time series. The STARIMA 

methodology has been applied in a wide variety of applications ranging from environmental 

(Pfeifer and Deutsch 1981a, Stoffer 1986), to epidemiological (Pfeifer and Deutsch 1980a), 

econometric (Pfeifer and Bodily 1990), and traffic flow (Kamarianakis and Prastacos 2002, 

2003) to name just a few. Data limitations (usually in the temporal dimension) and modeling 

needs in regional economics’ applications, forced researchers to develop space-time models 

different from the STARIMA ones. As significant contributions towards this direction we refer 

the dynamic space-time model that includes an instantaneous spatial interaction term for the 

response presented by Elhorst, (2001), and the Bayesian Vector Autoregressive models with 

spatial priors on the parameters, LeSage and Krivelyova (1999).        

 

This paper proposes a hierarchical Bayesian method for modeling a dependent time series 

variable measured at different locations, relative to a set of independent time series variables that 

may or may not have a spatial reference. The aforementioned relationship lies in a regression 

framework that in the case of independent variables with spatial reference resembles the 



Seemingly Unrelated Regressions (SUR) model introduced by Zellner (1962) that is often 

employed in the Bayesian framework (see for example Griffiths, 2001). The parameters in the 

regression model are endowed with priors that reflect the neighboring relations between the 

locations of the study; moreover, a spatio-temporal process is included to account for the 

unexplained variation. The followed approach is influenced by the one adopted by Wikle et al. 

(1998)a for modeling environmental processes as far as the design of the hierarchical Bayesian 

methodology and the presence of the dynamic spatio-temporal term are concerned; the main 

differences lie in the formulation of the spatial dependencies and the regression part in the first 

stage of our model. 

 

The hierarchical steps of the Bayesian methodology are presented in the section that follows; the 

third section contains the distributional assumptions that characterize each of the aforementioned 

steps and the formulation of the spatial and spatio-temporal relations. In the sequel, the full 

conditional posterior distributions of the model parameters are derived.  The fifth and last section 

contains a discussion on the Markov Chain Monte Carlo (MCMC) implementation of the model 

via a Gibbs sampler.      

 

 

2. An overview of the Hierarchical Bayesian Methodology 

 

The hierarchical Bayesian methodology and the MCMC estimation approach, decompose 

complicated estimation problems into simpler ones that rely on the conditional distributions for 

each parameter in the model. This innovation makes application of the Bayesian methodology far 

easier than past approaches that relied on analytical solution of the posterior distribution. As 

LeSage (2002) indicates, a result of this is that extensible toolkits for solving large classes of 

estimation problems can be developed at both a theoretical and applied level. 

 

The proposed methodology models the relationship between a response variable Y measured at 

locations indexed by s, which may be states, regions, prefectures, cities etc. and times { Ss ,..,1∈ }

                                                 
a This paper presents a model for the spatio-temporal evolution of a single environmental process measured at sites 
located at a grid. Modeling on the various stages’ priors is based in the notion of spatial Markov fields.  



t, where , and p explanatory variables which can be measured either at the same 

spatio-temporal domain or they may have no spatial reference at all. For the sake of simplicity 

we present the second case that can be generalized in a straightforward way. Proceeding in a 

similar way as in Wikle et al. (1998), at a first stage the model for the response variable Y is 

conditional on 2 processes, β, 
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where M represents a regression model with site dependent coefficients; X is the set of 

p explanatory variables that may or may not have a spatial reference, and ( ))(),...,()( 0 sss pβββ =   

represents the set of spatially referenced regression coefficients for each location s. K(s,t) stands 

for a process that accounts for spatio-temporal dependencies. The γ(s,t)’s represent the 

unexplained variation at the first stage of the modeling process which in principle should be 

modeled as a ST covariance matrix. However, taking into account that the K process 

explains much of the space-time structure of Y, one might assume that the Y(s,t)’s are 

conditionally independent random variables. That is model (2.1), can be formally written as  

ST
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In the second stage of the hierarchical Bayesian method, the β and K processes are assumed to be 

independent, conditional on the second stage parameters θ2 that can be partitioned as 

(θθ β ,2 =  leading to  

 

]Kθβ β || . 

 

K(s,t) stands for a space time process which in general can be described by the model 
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as a  special case and that form is that that we use from now on. In this case H is a  matrix 

of regression coefficients and 

SS ×

tη  is an independent sequence of zero mean errors. 

 

The third modeling stage is the specification of [ ]321 |, θθθ , where θ3 is a collection of 

hyperparameters. We assume a partition ( ))2(3),1(33 θθθ =  into hyperparameters associated with 

each stage and a conditional independence relation  
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and )2(3θ can be partitioned as ( ))(),()2( 333 Kθβθθ =  and coupled with further conditional 

independence assumptions 
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Conditional independence is also assumed for the hyperpriors 
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and the formulation can be simplified by taking θ3(1) to be either empty or known so that the 

corresponding term in the above equation drops out. 

 

 

3. Distributional assumptions and spatio-temporal dynamics 

 



Equation (2.1) for the process of interest Y can be written as 

 

 tttt KMY γ++=  

 

where each term is a  vector, M1×S t is a regression model with parameters endowed with priors 

that reflect spatial dependencies, Kt is a dynamical process that accounts for the unexplained 

space-time variability and tγ  is an error term. Yt’s are conditionally Gaussian such that 

 

(3.1) [ ] ( )22 ,~,, γγ σσ ttttt KMNKMY + . 

 

Mt and Kt are assumed to be mutually independent conditional on second stage parameters; the 

model for Mt is a system of regression equations, each one corresponding to a different location 
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X stands for a T matrix1+× p

)s

b that contains information on p explanatory variables in time 

series form that may or may not have a spatial reference. At this point we have to introduce a 

matrix that reflects the neighboring relations between the locations where the observations where 

taken; it is denoted by W and a nonzero  element indicates a neighboring relation for the 

locations s, l. This matrix can be of the nearest-neighbor, spatial contiguity or inverse distance 

form. Each 

slw

(iβ  is modeled as 
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and the following expression holds for each S-vector iβ  

 

                                                 
b In the case of different sets of independent variables corresponding to each location we have a block diagonal 

 matrix.  1+× pST
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The space-time dynamic term is modeled as a vector autoregressive (VAR) process  

 

(3.4) ttt HKK η+= −1  

 

where H is an  matrix and SS × tη  is the VAR noise term. Equation (3.4) is formally written as  
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that is the autoregressive parameter for each location under consideration varies spatially, as the 

parameter for the spatial dependencies. The distributional assumption for the K process is 

formalized as 
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and H is a matrix with nonzero elements at the diagonal and at positions where the corresponding 

elements of  W are nonzero.  Depending on the modeling strategies on this second stage, the 

implied models might not be identifiable because K(s,t) and γ(s,t) appear only through their sum 

in (2.1). As Wikle et al. point out: “ In a Bayesian analysis with proper probabilities on all 

quantities, identifiability issues do not prohibit us from proceeding, though we should be careful 

in interpreting results from unidentified parameters.” For a general discussion on this issue the 

interested reader is referred to Besag et al. (1995).  

 

As indicated in the second section, we partition the third stage priors and assume conditional 

independence. The S-vector iα  in relation (3.2) is specified to be a Gaussian random variable  

 

(3.7) ( )2~,~~ aii N σαα  



and the 2~,~
ασα i  can be given values that reflect the lack of information about the iα . For the iρ ’s 

we follow LeSage (2002) and put a uniform prior over the interval [ ]1
max

1
min , −− λλ , where λmin, λmax 

represent the minimum and the maximum eigenvalues of the spatial weight matrix. That is we 

restrict the parameter iρ  to its feasible range for row standardized W  
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Similar specifications hold for the parameters that correspond to the spatio-temporal dynamics 
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For the variances specified in the first two stages, we assume independence and use the 

conjugate priors. 
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where IG refers to the inverse Gamma distribution. 

 

 

4. Derivation of the full conditional distributions 

 

This section outlines the derivation of the full conditional distributions that can be used in the 

Gibbs sampling framework. In general, full conditional distributions are determined by writing 

the joint distributions of all random quantities divided by the appropriate normalizing constant. 

In hierarchical models this process is simplified due to the various conditional independence 

assumptions. In particular, all components of the full joint distribution that do not functionally 



depend on the quantity ‘cancel’ from the numerator and denominator of the full conditional 

distribution. The following derivations begin after these simplifications have been considered.  

The generic notation [  and ]⋅A ⋅A  is used to represent the conditional distribution for A given all 

other random quantities. It should be noted that the majority of the posteriors presented here are 

modified versions of the ones presented at Wikle et al. (1998). 
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where we need the initial condition K0.  Thus 
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Similarly, for t=T,  
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which leads to 
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[ ]⋅iβ  

Using the distributions in (3.1) and (3.3), we can derive 
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[ ]⋅iα  

In this case we use (3.3) and (3.7) and derive 

 

[ ]⋅iα [ ]( )( )22 ,~,,
iiiiii ασαατραβ∝  



( )( ) ( ) ( ) ( )( ) ( ) ( )












−′−−×






 −−−′−

′
−−−∝ −−

iiiiiiiiiiii
i

WIWIWIWI αααα
σ

αρβρραρβ
τ α

~~
2

1exp
2
1exp 2

11
2

 

( )






















+−−
























−′−∝ iiiiii

ii

WI αα
σ

βρα
στ

α
αα

~1211
2
1exp 222 . 

Thus the posterior takes the form 
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From (3.3) and (3.8) we have 
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[ ]⋅b  

From the VAR structure (3.4), (3.5), we can write the following decomposition 
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where Hb is the H matrix with the main diagonal replaced by zeros. Then using (3.6), (3.9) 
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From (3.5) we can write the decomposition  
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From (3.1), (3.11)  
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From (3.6) and (3.12)  
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From (3.4), (3.14) we obtain  
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5. Bayesian Estimation: Gibbs Sampler 

 

The role of MCMC estimation is, based on conditional posteriors, to produce conclusions that 

are unconditional. This is accomplished by sampling over values of the conditioning parameters, 

rather than integrating, which is the formal procedure for inverting conditional distributions to 

unconditional. In our case, since the form of the conditional distributions is known we can use 

the “Gibbs”, or “alternating conditional” sampling approach. 

 

Given initial values for the parameters of our problem, we can draw one observation from each 

Kt from [ , use these K]⋅tK t’s when sampling from [ ]⋅iβ

22 , γη σσ

 to produce a first draw from the p S-

vectors βi, take draws for the S-vectors αi, ρi using in their posteriors the βi draws taken in the 

previous step and so on. At a second step, we update Kt by sampling from its posterior that now 

uses information from the first draws we took for  and each βi, then we update similarly 

the βi’s and so on. This process of alternating sampling from the conditional distributions is 

continued until a large sample of draws has been collected. This is not an ad-hoc procedure, as 

formal mathematical demonstrations provided by Geman and Geman (1984), as well as Gelfand 

and Smith (1990), show that the stochastic process representing our parameters is a Markov 

chain with the correct equilibrium distribution.  

 

While theory implies that the Markov chain is guaranteed to converge to the appropriate 

stationary distribution, implementation issues arise in practice. One must make choices related to 

the influence of starting values, how long to run the chain before convergence and how best to 

monitor the chain and perform the desired estimation. A common procedure is to delete the 



observations taken for the model parameters that correspond to the initial iterations of the 

Markov chain when convergence is not yet reached. For convergence diagnostics we can use a 

criterion like the one provided by Gelman and Rubin (1992). Finally, due to correlations of 

MCMC samples the Monte Carlo standard errors should be estimated by the ‘batch means’ 

approach described in Roberts (1996) with the batch size determined from examination of the lag 

autocorrelation plots of several parameters as obtained from pilot samples. 
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