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number of works that assume frictionless trading. In this article, we point out that an investor may 
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they minimize long run cost per unit time. The latter is defined as the expected cost per transaction cycle 
(opportunity cost/tracking error plus transaction cost) divided by the expected cycle time. In the second 
case, the objective is to minimize the expected discounted squared tracking error plus discounted 
transaction costs over an infinite horizon. On that purpose, similar to Suzuki and Pliska (2004), we use 
impulse control theory in a continuous-time, dynamic setting and characterize the optimal strategy in 
terms of a quasi-variational inequality. For both formulations, we derive explicit solutions, which we use 
to perform sensitivity analysis for the control bands with respect to the market parameters and the 
magnitude of the transaction costs.          
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Introduction 
 
Since R. Merton’s (1971) pioneering work on optimal consumption/investment 
decisions for investors that may place proportions of their wealth in risky assets 
(“stocks”) whose prices are described by geometric Brownian motions and a bank 
account (or “bond”) paying a fixed interest rate under the objective of maximizing 
lifetime HARA utility of consumption, several articles have emerged in the literature 
using the same market specifications but different objective functions. To name a few, 
Pliska (1986) derived optimal strategies for investors that aim to maximize exponential 
utility of terminal wealth, Browne (1999, 2000) related the probability of achieving a 
given target performance to the time it takes to achieve it and Young (2004) presented 
strategies that minimize the probability of lifetime ruin. Depending on the optimization 
objective, the optimal asset allocation may be constant as in Merton (1971) and Browne 
(2000), time dependent as in Pliska (1986), or state (wealth) dependent as in Browne 
(1999) or Young (2004); in the risky wealth-risk free wealth space the former result 
postulates that portfolio holdings should be located on the so-called Merton line. In the 
aforementioned models, information arrives continuously and, since investors trade 
costlessly, optimal policies entail continuous trading; hence following such strategies in 
the presence of transaction costs will lead to immediate ruin. 
   Since the early nineties, there has been a wave of research focusing on the removal of 
one of the most significant simplifying assumptions of Merton’s model: frictionless 
trading. Efforts for the removal of the frictionless market hypothesis date back to the 
path-breaking work of Davis and Norman (1990) who assumed a cost proportional to 
the size of each transaction for investors that may invest in a single risky and a riskless 
asset, aiming to maximize lifetime HARA utility of consumption. Thereafter various 
articles have appeared studying the optimal transaction policy for an agent facing 
proportional transaction costs in the financial markets. Shreve and Soner (1994) refined 
the work of Davis and Norman using viscosity solutions, Dumas and Luciano (1991) 
studied the problem of maximizing HARA utility of terminal wealth in the limit as the 
horizon gets very large, and later, Gennotte and Jung (1994) and Liu and Lowenstein 
(2002) also focused on maximizing HARA utility of terminal wealth. More recently, 
Nazareth (2002), solved the problem as formulated in Davis and Norman, assuming that 
the constant of proportionality for the transaction costs is random. Demchuk (2002) 
assumed that transaction costs are represented by a concave function of the size of the 
trade in the risky asset and solved the problem under a framework similar to that 
presented in Gennotte and Jung. Hence, the literature on proportional transaction cost 
models has focused on HARA utilities; the only exception till now is Weerasinghe 
(1998) who presented optimal strategies for investors aiming to maximize the 
probability of reaching a wealth level before going bankrupt. Optimal control actions in 
markets that contain one risky and one riskless asset and rebalancing entails 
proportional transaction costs, are of a “local time” type, i.e. the fundamental process 
can move freely inside a prescribed region. If it reaches its boundary, the controller will 
simply hold it inside the region by performing the minimal action to avoid crossing of 
the boundary. Hence, policies are totally specified by the boundaries of the “non-
intervention” region. The value function of the optimization problem is typically 
characterized as a solution of a variational inequality.  
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   Morton and Pliska (1995), observed that optimal trading strategies derived by models 
that incorporate transaction costs proportional to the amount traded, are not of finite 
variation; thus these strategies still consist of making infinitesimally small transactions 
which is not the case in real world. They assumed transaction costs proportional to 
wealth and derived control bands for investors aiming to maximize their long-run 
growth rate of wealth. The optimal policy in their model is of finite variation: each time 
the bond-stock proportion hits the boundaries of the no-transaction band the investor 
brings it back to an optimal level within the band. Bielecki and Pliska (2000) and 
Bielecki et al. (2004), extended the aforementioned model to risk sensitized growth-rate 
optimizing criteria. Korn (1998, 1999), added a fixed cost part to the transaction costs 
part that is proportional to the amount traded in the risky asset. Using the impulse 
control method, he obtained optimal strategies that also consist of finitely many actions 
on finite time intervals; he solved the impulse control problem for an investor who 
maximizes his/her exponential utility of terminal wealth. In this case, the presence of 
the fixed cost component forces the controller to move the underlying process away 
from the boundary of the “non-intervention” region. Here, the value function is 
characterized as a solution of quasi-variational inequalities (qvi). Later, Oksendal and 
Sulem (2002), based on the theory of viscosity solutions applied to quasi-variational 
inequalities, presented a numerical scheme that optimizes lifetime HARA utility of 
consumption. Zakamouline (2002, 2004) presented numerical schemes for investors 
aiming to maximize constant absolute risk aversion (CARA) utility of terminal wealth 
and Liu (2004) derived optimal impulse control bands for investors seeking to optimize 
lifetime CARA utility of consumption. The reader should note that most research work 
in transaction costs models is done for simple two-asset markets; due to computational 
intractability, there is only a handful of articles that consider (correlated) multi-asset 
markets; see Akian et al. (1996, 2001), Atkinson and Mokkhavesa (2004), and 
Muthuraman (2006 a,b,c). For some survey articles, the interested reader may also 
consult Cadenillas (2000) and Zariphopoulou (1999). 
   In a recent article, Korn (2004) highlighted the difficulties related to the application of 
transaction cost models in real world tasks. The vast majority of methods require 
formulation of highly sophisticated numerical schemes for the derivation of optimal 
allocation rules; thus, it is difficult for a practitioner to derive optimal control bands 
within which his/her bond-stock proportions should lie and rebalancing points to which 
the proportions should be driven when they hit the boundaries of the bands. Moreover, 
the optimization objectives examined are far less compared to models that adopt the 
frictionless markets hypothesis; for instance probability-related objectives as in Browne 
(1999, 2000), Young (2004) and Bayraktar and Young (2004), have not been examined 
yet. In this work, we point out that to enhance tractability, an investor may alternatively 
try to track a constant optimal portfolio strategy as derived under the frictionless 
markets hypothesis and any optimization objective, using an appropriate loss function 
that reflects his/her risk aversion. Based on a transformation of the risky fraction 
process recently proposed by Nagai (2005) and inspired by a simple cash inventory 
model presented in Karlin and Taylor (1981, section 15.4), we present a simple method 
for the derivation of optimal rebalancing rules for investors that aim to minimize their 
long run tracking error plus transaction cost, per unit time. One advantage over the well-
developed method in which one minimizes discounted tracking error plus transaction 
cost over an infinite horizon is that it does not require the transaction cost coefficients to 
be constant over lifetime; different valid control bands can be calculated for different 
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transaction cost levels. Given that the cost component that is proportional to the amount 
of the transaction is mostly related to the bid-ask spread, this method suits better to real 
world applications. Furthermore, we use Nagai’s transformation to apply an impulse 
control model similar to the one presented in Pliska and Suzuki (2004) to derive control 
policies for investors that aim to minimize discounted lifetime tracking error plus 
discounted transaction costs. To illustrate our methodology we examine a loss function 
that penalizes squared deviations from the desired proportions in the original scale and 
compare the policies implied by the two alternative methods in an extensive application.  
    Hence, in this article we present models for tracking a specific constant target asset 
mix (which may have been derived under the frictionless markets hypothesis) in the 
presence of constant and proportional transaction costs. Models for tracking a constant 
target asset mix have been proposed by Leland (2000) and Suzuki and Pliska (2004).  In 
both articles researchers aim to minimize discounted lifetime tracking error plus 
transaction costs. Here we also show how one may derive strategies that minimize long 
run cost (tracking error/opportunity cost plus transaction cost) per unit time. Apart from 
that, our work differs with respect to Leland’s in that we use the exact expression for the 
stochastic process representing the evolution of portfolio proportions in the absence of 
interventions; moreover, we include a fixed component to the cost of each transaction in 
addition to Leland’s component that is proportional to the change in an asset proportion. 
The way we treat the “minimization of lifetime discounted tracking error plus 
discounted transaction costs” problem is similar to Suzuki and Pliska ‘s treatment with 
two differences. First, we use Nagai’s (2005) transformation on the risky fraction 
process –apparently, this transformation simplifies substantially the system of nonlinear 
equations that need to be solved so that control policies are derived. Second, the 
objective function we consider differs in that it solely penalizes tracking error.  
   Similar to the impulse control models presented in Korn (1998, 1999), Oksendal and 
Sulem (2002), Zakamouline (2002, 2004) and Liu (2004), the optimal strategy is 
characterized by four unknown parameters L, l, u, U. If the proportion of the risky asset 
hits level L (or U), then a transaction is made so that it resumes at level l (or u). 
Estimation of the inner (l, u) and outer boundaries (L, U) for both short and long term 
objectives pertains to the solution of a system of nonlinear equations. Computations can 
be significantly reduced, for portfolio managers that seek to find just the optimal outer 
boundaries and rebalance to a predefined optimal allocation. The predefined rebalancing 
point may be the optimal allocation as derived under the frictionless markets hypothesis 
for any optimization objective that suits best the portfolio manager. This simplification 
(adopted also in Korn, 2004), facilitates computations drastically and as shown in the 
application the obtained results are quite close to the ones obtained from the solution to 
the full problem.  
   The plan for our paper is as follows. In the following section, we display our two-asset 
market model, formulate Nagai’s (2005) transformation for the risky fraction process 
and present a precise statement of the portfolio manager’s optimization objective. In the 
third section, we explain how optimal trading strategies can be computed via standard 
diffusion theory for investors that minimize long run cost per unit time. The cost is 
comprised by two components: a transaction cost that is linear in the change of the 
(transformed) risky fraction process that occurs in every transaction and an opportunity 
cost/tracking error that is dependent on the investor’s risk preferences via an associated 
loss function. In the fourth section we illustrate how the optimal rebalancing policies, 
characterized by four parameters L<l<u<U, can be derived by solving a certain quasi-
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variational inequality (qvi).  In this case, the objective is to minimize the expected 
discounted tracking error plus discounted transaction costs over an infinite horizon. The 
fifth section elaborates on the density function of the controlled risky fraction process 
and the resulting probability density for the optimally controlled wealth. Section 6 
contains a specific example and a sensitivity analysis, where we show with numerical 
examples how the control bands depend upon the values of individual input parameters. 
We conclude with some final remarks and directions for further research in section 7.        
 

Problem formulation and the risky fraction process 

We consider the simple two-asset market model, in which the set of securities consists 
of one bond, whose price  is described by the following ordinary differential 
equation: 

)(0 tS

,)0(,)()( 0000 sSdttrStdS ==                                                    (2.1) 
and one risky asset with price  that is governed by the stochastic differential 
equation: 
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and we have  
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The risky fraction process was first studied by Morton and Pliska (1995). Using Ito’s 
formula, they showed that, for the two-asset case, it evolves according to the following 
stochastic differential equation 
 ( ) ( ) ttttttt dWbbdtbrbbdb σσµ −+−−−= 1)1( 2 .                 (2.6) 
To ease calculations in later sections, we adopt the 1-1 transformation proposed recently 
by Nagai (2005), defined by 
                    (2.7) )1log(log:)( bbby −−==ψ
and one may easily observe the form of the inverse mapping φ: 
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Using once again Ito’s formula, the evolution of y is formulated as a geometric 
Brownian motion with constant drift  
                      (2.9) tt dWdtdy σκ +=

where 
2

2σµκ −−= r ; a certainly more manageable form compared to (2.6). 

 
Figure 1. Nagai’s transformation and its inverse for the two-dimensional case. 

 
   We now turn to the specification of the transaction cost, which is essentially the same 
as in Suzuki and Pliska (2004). If the transformed risky proportion is y and a transaction 
is made resulting the new risky proportion y~ , then the transaction cost incurred at that 
time is   
 ( ) yykKyyc ~:~, −+=                    (2.10) 
where K and k are two suitably chosen (so that the scale transformation is accounted 
for), strictly positive scalars. Thus, the linear component is proportional to the change in 
transformed proportions and not, as is common in much of the transaction cost 
literature, proportional to the dollar amount of the transaction. Because of the fixed cost 
component, it suffices to consider trading strategies of the form ( ){ }nn y,τ , where τn is 
the time of the nth transaction and yn the risky proportion that results from the nth 
transaction. ({ nn y, )}τ  must satisfy some standard technical requirements: τn is a 
stopping time, τn< τn+1, ∞→nτ  as ∞→n , and yn  is -measurable. The advantage 
for such a specification for transaction costs is that it facilitates computations; a 
disadvantage is that for practical applications a portfolio manager should recalibrate 
transaction cost parameters for investors of different wealth levels. 

n
Fτ

   We study two different methods for the derivation of the optimal rebalancing 
strategies and in the application we compare the control bands they suggest. To 
illustrate our methodology we use a quadratic function for the deviation of the risky 
fraction process from the target level in the original scale. The reader should note that a 
portfolio manager may choose from a large variety of loss functions to represent his/her 
opportunity costs –the quadratic functions here are chosen for computational simplicity 
in the application. For example, tracking error may be represented by an exponential 
function of the deviation of the observed from the desired proportion or a function of 
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HARA type with a suitably chosen risk aversion parameter. Such loss functions are 
justified by the findings of Rogers (2001) and Cover (1991) who observed that the 
payoff of a fixed-proportion rule is quite insensitive to the chosen proportion in a 
neighborhood of the Merton proportion. The target levels of the risky fraction process in 
the original scale may for instance be equal to 

- 21 σ
µ rp −

= , the risky asset proportion that maximizes log utility and the portfolio’s  

  exponential growth rate.  

- { 0,1:,
)1( 22 ≠<ℜ∈

−
−

= γγγ
σγ

}µ rp  the risky asset proportion that maximizes 

HARA utility with risk aversion parameter γ. 
- ] , an efficient fractional Kelly strategy that maximizes capital 
growth and at the same time achieves a given probability of maintaining an accumulated 
risk free return (see Li, 1993). 

1,0(13 ∈= ffpp

- a target proportion exogenously specified by a portfolio manager or one that follows 
an index as in Suzuki and Pliska (2004). 
   In the impulse control method, which is treated in the fourth section, the objective is 
to minimize the expected discounted squared tracking error plus transaction costs over 
an infinite planning horizon. Let p and π denote the target proportion of wealth in the 
risky asset in the original and the transformed scale respectively. Then, under an 
admissible trading strategy {( nn y, )}τ  and given an initial proportion vector b(0)=b0, the 
objective function is given by 
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and ( nn yyc ),( − )τ  as in (2.10). In (2.11) the first term measures discounted tracking 
error/opportunity costs and the second discounted transaction costs; β is a discount 
factor and λ is a constant chosen by the portfolio manager to reflect his/her loss 
preferences. The portfolio manager seeks an admissible trading strategy minimizing 

( ){ }( nn b,,0 )yJ τ . Hence, one would like to compute the value function  
 

( ){ }
( ){ }( )nny

yyJyJ
nn

,,inf:)( 0,0 τ
τ

=                  (2.13) 

where the infimum is taken, over all admissible trading strategies, and find the trading 
strategy that attains this infimum.   
 

Minimization of long run cost per unit time 

Problem formulation 

The usual practice for dealing with tracking problems in the presence of constant and 
proportional transaction costs where a finite number of actions per finite time intervals 
is required, is to minimize lifetime discounted tracking error plus discounted transaction 
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costs via solving a system of quasi-variational inequalities (qvi). This approach has been 
adopted for example in Cadenillas and Zapatero (1999) and in Baccarin (2002) for 
tracking exogenously specified target levels of an exchange rate and for cash 
management respectively. In this section, we minimize long run cost per unit time. This 
approach uses simple mathematical tools from diffusion theory; thus, no knowledge of 
impulse control theory is required. Similar to the qvi approach, estimation of the inner 
and outer control bands pertains to the solution of a system of nonlinear equations. 
Unfortunately, these nonlinear equations turn out to be significantly more complex 
compared to the ones derived from the qvi approach. Nevertheless, one may relatively 
easily derive them using any software that performs symbolic calculations and solve the 
resultant system using standard routines that perform algorithms like Newton-Raphson 
or one of its descendants.  
   Let yt be the transformed (by 2.7) proportion of wealth an investor has in the risky 
asset at time t. In the absence of intervention, yt behaves as the geometric Brownian 
motion (2.9). Deviations from the (pre-specified) optimal fraction π, involve an 
opportunity cost since part of wealth is not optimally invested. We therefore suppose 
that holding stocks at level yt for the transformed risky fraction process incurs 
opportunity costs at a quadratic rate in the original scale 

( )( )21)( −= −πλ ty
t eyg .                                                    (3.1) 

Now consider the following control band policy for the transformed risky fraction 
process: “If the transformed risky fraction process reaches level U above the target level 
π, reduce its level to u. This transaction incurs a cost of ( uUkK − )+ . If the 
transformed risky fraction process reaches level L below the target level π, increase its 
level to l. This transaction incurs a cost of ( )LlkK −+ .” Define a cycle to be from one 
intervention returning the level to l or u from L or U, to the next such intervention; the 
long-run cost per unit time will be the expected cost per cycle divided by the expected 
cycle time, or   

B
AC +                                  (3.2) 

where C represents the expected transaction cost per cycle,  A denotes the expected 
opportunity cost per cycle, and B stands for the expected cycle time.  
 

Related results from diffusion theory 

To derive A, B and C we use standard diffusion theory as in Karlin and Taylor (1981), 
or Borodin and Salminen (2002). Assume U and L be fixed subject to ∞<<<∞− UL , 
and define T  be the hitting time of s for the y process. Throughout the paper we 
let  

sTs =)(

                                         (3.3) { } )()()(),(min,
* LTUTLTUTTT LU ∧===

be the first time the process reaches U or L. To proceed, we need to be able to calculate 
the following quantities for the transformed risky fraction process: 
 { yYLTUTyv =<= )0()()(Pr)(1 } UyL <<                                          (3.4) 
the probability the process reaches U before L, 
 [ ]yYTEyv == )0()( *

2   UyL <<                             (3.5) 
the mean time to reach U or L, and 
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for a bounded and continuous function g. v1, v2  and v3 need to satisfy the following 
differential equations (Karlin and Taylor, chapter 15): 
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For the solutions of these problems, let 

                                                                                   (3.10) ∫=
y

dsyS ηη)()(

denote the scale function of the yt process where 
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denote the speed density of the yt process. The solution to (3.4) is  
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(3.5) is a special case of (3.6) with g equal to the indicator function. The solutions to 
(3.8), (3.9) are formulated as follows: 
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Calculation of expected costs per transaction cycle                                                                                         

The scale function for the geometric Brownian motion (2.9) that corresponds to the 
transformed risky fraction process, is  
 ( )2/2exp)( σκyyS −=        (3.16) 
and the speed measure is 

( ) 22 //2exp)( σσκyym = .       (3.17) 
Using (3.16) the expected transaction cost per cycle is 
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with v1(.) given by (3.13). In words, the expected transaction cost per transaction cycle 
is comprised by five components: a constant, two parts proportional to the difference 
between the upper boundary and the upper rebalancing point weighted by the 
probabilities of reaching the upper boundary from the upper and lower rebalancing 
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points and two parts proportional to the difference between the lower boundary and the 
lower rebalancing point weighted by the probabilities of reaching the lower boundary 
from the upper and lower rebalancing points. 
For the expected cycle time, using (3.14), (3.16), (3.17), we obtain 

( ) ( )()()(2)()()( 211211 lvlvuvuvlvuvB )−−++=     (3.19) 
where 
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Similarly, the expected opportunity cost/tracking error per transaction cycle is  
 ( ) ( )()()(2)()()( 311311 lvlvuvuvlvuvA )−−++=     (3.21) 
where 

( ) )()(1)()()( 113 LhyvUhyvyv −−−=                                        (3.22) 
and 
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( )( )κσκσκσ
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−
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=

−

−

222
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))(2(2236224223
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)(68

2
)27264)(

ySe

eyyh

y

y

.  (3.23)

        

Hence, by using (3.18)-(3.23) we derived the quantity 
B

AC + . To minimize with respect 

to L, l, u and U, one should take the corresponding derivatives and equate them to zero. 
Since these expressions are lengthy, we omit them for space economy1. The derivatives 
form a system of nonlinear equations, which can be solved computationally using the 
Newton-Raphson algorithm or one of its successors; numerical results are presented at 
the sixth section. 
   Some remarks are worth considering. First, instead of seeking two optimal 
rebalancing points (an inner band), one may simplify the problem by considering a 
single rebalancing point where the process is driven when it reaches L or U. In this case, 
he/she would obtain a system of three nonlinear equations, which are significantly 
simpler than the case displayed before. Moreover, a manager may be satisfied by just 
rebalancing to his pre-specified optimal choice2 (which as mentioned before may be an 
optimal allocation as derived under the frictionless markets hypothesis and any 
optimization objective); in that case, the system contains just two nonlinear equations. 

We display results based on this approach in the sixth section. The expression 
B

AC + is 

derived as follows: 

 
{ } ( ) { } ( )

( ) ( ) ( )LkvUkvK
LkYUTLTUkYLTUTKC

−−+−+=

−=>+−=>+=

ππππ
ππππ

)(1)(
)0()()(Pr)0()()(Pr

11

,   (3.24) 

                                                 
1 All calculations were performed via MATLAB’s Symbolic Math Toolbox.  
2 This strategy has also been adopted in Korn [24] for a different problem to ours. 
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( ) ( ) ( )( )
( )

( ))(12)(22
)()(

)()()()()()(2)(

12122

22

π
σ

π
σσ

π
σ

ππππ

vLvU
USLS

SUSLUSLSLSSUvB

−−−=

−
−+−+−

==
                    (3.25) 

and  
( ) )()(1)()()( 113 LhvUhvvA πππ −−−==                 (3.26) 

with h(y) as in (3.23). Naturally, computations can be reduced even more if one just 
seeks a symmetric control band around his/her pre-specified rebalancing point (a single 
nonlinear equation).    
   The reader should also note that computations are significantly simplified by 
considering the transformed risky fraction process. For example for the scale function of 
the original process one would have   

[ ]{ } ( ) ( )[ ]{ }
( )( ) )1log()1log()log(2

)1(/2exp)(/)(2exp)(

2

222

−−
−−−

=

=−−−−=−= ∫∫
yryy

drdys
yy

σ
µ

ξξξσξσµξξσξµ
     (3.27) 

and 
        (3.28) )1(22 11 )1()( +−− −= pp yyyS

with  

21 σ
µ rp −

= .         (3.29) 

Due to the form of the scale function, calculation of the expected time to leave an 
interval or expected tracking error within the interval becomes significantly more 
tedious for the original process. 
 

Minimization of discounted lifetime costs 

In this section, we show how to solve the portfolio manager’s tracking problem (2.11) 
by solving a quasi-variational inequality when the objective is to minimize expected 
discounted tracking error plus discounted transaction costs over lifetime. The problem 
could have been approached as in Suzuki and Pliska (2004) (they controlled the original 
risky fraction process) with a change in the objective function. Here, for computational 
simplicity we work with the transformed risky fraction process. It is also worth noting 
that impulse control problems similar to ours (deviating mainly in the objective 
function) have been applied in Cadenillas and Zapatero (1999) for optimal control of an 
exchange rate, Buckley and Korn (1998) and Baccarin (2002) for cash management and 
in Plehn-Dujowich (2005) for optimal price changes of a firm that faces menu costs. 
 
Admissible rebalancing strategies 

Since we want to minimize the functional J in (2.11), we should consider only those 
strategies for which J is well defined and finite. In order that  

 ( ) ( ) ( )

β
πβπββ 12)(
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




∫∫∫
∞
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∞

−−
∞

− dteeEdteeEtygeE tyttytt                    (4.1) 

be well defined and finite, we need that the two expected values on the right-hand-side 
be finite. It is straightforward to see that the condition  
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                                                                                    (4.2) ( ) ∞<
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To obtain the inequality on the left-hand-side, we need that  
 [ ) { } .0lim:,0 =<∞∈∀

∞→
TPT nn

τ         (4.6) 

To obtain the inequality on the right-hand-side, we need that 
 [ ] 0)(lim =+−

∞→
TyeE T

T

β .         (4.7) 

Indeed, according to the formula of integration by parts (see section VI.38 of Rogers 
and Williams (1987)), for every ∞<≤< ts0 , 
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Thus,    and ∞<
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(4.7). 
 
DEFINITION 4.1 (Admissible controls): We shall say that an impulse control is 
admissible if the conditions (4.2) (4.6) (4.7) are satisfied. 
EXAMPLE 4.1 Let us consider, similar to Cadenillas and Zapatero (1999), the strategy 
of no intervention, that is { } 11 =∞=τP . Then,  
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Thus, according to Fubini’s theorem, 
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Furthermore, 
 ( )[ ] ( )[ ] ( )TTT eyTyeETyeE βκββ −−− ==+ 0 ,     (4.11) 
and obviously 

                                                 
3 The above conditions imply that, for every 0 , the sequence ∞↑≤ nt [ ])( +−

nyeE n τβτ  is a Cauchy 
sequence and therefore converges o a nonnegative number. The number must be zero otherwise 
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
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−
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n IyyeE
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since there are no interventions. Hence the strategy of no intervention is admissible if 

and only if 2

2
1σκβ −>log  and κβ > . Otherwise, the cost function would be infinity 

or not defined. 
 
Solution via a quasi-variational inequality 

Let J(.) denote the value function. That is for every ( )∞∞−∈ ,0y , 

( ){ }
( ){ }( )nnyy

yyJyJ
nn

,,inf:)( 0)(,0
0

τ
τ Α∈

=                  (4.13) 

and  denotes the set of admissible strategies when the transformed risky fraction 
process starts from y

)( 0yΑ

0. Define the minimum cost switching operator M, associated with 
any such function J(.) and the transaction cost function c(.,.) by taking 
 ( ){ }.~,)~(inf:)( ~ yycyJyMJ

y
+=        (4.14) 

MJ(y) represents the value of the strategy that consists in choosing the best immediate 
intervention. Recall equation (2.9) satisfied by the transformed risky fraction process 
and define the second order partial differential operator L by taking  

 )()()(
2
1:)( 2 yJyJyJyLJ βκσ −′+′′= .     (4.15) 

Suppose there exists an optimal strategy for each initial point. Then, if the process starts 
at y0 and follows the optimal strategy, the cost function associated with this optimal 
strategy is J(y0). On the other hand, if the process starts at y0, selects the best immediate 
intervention, and then follows an optimal strategy, then the cost associated with this 
strategy is MJ(y0). Since the first strategy is optimal, its cost function is smaller than the 
cost function associated with the second strategy. Furthermore, these two costs are equal 
when it is optimal to jump. Hence, )()( yMJyJ ≤ , with equality when it is optimal to 
intervene. In the continuation region, that is when the portfolio manager does not 
intervene, we must have )(yg)(yLJ −= , 
with  denoting the tracking error rate. ( 21)exp(:)( −−= πλ yyg )
   By standard methods for impulse control problems (e.g. see Bensoussan (1982), 
Bensoussan and Lions (1984), Korn (1998, 1999)) we are led to the following quasi-
variational inequality: 
 { } 0)()(),()(min =−+ yvyMvygyLv .                (4.16) 
Indeed, if v is a twice continuously differentiable function satisfying this qvi as well as 
the technical growth conditions depicted in the first part of this section, then  
 ( ){ }( )n

n yyJyv ,,)( τ≤                    (4.17) 
for all  and all admissible strategies ℜ∈y ( ){ }n

n y,τ . If, moreover, the strategy 
corresponding to v is admissible, then it is an optimal strategy and v (.) is identical to the 
value function J(.). The proof of this ‘verification theorem’ is lengthy, technical, and 
reasonably standard (e.g. see Korn (1998) or Bielecki and Pliska (2000)), so it will be 
omitted. The construction of the strategy corresponding to a solution v goes as follows. 
With 0=0τ  and Y  one has 0)0( y=−
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 ( ) ( ){ )()(:inf: 1 }−=−≥= − tyMvtyvt nn ττ      (4.18) 
and  
 ( ){ }yycyvy ny

n ~),()~(minarg ~ −+=
Α∈

τ .      (4.19) 

Note that v defines a continuation region 
 ,                    (4.20) { })()(:: yvyMvyC >ℜ∈=
as no transactions occur as long as Cty ∈)( . But if Cty ∂∈)(  (e.g., if y(t) hits the 
boundary of C),  then a transaction immediately occurs, shifting the risky fraction 
process according to (4.19). 
    The infimum operator M, for our problem is  
 { }yykKyvyMv

y

~)~(inf)( ~ −++=
ℜ∈

      (4.21) 

thus qvi (4.16) becomes 
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We now explain how this qvi can be solved. The ordinary differential equation 
corresponding to (4.22) has a general solution of the form 
 )(~)( 21

21 yheCeCyv yxyx ++= −−       (4.23) 
~where h  is the particular solution of the differential equation given by  
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Here C1 and C2 are constants depending on boundary conditions and x1, x2 are 
formulated as follows 

 2

22

2,1

2
σ

βσκκ +±
=x .       (4.25) 

   For most values of the data parameters, it can be shown that there exist four 
parameters satisfying L<l<u<U such that the solution of the qvi (4.22) will be of the 
form 

                (4.26) 
{ }

{ }
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∈

−∞∈+++−
=
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),()(

],()(
)(

UyKkuyvky
ULyyv

LyKklyvky
yv

Here (L, U) is the continuation region. For ],( Ly −∞∈  one should immediately 
rebalance to y=l, and for ),[ ∞∈ Uy  one should immediately rebalance to y=u. It 
remains to determine the values of the six parameters C1, C2, L, l, u and U. On that 
purpose, one should solve a system of six nonlinear equations. To derive these 
equations we note that the function v(.) must be continuous at y=l, so   
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 KkllvkLLv +++−= )()( .       (4.27) 
Similarly, we get a second equation for continuity at y=u, 
 KkuuvkUUv +−+= )()( .       (4.28) 
The derivatives at y=L and U must be continuous, so  
          (4.29) kLv −=′ )(
and 
 .         (4.30) kUv =′ )(

~Since ly =  minimizes ( )LykKyv −++ ~)~(  the first order necessary condition gives 
          (4.31) klv −=′ )(
and similarly the final equation is  
 .         (4.32) kuv =′ )(
The system of six equations can readily be solved by MATLAB for the six parameters; 
a detailed numerical illustration presented at the sixth section. 
 

On the probability density function of the controlled risky fraction process 

The distribution of wealth of an investor that follows a constant allocation strategy in 
frictionless Black-Scholes markets can be derived in a straightforward way. Indeed, 
wealth in this case is a geometric Brownian motion process and its unique transition 
probability density function satisfies the associated Kolmogorov backward differential 
equation. When frictions are accounted for, the risky fraction process is not constant; it 
evolves according to (2.6) in an interval and as soon as it reaches the boundaries, it is 
returned instantaneously to some optimally derived levels within the control band. To 
derive the distribution of wealth for an investor that performs a control band policy one 
needs to derive the distribution of the risky fraction process. Then, the probability 
density function of wealth is derived according to 
 ∫= dppfpwfwf )()()(          (5.1) 

where f(w) is the probability density of wealth under the control band policy, )( pwf is 
the probability density of wealth for a given portfolio allocation p, and  f(p) stands for 
the probability density of the controlled risky fraction process. In this section, we derive 
the probability density function for the transformed risky fraction process (2.9); the 
corresponding density for the original process can then be derived by applying (2.8). A 
related result is given by Plehn-Dujowich (2005, theorem 6); this work though is based 
on a discrete-time approximation of the process within the band. Here we use results 
from Karlin & Taylor (1981, section 15.8) to derive the density of the transformed risky 
fraction process within a simple control band with a single rebalancing point and then 
proceed to the derivation of the density that corresponds to a control band with two 
rebalancing points.  
   Within a control band with a single rebalancing point π, we assume that process (2.9) 
starts from π and returns to it whenever the boundaries of the band (L, U) are reached. 
After such a return, the subsequent motion of the process behaves just like (2.9); this 
process is repeated at each attainment of level L or U. Thus, the controlled process 
consists of recurrent cycles of random time duration D1, D2, D3,…, where the Di are 
independently and identically distributed, with the same distribution as 
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{ ULUL TTT ,min, = }, the first exit time from the interval (L, U), starting from π. It 
follows that  
[ ] ( ) ( ) ( ){ }∫∫ −−+−==

π

π
ξξξπξξξππ
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i dmLSSvdmSUSvyDE )()()()(1)()()()(2)0( 11        

  (5.2) 
where  are given by (3.13), (3.10) and (3.12) respectively. Let be 
the density function of y(t). That is, 
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One may now split a typical cycle of length Di into two parts: in one part I(t) is on, in 
the other I(t) is off. Now  

         (5.5) 

and from the renewal theorem (Karlin and Taylor, Section 7.C, chapter 5) it follows that 
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The denominator of (5.6) is given by (5.2) whereas the nominator is derived by simply 
putting   in place of L, U in (5.2). Since (5.6) holds for every   in (L,U) we 
deduce that  

21 , yy
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( ){ }dyymLSySvdyymySUSv
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  (5.7) 

Using (5.7), the limiting and stationary distribution for the controlled process within a 
band with two rebalancing points l,u is  
 ( ) ( ) ),,()()(2),,()()(),,,( 1111 UlLyalvuvUuLyalvuvLulLya −−++= .       (5.8) 
Instead of working with the transformed risky fraction process one could try to derive 
the appropriate expressions for the controlled process in the original scale; in this case, 
computations of the denominators in (5.7) and (5.8) would have been significantly more 
difficult.  
 

Numerical illustration 

In this section, we provide numerical solutions for the control problems considered in 
the third and fourth parts of the article. In particular, we solve the simplified version of 
the “minimization of long run cost per unit time” problem treated in the third section. 
Here the portfolio manager just seeks to find the unknown outer boundaries of her/his 
control band; as soon as portfolio holdings reach the boundaries she/he rebalances to the 
pre-specified target levels. In this case one needs to solve a system of two nonlinear 
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equations derived by forming (C+A)/B from (3.24)-(3.26), taking the derivatives with 
respect to the unknown boundaries L and U, plugging in the constants that characterize 
market characteristics and investor’s preferences and equating derivatives to zero. These 
two nonlinear equations appear to be quite complicated for standard nonlinear equation 
solvers that numerically calculate the system’s gradient: in this case we had to write a 
computer program that implements the Newton-Raphson algorithm plus two functions 
that describe the nonlinear system and its gradient. For the “minimization of discounted 
lifetime costs” problem, we provide numerical solutions for the system of nonlinear 
equations (4.27)-(4.32) and derive the six unknowns: the two outer boundaries L and U 
the inner rebalancing points l and u and the two constants C1 and C2 in (4.23) that 
characterize the evolution of the value function within the control band. The equations 
involved in this case are much simpler compared to the previous ones and the system 
can be solved via MATLAB’s fsolve routine that is a part of the optimization toolbox 
and numerically calculates the system’s gradient. The six equations are also 
significantly simpler when compared with the ones presented in Suzuki and Pliska 
(2004) that treat a similar problem as the one presented in our fourth section. Here, 
Nagai’s transformation on the dynamics of the risky fraction process derogates the 
hypergeometric functions involved in Suzuki and Pliska ‘s system of equations.  
   To compare with results derived for the simplified problem of the third section we 
also provide solutions for a simplified (non-optimal) version of the problem treated in 
the fourth section; here the portfolio manager just seeks for the two outer boundaries of 
her/his control band and rebalances to her/his pre-specified target levels while 
minimizing discounted lifetime tracking error plus transaction costs. Instead of (4.27)-
(4.32), in this case one should solve the following system comprised by the value 
matching conditions at the target level and the smooth pasting conditions at the 
boundaries of the control band: 

KkvkLLv +++−= ππ )()( .         (6.1) 
 KkvkUUv +−+= ππ )()( .         (6.2) 
            (6.3) kLv −=′ )(
 .           (6.4) kUv =′ )(
   The reader should note that the three nonlinear systems are quite complex and thus 
sensitive to the initial values provided as starting points for their solutions. For the 
sensitivity analysis conducted at the second part of this section, we first found 
appropriate initial values for a baseline experiment and then, for each perturbation of the 
parameters, we were plugging as initial values the outcomes of the previous run. 
MATLAB codes are available upon request from the authors.  
  

A specific example 

We first consider the following data for market characteristics and investor’s 
preferences 
 κ=0.1, σ=0.2, λ=1, β=0.05, π=0.5, k=0.05, K=0.005.  
For the simplified version of the “minimization of expected long run cost per unit time ” 
problem we find 
 L1= 0.435, U1=0.5433 
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for the outer boundaries of the control band, after transforming back to the original 
scale. For the “minimization of discounted lifetime costs” problem of the fourth section 
we find 

L=0.4338,  l=0.4746 u=0.5023, U=0.5456, C1=-43.7633, C2= -0.0388 
whereas for the simplified non-optimal version of the latter problem we have 

L2=0.4279, U2=0.5463, c1=-43.7504, c2=-0.0371. 
The errors are of the order 10-8.  

 
Figure 2. The value function for the minimization of discounted lifetime costs problem 

 
   Figure 2 depicts the value function corresponding to this parameter selection for the 
impulse control problem of the fourth section. The value function is depicted in the 
(transformed) continuation region (TL, TU). Outside this region, the value function is 
linear with slope –k in the intervention region ( ]TL,∞−  and a linear function with slope 
k in the intervention region [ )∞,TU . From (2.6) one observes that Merton’s optimal 
proportion for the problem of maximizing the portfolio’s exponential growth rate is an 
equilibrium point for the risky fraction process. In this example, Merton’s proportion is 
much larger than the target proportion; thus, the risky fraction process is expected to 
force portfolio holdings to the right of the no-transaction region. For this reason the 
minimum point of the value function is located to the left of the target4 proportion. 
When the investor intervenes on the weak side of the target (which corresponds to 
selling stock in this particular example) it is optimal to bring the portfolio levels much 
closer to the target than when she/he intervenes in the strong side. This difference 
between the target and Merton’s proportion also causes asymmetry between the left and 
right part of the no-transaction region: the distance between the target asset proportion 
and the left boundary is almost double the one between the target and the right 
boundary. Starting from the target asset allocation, investor’s holdings will reach the 
right boundary of the control band corresponding to minimizing discounted lifetime 
costs before the left boundary with probability 0.6581; for the simplified non-optimal 
version of this problem the corresponding probability is 0.6775. For the simplified 
problem of minimizing average long run cost per unit time the corresponding 
probability is 0.6636.     

                                                 
4 Zero in the tranformed scale corresponds to 0.5 in the original scale. This observation goes along the 
lines of Cadenillas and Zapatero [15] who treated a similar problem for the control of an exchange rate. 
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Sensitivity analysis 

To conduct sensitivity analysis, we use as baseline values for the risky asset dynamics 
and investor’s preferences the ones used in the example just before, and perturb each 
parameter separately to uncover how the optimal strategy is affected. Results 
corresponding to the full problem of the fourth section are depicted at figures 3 to 9 and 
tables 1,3,5,7,9,11. Results provided from the simplified versions of the problems 
considered in the third and fourth section, are depicted at tables 2,4,6,8,10,12. It should 
be underlined that the simplified problems produce very similar results to the “lifetime-
problem” of the fourth section as far as the important “weak side” of the no transaction 
interval is concerned. Indeed, this is evident since the rebalancing points after reaching 
the upper boundary (resulting from the impulse control method of the fourth section) are 
very close to the target asset allocation levels and the no transaction intervals are very 
similar for the two methods.  
   Sensitivity of the control bands with respect to the cost parameters k and K, for the 
problem of the fourth section, is examined in figures 3 and 4 and tables 1 and 3. 
Solutions of 0<L<l<u<U<1 are plotted as lines with each cost parameter varying in the 
horizontal axis. The intuition is clear: the investor rebalances more often with lower 
transaction costs. When fixed costs increase, it is optimal to wait longer before 
intervening although the sizes of interventions will be larger. When proportional costs 
increase, it is also optimal to wait longer but unlike when fixed costs increase, the 
interventions tend to be smaller. Tables 2 and 4 depict control bands for the simplified 
version of the problem presented in the third section (columns 2 and 3), for varying 
transaction cost levels (column 1), along with control bands for the simplified 
“minimization of discounted lifetime costs” problem, and constants C1 and C2 of 
equations (6.1)-(6.4) that characterize the value function within the control band. For all 
examined levels of K and k, the bands that correspond to the simplified problem of the 
third section are narrower than the ones derived via the system of (6.1)-(6.4); as K and k 
increase, the difference between bands seems to increase too.  
   In figure 5 and table 5 we show the effects of changes in volatility to the no-
transaction bands derived from (4.27)-(4.32). As volatility increases, the no-transaction 
regions become wider and the magnitude of interventions becomes larger. Moreover, 
from table 6 we observe that no-transaction regions corresponding to the simplified 
problem of the third section tend to be more sensitive than the ones of the simplified 
“lifetime-problem” to changes in volatility. They are narrower for small values of 
volatility and wider for large values. In figure 6 and table 7, we analyze the effects of 
changes in the expected return of the risky asset on the optimal strategy of the investor 
that follows the impulse control method of the fourth section. As it increases, optimal 
interventions resulting from hitting the “weak-side” of the target tend to bring asset 
holdings at a level that is located lower than the target. The higher the pressure on the 
“weak side” of the target the sooner the investor should intervene; the opposite holds for 
the strong side of the target. For low levels of κ the controls bands of the simplified 
problem of the third section are wider than the ones of the simplified “lifetime 
problem”; this relationship is reversed as κ increases (table 8). 
   In accordance with intuition, it can be seen in figure 7 and table 9, that the bigger the 
values of the target asset mix the bigger the values of the four control parameters 
derived from 4.27-4.32. The target asset mix is not centered in the control bands; since 
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the benchmark value we used for the expected return for the risky asset is quite high, the 
distances from p to u and from p to U are shorter than the ones from p to l and from p to 
L respectively.  As p increases, the no transaction regions corresponding to the 
simplified problem of the third section get wider than the ones derived from the 
“lifetime-problem” (table 10). From figure 8 and table 11 we observe that as λ increases 
the investor becomes more concerned about tracking error relative to the target mix; 
thus, he width of the no-transaction region becomes narrower and small deviations form 
the target asset mix may induce rebalancing. Table 12 depicts that, as λ increases the no 
transaction region corresponding to the simplified problem of the third section gets 
narrower than the ones derived from the simplified “lifetime-problem”. It should be 
remarked that λ is a parameter related to investor’s wealth: the higher the amount of 
wealth invested the more sensitive the investor is to tracking error and the less important 
are the transaction costs for him. Finally, from figure 9 one observes that changes in the 
discount parameter β do not have a substantial effect on the optimal intervention 
strategy. 
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Figure 3. Sensitivity of optimal strategies to changes in K. 

  



Control Bands for Tracking Constant Portfolio Allocations 22

 

Table 1. Solutions to (4.27)-(4.32) for different levels of K. 

K L l u U C1 C2 

0.0001 0.4567 0.4683 0.5163 0.5285 -43.8986 -0.0459 

0.0005 0.4534 0.4701 0.5138 0.5314 -43.8738 -0.0447 

0.001 0.4513 0.4710 0.5123 0.5331 -43.8555 -0.0436 

0.002 0.4476 0.4723 0.5099 0.5359 -43.8269 -0.0421 

0.003 0.4428 0.4735 0.5070 0.5395 -43.8032 -0.0408 

0.004 0.4392 0.4741 0.5051 0.5420 -43.7824 -0.0398 

0.005 0.4363 0.4744 0.5035 0.5440 -43.7633 -0.0388 

Note.  κ=0.1, σ=0.2, λ=1, β=0.05, π=0.5, k=0.05. 

 
Table 2. Control bands derived from the simplified problems of section 3 (L1, U1) and section 4 (L2, U2) 

for different levels of K. C1 and C2 correspond to the constants in equations (6.1)-(6.4). 

K L1 U1 C1 C2 L2 U2 

0.0001 0.4438 0.5343 -43.8499  -0.0421   0.4407  0.5355 

0.0005 0.4428 0.5356 -43.8399  -0.0416   0.4393  0.5370 

0.001 0.4417 0.5369 -43.8281  -0.0410   0.4377  0.5386 

0.002 0.4397 0.5390 -43.8064  -0.0398   0.4348  0.5411 

0.003 0.4380 0.5407 -43.7865  -0.0388   0.4323  0.5431 

0.004 0.4364 0.5421 -43.7679  -0.0379   0.4299  0.5448 

0.005 0.4350 0.5433 -43.7504  -0.0371   0.4279  0.5463 

Note.  κ=0.1, σ=0.2, λ=1, β=0.05, π=0.5, k=0.05. 
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Figure 4. Sensitivity of optimal strategies to changes in k. 

 

 

 
Table 3. Solutions to (4.27)-(4.32) for different levels of k. 

k L l u U C1 C2 

0.00005 0.4472 0.4936 0.4936 0.5417 -43.9409 -0.0485 
0.0001 0.4472 0.4935 0.4936 0.5417 -43.9407 -0.0485 
0.0005 0.4471 0.4933 0.4937 0.5417 -43.9391 -0.0484 
0.001 0.4469 0.4930 0.4939 0.5418 -43.9369 -0.0483 
0.005 0.4455 0.4909 0.4950 0.5422 -43.9205 -0.0473 
0.01 0.4440 0.4885 0.4963 0.5427 -43.9008 -0.0461 
0.02 0.4411 0.4843 0.4983 0.5436 -43.8636 -0.0443 
0.03 0.4385 0.4808 0.4998 0.5444 -43.8287 -0.4210 
0.04 0.4360 0.4776 0.5011 0.5451 -43.7954 -0.0404 
0.05 0.4338 0.4746 0.5023 0.5456 -43.7633 -0.0388 

Note.  κ=0.1, σ=0.2, λ=1, β=0.05, π=0.5, K=0.005. 
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Table 4. Control bands derived from the simplified problems of section 3 (L1, U1) and section 4 (L2, U2) 

for different levels of k. C1 and C2 correspond to the constants in equations (6.1)-(6.4). 

k L1 U1 C1 C2 L2 U2 

0.00005 0.4475 0.5414 -43.9368  -0.0482   0.4467  0.5421 
0.0001 0.4475 0.5414 -43.9366  -0.0482   0.4467  0.5421 
0.0005 0.4474 0.5414 -43.9350 -0.0481 0.4466 0.5421 
0.001 0.4473 0.5415 -43.9329 -0.0480 0.4464 0.5421 
0.005 0.4461 0.5417 -43.9166  -0.0469   0.4448  0.5426 
0.01 0.4447 0.5419 -43.8967  -0.0457   0.4428  0.5430 
0.02 0.4420 0.5423 -43.8581  -0.0433   0.4389  0.5440 
0.03 0.4395 0.5426 -43.8209  -0.0411   0.4351  0.5448 
0.04 0.4372 0.5430 -43.7851  -0.0390   0.4315  0.5456 
0.05 0.4350 0.5433 -43.7504  -0.0371   0.4279  0.5463 

Note.  κ=0.1, σ=0.2, λ=1, β=0.05, π=0.5, K=0.005. 
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Figure 5. Sensitivity of optimal strategies to changes in σ. 
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Table 5. Solutions to (4.27)-(4.32) for different levels of σ2.  

σ2 L l u U C1 C2 

0.01 0.4470 0.4746 0.4919 0.5290 -50.2393 -0.0002 

0.04 0.4419 0.4755 0.4970 0.5364 -47.7612 -0.0045 

0.07 0.4247 0.4723 0.5067 0.5542 -39.3635 -0.1472 

0.09 0.4198 0.4708 0.5088 0.5584 -37.1212 -0.2434 

Note.  κ=0.1, λ=1, β=0.05, π=0.5, k=0.05, K=0.005. 

 
Table 6. Control bands derived from the simplified problems of section 3 (L1, U1) and section 4 (L2, U2) 

for different levels of σ2. C1 and C2 correspond to the constants in equations (6.1)-(6.4). 

σ2 L1 U1 C1 C2 L2 U2 

0.01 0.4734 0.5188  50.2288 -0.0001 0.4384 0.5299 

0.04 0.4350 0.5433 -43.7504 -0.0371 0.4279 0.5463 

0.07 0.4213 0.5530 -39.3404 -0.1432 0.4184 0.5554 

0.09 0.4074 0.5622 -37.0920 -0.2377 0.4130 0.5599 

Note.  κ=0.1, λ=1, β=0.05, π=0.5, k=0.05, K=0.005. 

 

0,4

0,42

0,44

0,46

0,48

0,5

0,52

0,54

0,56

0,05 0,07 0,09 0,11 0,13 0,15 0,17

κ

Fr
ac

tio
n 

in
 th

e 
ris

ky
 a

ss
et

L

l

Target

u

U

 
Figure 6. Sensitivity of optimal strategies to changes in κ. 
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Table 7. Solutions to (4.27)-(4.32) for different levels of κ. 

κ L l u U C1 C2 

0.05 0.4377 0.4796 0.5065 0.5479 -104.8479 -0.2518 

0.06 0.4371 0.4788 0.5057 0.5475 -79.4152 -0.1779 

0.07 0.4362 0.4777 0.5048 0.5470 -63.5884 -0.1195 

0.08 0.4354 0.4767 0.5040 0.5465 -54.2425 -0.0812 

0.09 0.4346 0.4757 0.5031 0.5461 -48.0985 -0.0558 

0.10 0.4338 0.4746 0.5023 0.5456 -43.7633 -0.0388 

0.15 0.4294 0.4694 0.4981 0.5436 -33.1793 -0.0073 

Note. σ=0.2, λ=1, β=0.05, π=0.5, k=0.05, K=0.005. 

 

 
Table 8. Control bands derived from the simplified problems of section 3 (L1, U1) and section 4 (L2, U2) 

for different levels of κ. C1 and C2 correspond to the constants in equations (6.1)-(6.4). 

κ L1 U1 C1 C2 L2 U2 

0.05 0.4268 0.5524 -104.834  -0.2477   0.4337  0.5489 

0.06 0.4293 0.5500 -79.4014  -0.1745   0.4327  0.5484 

0.07 0.4311 0.5479 -63.5743  -0.1166   0.4316  0.5479 

0.08 0.4327 0.5461 -54.2292  -0.0787   0.4304  0.5473 

0.09 0.4339 0.5446 -48.0853  -0.0538   0.4292  0.5468 

0.10 0.4350 0.5433 -43.7504 -0.0371 0.4279 0.5463 

0.15 0.4385 0.5383 -33.1691 -0.0065 0.4211 0.5442 

Note. σ=0.2, λ=1, β=0.05, π=0.5, k=0.05, K=0.005. 
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Figure 7. Sensitivity of optimal strategies to changes in p. 

 
 
 

Table 9. Solutions to (4.27)-(4.32) for different levels of p. 

p L l u U C1 C2 

0.2689 0.2198 0.2494 0.2707 0.3064 -69.1888 -0.0002 
0.2890 0.2375 0.2686 0.2909 0.3281 -66.0912 -0.0003 
0.3100 0.2561 0.2887 0.3120 0.3505 -63.1321 -0.0005 
0.3318 0.2756 0.3097 0.3338 0.3736 -60.3056 -0.0009 
0.3543 0.2960 0.3315 0.3564 0.3973 -57.6056 -0.0015 
0.3775 0.3172 0.3540 0.3797 0.4214 -55.0266 -0.0025 
0.4013 0.3393 0.3772 0.4035 0.4460 -52.5631 -0.0044 
0.4255 0.3620 0.4010 0.4278 0.4708 -50.2097 -0.0076 
0.45016 0.3854 0.4252 0.4524 0.4958 -47.9618 -0.0130 
0.4750 0.4094 0.4498 0.4773 0.5208 -45.8145 -0.0225 
0.5000 0.4338 0.4746 0.5023 0.5456 -43.7633 -0.0388 
0.5249 0.4585 0.4996 0.5272 0.5703 -41.8042 -0.0670 
0.5498 0.4834 0.5246 0.5521 0.5946 -39.9324 -0.1157 
0.5744 0.5084 0.5495 0.5767 0.6185 -39.0283 -0.1521 

Note.  κ=0.1, σ=0.2, λ=1, β=0.05, k=0.05, K=0.005.  
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Table 10. Control bands derived from the simplified problems of section 3 (L1, U1) and section 4 (L2, 

U2) for different levels of p. C1 and C2 correspond to the constants in equations (6.1)-(6.4). 

p L1 U1 C1 C2 L2 U2 

0.2689 0.2393 0.2936 -69.1682 -0.0002 0.2158 0.3070 
0.2890 0.2571 0.3153 -66.07 -0.0003 0.2332 0.3286 
0.3100 0.2757 0.3379 -63.1134 -0.0005 0.2515 0.3511 
0.3318 0.2949 0.3614 -60.2878 -0.0008 0.2708 0.3742 
0.3543 0.3147 0.3856 -57.5886 -0.0014 0.2910 0.3978 
0.3775 0.3349 0.4106 -55.0103 -0.0024 0.3121 0.4221 
0.4013 0.3555 0.4361 -52.5475 -0.0042 0.3339 0.4466 
0.4255 0.3761 0.4623 -50.1949 -0.0072 0.3565 0.4715 
0.45016 0.3965 0.4889 -47.9476 -0.0125 0.3798 0.4964 
0.4750 0.4163 0.5159 -45.801 -0.0215 0.4036 0.5214 
0.5000 0.4350 0.5426 -43.7504 -0.0371 0.4279 0.5463 
0.5249 0.4519 0.5710 -41.7917 -0.064 0.4525 0.5709 
0.5498 0.4669 0.5987 -39.9206 -0.1105 0.4774 0.5952 
0.5695 0.4700 0.6315 -38.4843 -0.171 0.4974 0.6143 

Note.  κ=0.1, σ=0.2, λ=1, β=0.05, k=0.05, K=0.005.  
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 Figure 8. Sensitivity of optimal strategies to changes in λ. 



Control Bands for Tracking Constant Portfolio Allocations 29

 
Table 11. Solutions to (4.27)-(4.32) for different levels of λ. 

λ L l u U C1 C2 

0.5 0.4153 0.4634 0.4985 0.5534 -21.7713 -0.0148 
1 0.4338 0.4747 0.5023 0.5457 -43.7633 -0.0388 
1.5 0.4423 0.4795 0.5025 0.5416 -65.7774 -0.0651 
2 0.4476 0.4823 0.5025 0.5389 -87.8025 -0.0923 

Note.  κ=0.1, σ=0.2, β=0.05, π=0.5, k=0.05, K=0.005. 

 
 

Table 12. Control bands derived from the simplified problems of section 3 (L1, U1) and section 4 (L2, 
U2) for different levels of λ. C1 and C2 correspond to the constants in equations (6.1)-(6.4). 

λ L1 U1 C1 C2 L2 U2 

0.5 0.4079 0.5587 -21.7621   -0.0134   0.4051  0.5541 
1 0.4315 0.5459 -43.7504   -0.0371   0.4279  0.5463 
1.5 0.4432 0.5419 -65.7622   -0.0631   0.4380  0.5422 
2 0.4468 0.5391 -87.7859   -0.0903   0.4441  0.5394 

Note.  κ=0.1, σ=0.2, β=0.05, π=0.5, k=0.05, K=0.005. 
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Figure 9. Sensitivity of optimal strategies to changes in β. 
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Concluding remarks 

In this paper, we derive optimum portfolio strategies when transaction costs are taken 
into account. Instead of direct optimization with respect to investor’s objectives, we 
propose that the investor may track a constant allocation policy as derived under the 
frictionless market hypothesis by applying a loss function for the tracking error that 
reflects her/his preferences. To illustrate our methods, we use quadratic loss and derive 
control bands for investors that either aim to minimize long run tracking error plus 
transaction cost per unit time or aim to minimize discounted tracking error plus 
transaction costs over an infinite horizon. The adopted methods are different for the two 
objectives but Nagai’s transformation appears to be a valuable tool for both cases. In the 
first case, it reduces drastically the expressions for the expected duration of a transaction 
cycle and the expected tracking error during a cycle. In the second case, it simplifies 
significantly the system of nonlinear equations that one needs to solve for the derivation 
of the optimal control parameters.  
   To our knowledge, this is the first research effort that compares “classic” control band 
policies derived by minimizing expected discounted transaction costs plus tracking error 
over lifetime, to the ones derived by minimizing expected long tracking error plus 
transaction cost per unit time. The latter modeling strategy can be straightforwardly 
adapted to problems where only the former has been applied. To name a few, it can be 
applied to the problem of tracking a target level for an exchange rate as in Cadenillas 
and Zapatero (1999), to the cash management problem, or to the problem of optimal 
price changing for a firm that faces menu costs, as in Plehn-Dujowich  
(2005). Moreover, control band policies derived by discounted lifetime minimization 
require market coefficients and transaction costs coefficients to be constant over 
lifetime for the bands to be valid. With the objective of the third section, one may derive 
different valid bands for different transaction cost parameters; these bands are valid as 
long as market coefficients are stable for a long period.  
   After deriving control bands for tracking constant portfolio allocations in the presence 
of constant and proportional transaction costs, a research question that emerges next, is 
related to constructing control bands for tracking moving targets. For example, a 
portfolio manager may wish to gradually reduce portfolio holdings in risky assets as the 
investor’s life evolves. Standard methods that minimize expected discounted transaction 
costs plus tracking error over lifetime cannot be straightforwardly adapted to solve this 
problem. On the contrary, we believe that methods similar to the ones presented in the 
third section can be relatively easily adapted to cover this case. We plan to develop this 
idea in a forthcoming publication. 
   Our sensitivity analysis of the sixth section confirms and extends economic intuition. 
However there remains (at least) an issue where our study did not develop a satisfactory 
economic understanding: it is the explanation of the differences between the control 
bands derived by the two alternative minimization criteria. We hope that this issue will 
be resolved in future research. If not then our sensitivity study illustrates a good reason 
to develop such models: as Suzuki and Pliska (2004) point out, intuition has limits, in 
which case model outputs often provide the best guidance for making economic and 
financial decisions.    
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