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Measuring Technical Efficiency Under Factor Nonsubstitution: A 

Stochastic von Liebig Crop Response Model 
 

 

Abstract 

The present paper develops an econometric model for measuring input-oriented 
technical efficiency when the underlying technology is characterized by the lack of 
substitution between inputs. In this instances, Farrell’s radial measure of technical 
inefficiency is inappropriate as it may be possible to identify a technical inefficient 
bundle as technical efficient. Instead Russell’s non-radial indices can adequately 
measure technical inefficiency in factor limitation models. To this end, a 
disequilibrium model augmented with a regime specific technical inefficiency term is 
proposed and its likelihood function derived together with the computation of 
technical efficiency under specific distributional assumptions. The framework under 
which the model is proposed is the well known von Liebig hypothesis that analyses 
crop response to different levels of fertilizer nutrients. Application of the proposed 
stochastic von Liebig crop response model to the experimental data of Heady and 
Pesek (1954) points out to the fact that technical inefficiency can arise for a subset of 
the nutrients considered. 
 

 

I. Introduction 

The abundant economic literature on the estimation of stochastic production 

frontier functions and the subsequent measurement of technical inefficiency has in 

general assumed that the underlying technology displays some degree of 

substitutability between factors of production.  In effect, a production technology with 

zero input elasticity of substitution would imply that the cost-minimizing inputs are 

independent of their prices, which is an untenable assumption in many real world 

applications. And yet some specific types of production activities exhibit a zero 

elasticity of substitution.  Some examples are given by Komiya (1962) who 

investigated the technological progress in the US steam power industry, Lau and 

Tamura (1972) who propose the use of a non-homothetic Leontief production 

function to analyze the Japanese petrochemical industry, Nakamura (1990) who 

utilized a nonhomothetic generalized Leontief technological structure for empirically 

analyzing Japanese iron and steel industry, Holvad et al. (2004) who maintain that the 

transport industry might be characterized by Leontief-type technologies when 
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analyzing cost efficiency in the Norwegian bus industry.  Yet in agricultural 

economics literature, the contributions of Paris and co-authors when modeling crop 

response to different fertilizer’s nutrients levels they maintained zero substitution 

among crop nutrients..  

The issue of measuring technical inefficiency in the case of the above Leontief 

type technologies is of interest in itself since Farrell’s radial measures, which are the 

basis for most applied work on the measurement of efficiency, might not be adequate.  

Indeed, it might sometimes classify inefficient input combinations as being efficient 

and vice-versa, moreover, input- and output-oriented measures might not coincide. 

Once technology is governed by a Leontief type structure it is very plausible to have 

inefficiency being displayed by none, all or a subset of the inputs, rendering radial 

measures unsatisfactory.  In addition, output-oriented measures might fail to 

recognize inefficiencies when they affect a subset of the inputs only.   

In the light of the above discussion, the purpose of this paper is to propose a 

stochastic frontier model, where input-oriented technical efficiency can be defined 

and measured. Our measure of efficiency is based on Russell’s measure which is a 

non-radial measure allowing for the asymmetric treatment of inputs. Towards this 

end, the disequilibrium model of Maddala and Nelson (1974) is extended so as to 

allow for the possibility of regime dependent inefficiency. Although the stochastic 

frontier model that is presented below can be applied to any production process 

exhibiting nonsubstitution of inputs, the exposition that follows will take the von 

Liebig model from the crop response literature as the reference framework. The 

proposed stochastic frontier von Liebig model is then applied to the well known 

experimental dataset of Heady and Pesek (1954). It should be emphasized at this time 

that the point of the present study is not to investigate whether the von Liebig function 

gives a better representation of crop response but to take the model as a starting point 

and propose a way to incorporate technical efficiency measurement. 

Section II discusses the von Liebig hypothesis and the switching model approach 

already present in the literature, section III introduces Russell’s non-radial input-

oriented technical efficiency index in the context of the von Liebig crop response 

model and extends the switching regression suggested by Paris (1992); section IV 

presents the estimation results and section V provides some concluding remarks and 

suggestions for future extensions. 
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II. The von Liebig Crop Response Model 

Historical Perspective 

Much of the debate surrounding crop response models has been centered around 

which functional form provides a better representation of crop response to different 

fertilizer nutrients’ levels. Polynomial functions such as a quadratic or square root 

form which allow for input substitution have been historically popular, since they are 

relatively easy to estimate. However, the technical restrictions imposed by polynomial 

specifications has brought about their criticism on the grounds that they force input 

substitution, do not allow for plateau growth and often over-estimate the optimal 

fertilizer quantity (Ackello-Ogutu, Paris and Williams, 1985).  Following the 

important contributions in this topic by Paris and his co-authors (Lanzer and Paris, 

1981; Grimm, Paris and Williams, 1987; Paris and Knapp, 1989; Paris, 1992; 

Holloway and Paris, 2002), agronomists and agricultural economists have turned their 

attention to the von Liebig model as an alternative representation of crop response 

models.1 The von Liebig technology reflects the “law of the minimum” whereas plant 

growth is constrained by the level of the scarcest nutrient, exhibiting therefore zero 

elasticity of factor substitution.  

According to Ploeg, Böhm and Kirkham (1999) the main ingredients of the “law 

of the minimum” first appeared in the works of the agricultural chemist Carl Sprengel 

as reflected by the statement below, appearing in his article of 1828, “… when a plant 

needs 12 substances to develop, it will not grow if any one of these is missing, and it 

will always grow poorly, when one of these is not available in a sufficiently large 

amount as required by the nature of the plant”.   In spite of this, the “law of the 

minimum” has been mostly associated with the name of von Liebig who was a 

forceful defender of the law (von Liebig, 1855).   

The law of minimum of the limiting factors posits two crucial characteristics: first, 

a yield plateau where plant reaches it’s maximum growth and; second, non-

substitution between nutrients. The non-substitution characteristic indicates that 

successively increasing the level of the non-limiting nutrients does not affect the 

yield, as is the case for a Leontief production function. An implication of this property 
                                                 
1 However, it should be noted that the first attempts to empirically validate the law of minimum were 

carried out by Webb (1972) and Waggoner and Norvell (1979) who were the first to develop 

mathematical techniques for this nineteenth-century law. 
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is that the isoquants of the crop production function have vertical and horizontal legs 

that join at right angles as expressed by the formulation below: 

 

 ( ) ( ) ( ){ }1 1 2 2i i i ly min f z , f z , , f z= … ki    (1)                       

 

where iy is the actual level of crop production of the ith individual ( )1i , 2, ,n= … , 

 is an arbitrary increasing response function of the kkf : +ℜ →ℜ+

ki

th nutrient level 

given by 1iz , ,z… , and  denotes the nonnegative real numbers.+ℜ 2   The minimum 

operator selects the level of crop yield that is associated with the limiting nutrient, as 

declared by the von Liebig’s conjecture.  The input requirement set for this 

nonhomothetic3 technological structure, providing all input combinations capable of 

producing a given output level, is defined by (Chambers and Lichtenberg, 1996): 

 

( ) ( ){ }{ }1k kV y min f z y, k= , K≡ ≥z …    (2) 

 

where z is the vector of nutrients and V satisfies the correspondence .+ℜ →ℜ 4  An 

important property of the above nonhomothetic Leontief technological structure is 

that the degree of returns to scale can be different for each input (Lau and Tamura, 

1972).  In addition to the production function and the input correspondence set the 

following two subsets are important: (a) the isoquant and, (b) the technically efficient 

subset.  In the case of  the von Liebig crop response model both sets are defined, 

respectively, as: 

 

 ( ) ( ) ( ) ( ){ }1 k k j jIsoq y V y , k,j= , K , k j z g y z g y≡ ∈ ∀ ≠ ≥ ∧ =z z …  (3) 

and 

                                                 
2 As Paris (1992) demonstrated, the model in (1) can be easily made consistent with the law of 

diminishing marginal productivities by choosing each response function to be concave.  
3 It is nonhomothetic because the expansion path is not necessarily a ray through the origin. 
4 According to Chambers (1988) the von Liebig crop response model is a special case of what he calls 

Kohli-output nonjoint or nonlinear Leontief production technology. It is also a member of the CES 

family of production functions introduced by Arrow et al., (1961) 
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 ( ) ( ) ( ){ }1 k kEff y V y , k= , K , z g y≡ ∈ ∀ =z z …     (4) 

 

where  since ( ) ( )1
k kg y f y−= kf  is an increasing function. Unlikely with well-

behaved technologies the efficient subset of the input correspondence is a subset of 

the isoquant for each output level y.5  Actually, the efficient subset coincides with the 

right angle point of the Leontief-type technology isoquants.   

The potential yield functions, kf , can be expressed by a wide variety of functional 

forms such as the linear, quadratic, square-root, Mitscherlich-Baule and non-linear 

specifications.6  In order to keep things as simpler as possible, in the present paper we 

focus on the linear case.  However, our model can be easily extended to all other 

functional specification existing in the literature for the von Liebig crop response 

model.7  The linear specification gives rise to the linear-response and plateau model 

(LRP) and by focusing upon two nutrients, namely phosphorus and nitrogen, we 

restate the von Liebig crop response model in (1) as: 

 

{ }P P N Ni iy min a P , a N , mβ β= + + i     (5) 

 

where iy  is corn yield, iP  and  are the applied quantities of the corresponding 

phosphorus and nitrogen nutrients. The intercepts 

iN

Pα  and Nα  are the proportional 

functions of the nutrients (i.e., phosphorous and nitrogen) available in the soil and 

they take only positive values.  The parameters Pβ and Nβ show the slope of the 

corresponding crop yield response function of the two fertilizers.  Finally, m is the 

asymptotic plateau or in other words is the maximum corn yield.  

After some level of application of the two nutrients, (i.e., P  and N ) the plant will 

no longer respond to the extra-applied level of phosphorous and nitrogen.  Paris 

                                                 
5 The variable elasticity of substitution (VES) and weak input disposability functions are also examples 

of production functions whose isoquants are not contained in their efficient subsets (Färe and Lovell, 

1978).  
6 A comparative evaluation of all the alternative functional specifications in the context of the von 

Liebig crop response model is provided by Frank, Beattie and Embleton (1990) and Paris (1992).  
7 Paris (1992) argues that the potential yield functions can be also non-linear without the damage of 

misspecifying the direct relation between nutrients and von Liebig yield function.  
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(2005) expresses the plateau as ( ) ( ){ }K Lm min f K ,  , f L= …  where K  and L  are 

the fixed levels of the other conventional factors of production (e.g., capital, labor) 

that are held at non limiting levels.  So, in the point m, the plant reaches the maximum 

growth (i.e., plateau) by the use of phosphorus and nitrogen.  After this point the plant 

growth depends exclusively on the use of the conventional factors of production that 

are not included in the model.  In other words, conventional factors of production are 

arbitrarily fixed at levels presumed to be sufficiently high for causing either nitrogen 

or phosphorous to be limiting factors.  

A single-variable-nutrient illustration of the linear response (LRP) crop yield 

function is presented in figure 1.  In this figure the horizontal axis represents 

phosphorous nutrient and the vertical axis crop yield.  According to the hypotheses 

stated above, the plant obtain the nutrient (i.e., phosphorous) from two sources: (a) 

the soil (S) represented by the negative segment of the horizontal axis and; (b) the 

applied quantity of phosphate fertilizer (F) represented on the positive segment of the 

horizontal axis. When the phosphorous content of soil is zero and no fertilizer is 

applied, the crop yield will be zero as well.  When the applied fertilizer is zero while 

the soil contains a positive amount of phosphorous that can be absorbed by the plant, 

the yield would be positive and is represented by the dotted line between the two 

vertical axes.  If, however, positive amount of fertilizer is applied crop yield increases 

up to a maximum level or plateau, maxy .   At that point, Pi.e., F , if the amount of 

fertilizer is further increased, the crop yield will not be affected unless the use of 

conventional factors of production is altered. 

 

The Switching Regression von Liebig Crop Response Model 

In many cases, the inputs are not controllable with certainty and experimental 

error arises.  If, following Paris (1992) reasoning, each potential yield function has a 

specific experimental error associated to it due for instance to the different 

implications that each nutrient has for the vegetative, maturity and vegetative stage of 

a crop, then model (5) can be represented by a disequilibrium model as below: 

 

Pi P P iy P Piα β ε= + +      (6) 

Ni N N i Niy Nα β ε= + +      (7) 
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mi miy m ε= +       (8) 

 

where Piy  denotes the crop yield of  phosphorus, Niy  the crop yield of nitrogen and, 

miy  that of the other conventional factors of production, i.e., the plateau.  The terms 

iP  and  are the respective applied quantities of each fertilizer, and , ,  

and  are the unknown parameters need to be estimate.  Given 

iN Pα Nα Pβ

Nβ (6)-(8) the actual crop 

yield for observation i, is given by: 

 

{ }i Pi Niy min y , y , y= mi      (9) 

 

Under the assumption that the three error terms Piε ,  andNiε  miε  are pairwise 

independent, independent of the regressors and following a normal distribution with 

mean zero and variances 2
Pσ , 2

Nσ  and 2
mσ respectively, the unconditional density of  

is given by (Paris, 1992): 

iy

 

( ) ( ) ( )

( ) ( )

1 1 1

1 1 1

1 1

i P P i i N N i i
i

P P N m

i N N i i P P i i

N N P m

ii

m m

y P y N y mh y

y N y P y m        

yy m        

α β α β
φ Φ Φ

σ σ σ σ

α β α β
φ Φ Φ

σ σ σ σ

φ Φ
σ σ

⎧ ⎫⎧ ⎫− + − +⎧ ⎫ ⎡ ⎤ ⎛ ⎞−⎪ ⎪⎪= − −⎨ ⎬⎨ ⎬⎨ ⎜ ⎟⎢ ⎥
⎪
⎬

⎪ ⎪⎪ ⎪ ⎝ ⎠⎩ ⎭ ⎣ ⎦ ⎩ ⎭⎩ ⎭
⎧ ⎫⎧ ⎫− + − +⎧ ⎫ ⎡ ⎤ ⎛ ⎞−⎪ ⎪⎪+ − −⎨ ⎬⎨ ⎬⎨ ⎜⎢ ⎥

⎪
⎬⎟

⎪ ⎪⎪ ⎪ ⎝ ⎠⎩ ⎭ ⎣ ⎦ ⎩ ⎭⎩ ⎭

−⎧ ⎫−
+ −⎨ ⎬

⎩ ⎭

( ) ( )1P P i i N N i

P N

P y Nα β α β
Φ

σ σ
⎧ ⎫⎧+ − +⎡ ⎤ ⎡⎪ ⎪⎪ −⎨ ⎬⎨⎢ ⎥ ⎢
⎪ ⎪⎪⎣ ⎦ ⎣⎩ ⎭⎩

⎫⎤⎪
⎬⎥
⎪⎦⎭

                                                

 (10) 

 

which has an interpretation as a mixture of  normals and is the basis for maximum 

likelihood estimation of model given by (6)-(8).  In addition to Paris (1992), this 

model has been also analyzed by Berck and Helfand (1990) but with a different 

interpretation for the error terms.8  

 

III. A Stochastic von Liebig Crop Response Model 

 
8 According to Berck and Helfand (1990) the levels of the inputs will vary across individual plots 

within a field due to nonuniformity in the existing levels of the nutrients or unevenness in the 

distribution of inputs (p. 986).  
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Theoretical Foundations 

According to conventional wisdom, differences in management abilities of 

different firms can explain why some firms might be less efficient than a benchmark 

one.  In the present setting though where experimental data are used and the levels of 

inputs have been set according to an experimental setting, inefficiency can be intrinsic 

to the nature of the experiment.  For instance, if 0.4 units of nitrogen are used in 10 

identical plots combined with 10 different levels of phosphorus, then application of 

the law of the minimum will reveal that for some plot nitrogen becomes limiting and 

therefore further increasing phosphorus will yield no further increases in yield.  Given 

this experimental setting we would expect that unless the plateau is reached, then 

inefficiency can be present in one of the nutrients only.  Given this observation, the 

question still remains as to what is the best way to measure efficiency. 

Farrell’s seminal work (1957) on productive efficiency has been the basis for most 

empirical work on technical efficiency measurement.  As shown by Färe and Lovell 

(1978), Farrell’s radial notion of technical efficiency leads to two different 

interpretations.  The first Farrell measure is referred as output-oriented technical 

inefficiency and is modeled as a factor which scales output given input mix and 

technological conditions.  The second, called input-oriented technical inefficiency is 

specified as a factor that scales input usage given output produced and also 

technological conditions.9  In the case of a production technology subject to the law of 

the minimum Farrell’s measure could well classify an inefficient input bundle as being 

efficient since it’s a radial measure that constraints the input contraction to be the 

same across inputs.  In contrast, Russell’s non-radial input-oriented measure of 

technical efficiency that allows for different inputs to display different reduction 

levels is suitable for technologies that exhibit non-substitution among factors of 

production.  

Figure 2 illustrates the above ideas with two inputs (i.e., nitrogen and 

phosphorous) and a production function given by (5). In figure 2 the individual is 

producing a given level of output ( )y  using an input combination defined by point A, 

with 1P  units of phosphorous and  units of nitrogen.  The same level of output can 1N

                                                 
9 Färe and Lovell (1978) have shown that these two measures of technical inefficiency coincides iff the 

underlying technology is homogeneous of degree one in inputs (i.e., constant returns to scale).  
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be produced by reducing the use of both inputs until point B that lies on the isoquant 

associated with the minimum level of inputs required to produce y .10  According to 

Farrell’s definition a radial measure of input-oriented technical inefficiency is defined 

by the ratio 0C 0A .  In this case both input contractions are the same, i.e., 

2 10 0 0 0*P P N N= 1 .  However, point C is not the minimum level of inputs required 

to produce y , as still phosphorous is used in excessive quantities.  This point is on the 

isoquant y  but it does not lie in the efficient set of inputs, therefore the technical 

inefficiency is due to the excess use of the phosphorous input.  If we decrease its use 

until point B and leave constant the nitrogen input we produce the same output y .  

Holloway and Paris (2002) where the first who attempted to estimate a frontier 

von Liebig crop response model.  In their empirical study of the effects of water and 

nitrogen on crop yield using Hexem and Heady (1978) data, they consider a model 

where both experimental error and the inefficiency term enter additively outside the 

minimum operator as follows: 

 

   ( )ik w ik N ik ik iy min W , N , m u= + +α α ε   (11) 

 

where  is the inefficiency term,  is the random disturbance, iku iε 1i , , N= …  denotes 

the observations and  are the five sub-samples they considered.1k , , = … 5

                                                

11  

However, a model like that assumes that experimental error is not regime specific and 

indeed is not a switching regression model.  In addition, the resulting efficiency 

measure which is output-oriented in Farrell’s sense, does not allow for individual 

specific differences in efficiency levels,12 it precludes the possibility of only one input 

 
10 It should be noted that in these instances, where the production technology exhibits L-shaped 

isoquants, technical efficiency coincides with productive efficiency as defined by Farrell (1957) since 

allocative efficiency is always maintained (i.e., the cost-minimized input bundle is always on the left 

angles of the isoquants).  However, this presumes that any change in factor prices does not affect the 

fixed proportion in which inputs are combined in the production process.   
11 The Hexem and Heady (1978) dataset refers to corn production at five different locations in the US 

namely, Fort Collins CO, Mesa AR (in 1970 and 1971), Yuma Mesa AR and Yuma Valley AR. 
12 Actually, Holloway and Paris (2002) produced technical efficiency estimates only for each of the k 

subsamples they considered.  
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being inefficient and more importantly, would not classify a point like C in figure 2 as 

being technically inefficient.  

Instead, Russell’s non-radial index can appropriately measure technical 

inefficiency in the von Liebig crop response model. Using the input correspondence 

defined in (2), the Russell non-radial technical inefficiency index can be defined as: 

 

 ( ) ( ) ( ) ( ) [ ]1 1 0 1kR k
k k k

kk

TE y, min z , , z V y , k
z

⎧ ⎫⎪ ⎪≡ ∈ ∧ ∈ ∀⎨ ⎬
⎪ ⎪⎩ ⎭

∑
∑

z …
θ

θ
θ θ θ

ϑ
  (12) 

 

where ( ) 1kz =ϑ  if  and 0kz > ( ) 0kz =ϑ  if 0kz = .13   Actually the above index is the 

ratio of two distances computed along rays that diverge.  The Russell measure clearly 

generalizes the Farrell input-oriented measure of technical efficiency, with the latter 

being the special case of k k= ∀θ θ .  In the case of the linear crop response model 

given in (5), Russell’s technical inefficiency index is presented also in figure 2.  In 

order to reach the technical efficient input mix, nutrients (i.e., N and P) need to be 

contracted at different proportions.  Specifically, reaching the efficient point B when 

the input mix is given by A requires bigger input contractions for phosphorus than for 

nitrogen.  In this case Russell’s non-radial technical inefficiency is defined as 0D 0A  

which is different than 0C 0A .  Nitrogen need to be reduced by 1
*0N 0N , whereas 

phosphorus by 1
*0P 0P  and 1

* *0N 0N 0P 0P≠ 1 .  Given the nature of the underlying 

production technology of the von Liebig crop response model which is characterized 

by L-shaped isoquants, Russell’s measure is actually the simple average of the 

orthogonal non-radial input-specific technical efficiency indices suggested by Kopp 

(1981).14  According to Kopp (1981)measures nitrogen-specific technical efficiency is 

defined as 1
*0N 0N , whereas phosphorous-specific as 1

*0P 0P .   

 

Econometric Modeling 

                                                 
13 As shown by Russell (1985; 1987), the technical inefficiency index defined in (12) satisfies 

commensurability, indication and weak monotonicity properties but not that of homogeneity.   
14 Instead of the simple average, Russell technical efficiency measure can be obtained using an 

unweighted geometric mean.  
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In contrast with Holloway and Paris (2002) approach, we extend  the model given 

in section II to allow for inefficiency in the use of one or both nutrients and consider a 

Russell input-oriented measure of technical efficiency.  In order to allow for regime 

dependent technical inefficiency we introduce two stochastic terms  and  which 

capture whether each nutrient is used in a technically efficient way, i.e., whether it is 

possible or not to obtain the same level of crop yield by reducing one or both 

nutrients.  In this case, the model embedded in equations 

Piθ Niθ

(6) to (9) becomes: 

 

( ) ( ){ }i P P Pi i Pi N N Ni i Niy min P , N , m= + + + + + miα β θ ε α β θ ε ε  (13) 

 

If nutrient z ( )i.e., z P,N=  is used technically efficient then , otherwise it 

should be .  Furthermore, it is assumed that both efficiency terms take values on 

the interval 

1zθ =

1zθ <

( ]0 1, .   Note  that the switching nature of the model is complicated now 

by the fact that there are two stochastic terms in each nutrient response that will 

govern the probabilities of switching from one response function to the other.  In 

order to derive the unconditional density of iy  we make the following assumptions 

concerning the stochastic terms in (13): 

 

( ) ( ) ( )
( ) ( )
( ) ( )

2 2

2

2

0 0

0

0

Pi P Ni N mi m

Pi Pi Pi P

Ni Ni Ni N

~ iid N , , ~ iid N , , ~ iid N ,

exp u , u ~ iid N , , 

exp u , u ~ iid N ,

+

+

= −

= −

�

�

ε σ ε σ ε σ

θ σ

θ σ

20 ,

  (14) 

 

where  denotes the half-normal distribution. In addition, it is assumed that the five 

stochastic terms are distributed independently of each other and of the regressors. 

Given the above assumptions, the unconditional density of the three response yields 

Ν +

Piy , Niy  and miy , given by Pf� , Nf�  and mf�  respectively can be derived from the joint 

density of the corresponding experimental error and the inefficiency term for each of 

the two nutrient responses and from the density of the experimental error for the 

plateau response.  

Specifically, the joint density of the random error and technical inefficiency terms 

for each nutrient response function is given by: 
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( ) ( )22

2 2

2 1
2 2 2

zi' zi
zi zi zi

z z z z zi

ln
h , exp

⎛ ⎞−
= − −⎜

⎜
⎝ ⎠� �

θεε θ ⎟
⎟πσ σ σ σ θ

  (15) 

 

Using a change of variables, the joint density of ziy  and ziθ  is obtained as: 

 

( ) ( ) 2 2
2 1

2 2
i zi z zi i zi

zi zi zi
z z z z zi

y z lnh y , exp
⎧ ⎫⎡ ⎤− −⎛ ⎞ ⎛ ⎞−⎪ ⎪′ ⎢ ⎥= − +⎨ ⎬⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
� �

α β θ θθ 1
πσ σ σ σ θ

 (16) 

 

Accordingly the marginal density of ziy  given by zif�  can be obtained as: 

 

 

( ) ( ) 21

0

2

2 1
2 2

1

i z z zi i
zi zi

z z z

zi
zi

z zi

y z
f y exp

ln                                 d

⎧ ⎡ − −⎛ ⎞⎪ ⎢= −⎨ ⎜ ⎟
⎢⎝ ⎠⎪ ⎣⎩

⎫⎤⎛ ⎞− ⎪⎥+ ⎬⎜ ⎟
⎥⎝ ⎠ ⎪⎦⎭

∫�
�

�

α β θ
πσ σ σ

θ θ
σ θ

     (17) 

 

and its cumulative distribution function is given by: 

 

( ) ( ) 21

0

2

2 1
2 2

1

i

i z z zi i
zi

z z zy

zi
zi i

z zi

y z
P y y exp

ln                                       d dy

∞ ⎧ ⎡ − −⎛ ⎞⎪ ⎢> = −⎨ ⎜ ⎟
⎢⎝ ⎠⎪ ⎣⎩

⎫⎤⎛ ⎞− ⎪⎥+ ⎬⎜ ⎟
⎥⎝ ⎠ ⎪⎦⎭

∫ ∫�

�

α β θ
πσ σ σ

θ θ
σ θ

   (18) 

 

Since the plateau does not entail any efficiency term the expressions for the 

marginal density and cumulative distribution of miy  are given by: 

 

( ) 1 i
m i

m m

y mf y
⎛ ⎞−

= ⎜
⎝ ⎠

� φ
σ σ ⎟      (19)  

and 
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( ) 1 i
mi i

m

y mP y y Φ
σ

⎛ ⎞−
> = − ⎜

⎝ ⎠
⎟      (20) 

 

Under the assumption of the von Liebig crop response model, the observed crop 

yield can occur when either Pi iy y=  or Ni iy y=  or mi iy y= .  Taking into account the 

pairwise independence of the all stochastic terms, the unconditional density of iy  will 

be a function of the above marginal densities and can be written as: 

 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

i p i Ni i mi

N i Pi i mi i

m i Pi i Ni i

h y f y P y y P y y

         f y P y y P y y
i

f y P y y P y y

= >

+ >

+ >

�

�

�

>

>

>

   (21) 

 

and with  ( )zh ⋅  denoting the joint density of ziy  and  we have, ziθ

 

( ) ( ) ( )
1

0

1 i
z i z i zi zi m i

m m

y mf y h y , d , f y
⎛ ⎞−

= = ⎜ ⎟
⎝ ⎠

∫� �θ θ φ
σ σ

   (22) 

and, 

( ) ( )

( )

1

0

1

i

zi i z i zi zi i
y

i
mi i

m

P y y h y , d dy

y mP y y

θ θ

Φ
σ

∞

> =

⎛ ⎞−
> = − ⎜ ⎟

⎝ ⎠

∫ ∫
    (23) 

 

Computation of Technical Efficiency 

Computation of nutrient-specific technical efficiency is based on the expression: 

 

( )
( )

( )

1

0

a
zi z i zi zi

zi i
i

h y , d
E y

h y
=
∫θ θ θ

θ z P,N=    (24) 

 

where  for each nutrient z,  denotes the joint density of the inefficiency term and 

actual crop yield. It should be distinguished from the function 

( )a
zh ⋅

( )zh ⋅ which represents 
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the joint density of the inefficiency terms  and corresponding response function zθ zy .  

Then, Russell’s non-radial index of input-oriented technical efficiency can be 

computed from: 

 

( )
( )
2

zi i
R z
i

E y
TE y, z P,N=

∑
z

θ
=     (25) 

 

The expression in the denominator of (24) can be computed directly from the 

resulting likelihood function while for the numerator numerical integration is 

required.  In the case of phosphorous, the joint density of actual crop yield and the 

phosphorous specific inefficiency term, Piθ , will depend on which of the three 

regimes, phosphorous limited, nitrogen limited or plateau is binding. Also note that 

Piθ  enters only the phosphorous response and is independent of all other stochastic 

terms. Therefore, ( )a
P i Pih y ,θ  will be the sum of three terms as follows, 

 

( ) ( ) ( ) ( )

( )( ) ( ) ( )

( )( ) ( ) ( )
i

i

a
P i Pi P i Pi Ni i mi i

P Pi N i mi iy

P Pi m i Ni iy

h y , h y , P y y P y y phosphorous limiting

h y, dy f y P y y nitrogen  limiting

h y, dy f y P y y plateau limiting

∞

∞

= > >

+ >

+ >

∫

∫

�

�

θ θ

θ

θ

  (26) 

 

where all the above expressions are defined in relations (17) and (18) in the previous 

section.  

Similarly for nitrogen we have: 

 

( ) ( ) ( ){ } ( )

( ) ( ) ( )

( ) ( ){ } ( )

i

i

a
N i Ni P i N Ni mi iy

Pi i N i Ni mi i

Pi i N Ni m iy

h y , f y h y, dy P y y phosphorus  limiting

P y y h y , P y y    nitrogen limiting

P y y h y, dy f y    plateau limiting

∞

∞

= >

+ > >

+ >

∫

∫

�

�

θ θ

θ

θ

  (27) 

  

The above input-oriented measures of technical efficiency allow for a given 

observation to exhibit different degrees of inefficiency for both nutrients and it could 

be very well the case inefficiency could occur for one of the nutrients only. 
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IV. Estimation Results of the Stochastic von Liebig Crop Response Model 

The well known experimental data of Heady and Pesek (1954) were used to 

estimate the suggested stochastic von Liebig crop response model and the subsequent 

measurement of non-radial input-oriented technical inefficiency.  These data consist 

of 114 observations relating corn yield response to the application of two nutrients, 

namely, phosphorus and nitrogen on a calcareous Ida silt loam soil in western Iowa.  

The agronomic experiments that generated these data utilized an incomplete factoral 

design as phosphorous and nitrogen were applied in various combinations at different 

levels.  Nine levels of nitrogen and phosphorous were selected with two replications 

for all 114 plots.  The crop population was chosen at 18,000 plants per acre.  The 

range of nitrogen and phosphorous treatments varies from 0 to 320 pounds per acre 

for the purpose of detecting a phase yield decline if it exists.15  

The ML estimation results16 of both the average switching regression and 

stochastic von Liebig crop response models are presented in table 1.  Concerning the 

average von Liebig switching regression model presented in column 2, all parameters 

including the variances of the error terms are statistically significant at the 5 per cent 

level.  The estimated growth plateau was found to be 126.81 bushels while, corn yield 

seems to be equal sensitive to both nitrogen and phosphorous application as the 

estimated coefficients in both response functions exhibit very close estimates.  Our 

estimates are very close estimates with those reported by other authors who used the 

same experimental data set (i.e., Frank, Beattie and Embleton, 1990; Paris 1992; 

Paris, 2005).  The differences observed in standard errors are probably due to 

different computation methods.   

Estimates of the stochastic von Liebig crop response model are presented in the 

third column of table 1.  All the estimated parameters are statistically significant at the 

5 per cent level, except of the variance of the technical inefficiency term for nitrogen.  

The later implies that only phosphorous displays a significant degree of technical 

inefficiency.  Examining further this finding, the existence of technical inefficiency in 

both response function was statistically tested.  Conducting a statistical test of no 

                                                 
15 Paris (2005) estimating a linear von Liebig crop response model utilizing the same data set found no 

evidence of decline in crop yield.  Hence, our empirical model does not account of declining yields. 
16 The maximum likelihood estimation was carried out using Gauss version 3.2.23 computer software. 
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inefficiency in the use of any nutrient, i.e., 0zσ =�  is complicated by the fact that 

under the null hypothesis the parameter of interest lies on the boundary.  However, 

Self and Liang (1987) show that under such circumstances the distribution of the 

likelihood ratio statistic (LR)17 follows a mixture of a degenerate  and  

with weights 

( )2 0χ ( )2 1χ

1 2 .  Using the LR test statistic we fail to reject the hypothesis that the 

variance of the nitrogen inefficiency term is zero, while on the other hand we didn’t 

fail to do the same for the variance of the phosphorous inefficiency term. Therefore, 

phosphorus is the only nutrient displaying technical inefficiency which is rather 

natural given the experimental design under which dataset was generated. Hence, the 

radial measurement of technical inefficiency would have resulted in biased estimates 

as it may realize both inputs used in excessive quantities. 

Accordingly, the stochastic von Liebig crop response model was re-estimated 

including a technical inefficiency term only in the phosphorus response function and 

the results are displayed in the fourth column of table 1.  As it can be seen, parameter 

estimates are almost identical to the ones presented in column 3 where both 

inefficiency terms are included.  This is also true for the value of the log-likelihood 

functions. Comparing, however, these results with the average switching regime von 

Liebig crop response model we can see that although the estimated growth plateau 

remains the same across models there are significant differences in estimates for the 

constant and slope parameters of the phosphorus response function and the standard 

deviation of .   Pε

Specifically, the slope of the phosphorous response function increased from 

0.9395 in the average switching regime von Liebig crop response model to 1.5266 in 

the stochastic von Liebig crop response models.  Equally, the variance of the random 

term and the constant parameter in the phosphorous response function has been 

decreased from 0.2359 and 0.2641 to 0.1333 and 0.2201, respectively, when the 

model is estimated under technical inefficiency.  This implies that the average 

switching regime von Liebig model provides inadequate estimates of the crop yield 

response function for phosphorous.  Specifically it overestimates the proportional 

                                                 
17 The likelihood-ratio statistic is computed as, ( ) ( ){ }102 HLlnHLlnλ −−= , where L(H0) and 

L(H1) denote the values of the likelihood function under the null (H0) and the alternative (H1) 

hypothesis, respectively. 
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function of the phosphorous available in the soil and the variability of the 

experimental error associated with the phosphorous regime, while on the other and, it 

underestimates the impact of phosphorous content in fertilizers on crop yield.  

Actually, this implies that the stochastic von Liebig crop response model is not a 

neutral shift of the average switching regime model.  Hence, apart of using excessive 

quantities of phosphorous nutrient, if technical efficiency is assumed the 

approximation of the corn production technology would be a biased.   

Estimates of input-oriented technical efficiency for phosphorous using relation  

(24) in the form of a frequency distribution within a decile range are presented in 

Table 2.  Given that only phosphorous seems to be used technically inefficient, these 

estimates coincides with Russell’s non-radial index of input-oriented technical 

inefficiency defined in (12) (i.e., the numerator has only one element, while the 

denominator equals to one).  On the average, the results indicate that the particular 

experimental design has not been successful in implementing the best practice corn 

production technology and achieving the maximum possible output of nutrient 

application.  Mean input-oriented technical efficiency was 72.9 per cent implying that 

experimental plots could have produced the observed corn quantity using on the 

average about 27 per cent less of phosphorous quantity with the current state of 

technology and nitrogen application. Moreover, technical inefficiency scores vary 

considerably across plots, ranging from a minimum of 34.5 per cent to a maximum of 

98.7 per cent. The majority of the plots belong to the 70-80 per cent interval.  Of the 

114 plots in the sample only 11 (i.e., less than the 10 per cent of the plots examined) 

achieved input-oriented technical inefficiency in phosphorous application above 80 

per cent.   

 

V. Concluding Remarks 

When the underlying production process is characterized by a Leontief-type 

technology, i.e., zero elasticity of substitution, the traditional Farrell (1957) radial 

index of technical inefficiency is not appropriate.  In particular it is possible to 

identify a decision making unit as being technically efficient although this may not be 

true. This is because in Leontief-type technologies with L-shaped isoquants, the 

efficient subset coincides with the right angles where the horizontal and vertical legs 

are joined.  Hence, an observation lying either on the vertical or the horizontal leg of 
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the isoquant may be identified with Farrell’s radial index as being technical efficient 

although this is not true.  In these instances, Russell’s non-radial index of technical 

efficiency is more appropriate as it allows for inefficiency to be displayed by a subset 

of inputs only.   

Along these lines, the present paper presents an econometric model that can be 

used to uncover inefficiencies in such circumstances by combining the traditional 

stochastic frontier framework with switching regression models. For the exposition of 

our assertion we use the von Liebig model from the well documented crop response 

literature as the reference framework.  Specifically, we extent Paris (1992) average 

switching regression von Liebig crop response model providing a theoretical 

consistent framework for the quantitative measurement of non-radial input-oriented 

technical efficiency in nutrient application.  The model has been applied to the well 

known experimental agronomic data of Heady and Pesek (1954) where yield is related 

to two nutrients namely, phosphorous and nitrogen.  We assume a linear crop 

response crop yield although our model can be extended to all other specifications 

suggested from the relevant literature.  The empirical results suggest that only 

phosphorous nutrient has been used in excessive quantities whereas nitrogen 

application was technically efficient.  The nature of the experimental data which was 

generated utilizing an incomplete factoral design may be behind that finding.   

Finally, the present estimation framework can be equally applied to other 

production technologies characterized by nonsubstitution like petrochemical 

industries (Lau and Tamura, 1972), steam power plants (Komiya, 1962), paper plants 

(Ozaki, 1969), iron and steel industry (Nakamura, 1990), bus transportation (Holvad 

et al., 2004) etc.  Further, one interesting extension would be to consider other 

distributional assumptions for the inefficiency term.  
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Figure 1: Linear Response Representation of Crop Yield to Phosphorus. 
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Figure 2:  Farrell’s and Russell’s Measures of Input-Oriented Technical Inefficiency 

Under von Liebig Crop Response Model. 
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Table 1.   ML Estimates of the Average and Stochastic von Liebig Crop Response 
Models.  

 
Parameter Average von Liebig 

Model 
Frontier von Liebig 

Model 
Restricted Frontier von 
Liebig Model ( )0Nσ =�  

αp 0.2641 (0.0534) 0.2201 (0.0302) 0.2201 (0.0302) 

αN 0.2895 (0.0307) 0.2909 (0.0306) 0.2910 (0.0307) 

βp 0.9395 (0.1016) 1.5266 (0.0894) 1.5266 (0.0894) 

βΝ 0.9824 (0.0697) 0.9875 (0.0724) 0.9785 (0.0693) 

m 1.2681 (0.0144) 1.2681 (0.0144) 1.2681 (0.0144) 

σP 0.2359 (0.0304) 0.1333 (0.0248) 0.1333 (0.0248) 

σN 0.1294 (0.0168) 0.1293 (0.0168) 0.1294 (0.0168) 

σm 0.0935 (0.0104) 0.0926 (0.0106) 0.0926 (0.0106) 

Pσ�  - - 0.4406 (0.0880) 0.4406 (0.0880) 

Nσ�  - - 0.0114 (0.0261) - - 

LogL 70.651 77.006 77.004 

N 114 114 114 
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Table 2.  Frequency Distribution of Russell’s Input-Oriented Technical Efficiency 
Levels for Phosphorus Nutrient. 

 
Technical Efficiency (%) No of Observations 

0-10 0 

10-20 0 

20-30 0 

30-40 1 

40-50 2 

50-60 2 

60-70 1 

70-80 97 

80-90 10 

90-100 1 

Mean 0.729 

Median 0.727 

Minimum  

Maximum  
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