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1 Introduction

Antagonistic coevolution of species and pests or parasites can be described

by the so-called "Red Queen" hypothesis.1 According to this hypothesis,

parasites evolve ceaselessly in response to perpetual evolution of species�(or

hosts�) resistance. The coevolution of the parasites�ability to attack (viru-

lence) and the hosts�resistance is expected to indicate persistent �uctuations

of resistance and virulence. In this context the Red Queen hypothesis gener-

ates a continuous need for variation, and a common clone will be wiped out

by parasites that have adapted to parasitize it.

In coevolutionary models the interaction of population (or biomass) dy-

namics and mutation (or trait dynamics) leads to "Red Queen cycles". A

limit cycle or other non-point attractors in trait space dynamics are called

"Red Queen" races because, for example, in predator-prey systems each is

evolving its trait against the other and the traits are moving dynamically,

unlike a �xed point. Red Queen cycles are observed in a slow time scale, since

trait dynamics are assumed to evolve slowly, in contrast to the population,

host - parasite, dynamics which are assumed to evolve fast.2 Thus the analy-
�University of Wisconsin, Department of Economics
yUniversity of Crete, Department of Economics
1See, for example, van Valen (1973) and Kawecki (1998).
2See Dieckmann and Law (1996) and Marrow, Dieckmann and Law (1996).
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sis of antagonistic coevolution of species can be formally analyzed in a fast

- slow time framework, by using results from singular perturbation analysis,

since there is a time scale separation of population dynamics, which evolve in

fast time scale, and evolution which takes place in slow time scale. A central

question in this context is whether mutation, that is trait dynamics, evolve

slow but not that slow to make the analysis of mutation dynamics redun-

dant for policy purposes. If mutation is redundant because it operates very

slowly, then it is the analysis of population dynamics which is important.

This is of course an empirical issue, however there are indications related

to resistance development for genetically modi�ed crops in agriculture, or to

resistance development to antibiotics that suggest that the slow movement of

mutation might be relevant and important in certain cases for analyzing the

whole system and for developing sensible policies. For example in ecosystem

management models, management decisions leading to a less diverse group

of species, or hosts, could increase the e¤ectiveness of pests in attacking the

less diverse group of species and disrupt the "Red Queen" races.3

The purpose of our paper is to develop a uni�ed ecological/economic

conceptual framework for ecosystem management, which takes into account

population, and trait dynamics characterizing antagonistic coevolution. Pop-

ulation dynamics evolve in fast time, while trait dynamics evolve in slow

time. We seek to explore the outcome of management rules seeking to pro-

vide a conceptual framework to answer questions such as: How is human

management a¤ecting Red Queen races? Can human management remove

a non-point attractor in trait space dynamics? What will be the e¤ect on

the value of an ecosystem, the value de�ned in terms of the Bellman state

valuation function, if management decisions ignore the underlying mutation

and trait dynamics? How can ecosystem sustainability criteria be de�ned in

the context of a coevolutionary model?

The time scale separation in the analysis of coevolutionary models in-

troduced in this paper might be useful in providing a conceptual framework

3There are empirical studies documenting the presence of genetic variation for resistance
against plant pathogens or against animal parasites. See, for example, H. J. Carius et al.
(2001), or Lively and Dybdahl (2000) for an empirical veri�cation of the Red Queen
hypothesis for fresh water snails in New Zealand.
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capable of detecting discrepancies, between the perceived evolution of ecosys-

tems under management that ignores certain slow state variables and treats

them as �xed, and the actual evolution of the ecosystem when the slow state

variables actually evolve and move the system in a certain direction, which

might not be a desirable one. These discrepancies might be a cause for sur-

prises in ecosystem management. For example pro�t-maximizing decisions

which ignore evolution might steer the system to a certain steady state on

a fast time scale, but then the underlying trait dynamics might move the

system in slow time to another attractor. How can we provide a measure

of the relative change in the value of the ecosystem,4 between the perceived

steady state under pro�t maximizing in fast time, and the actual steady

state to which the system is expected to converge eventually, under popu-

lation dynamics and evolution? Since steady-state species diversity under

pro�t maximization in fast time may very well di¤er from the correspond-

ing diversity when full optimization is carried out, the measure of relative

change in ecosystem�s valuation could provide a measure for valuing changes

in biodiversity. This result in a sense complements and extends the result

of Brock and Xepapadeas (2004) about biodiversity valuation through the

Bellman state valuation function, to the multi-species case with antagonistic

coevolution.

An associated issue that we also seek to tackle in this paper is whether

we can use this analytical framework to develop sustainability criteria for an

ecosystem based on the "non declining value" concept of sustainability.5 In

this context we de�ne sustainability criteria under full optimization where

population dynamics and evolution are taken into account, and for the case

where evolution is ignored. This type of analytical approach might help

explore the question of whether ignorance of evolutionary forces in designing

management rules might lead to nonsustainable paths.

4It should be noted that the valuation of the ecosystem is based on the present value
of the �ow of bene�ts that humans derive from the system. This �ow of bene�ts could be
de�ned in a broad way to involve bene�ts from harvesting species, but also bene�ts from
existence values associated with species biomasses. (see for example Brock and Xepapadeas
2002).

5See Arrow, Dasgupta and Maler (2003), Pemberton and Ulph (2001).
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The rest of the paper is organized as follows: Section 2 develops the coevo-

lutionary model for one harvested species-one pathogen, sets up the fast-slow

time framework, and compares harvesting rules that ignore the slowly evolv-

ing mutation, with the optimal harvesting rule that takes into account fast

and slow state variables. We derive su¢ cient conditions under which human

management might disrupt Red Queen races. Section 3 generalizes to a many

species-many pathogens framework and provides a conceptual framework un-

der which the Bellman state valuation function of the coevolutionary model

can be used to value changes in the ecosystems diversity. Section 4 develops

ecosystem sustainability criteria, and section 5 concludes.

2 Harvesting and coevolution: One species -

one pathogen

We �rst consider human management in the form of harvesting in a system

with one harvested ("useful") species or host species whose biomass is de-

noted by x and a parasite denoted by y, where the abundance of x and y

depends on the evolution of two characteristics or traits denoted by d and


; 6 where d a¤ects the �tness of x and 
 a¤ects the �tness of y:

Let the growth rates of x and the pathogen y be given, similar to Krakauer

and Jansen (2002), by

gx =
_x

x
= (s� rx� yQ (d; 
))

gy =
_y

y
= (xQ (d; 
)� �)

then @gx
@d

= �y @Q(d;
)
@d

and@gy
@


= x@Q(d;
)
@


: If we measure �tness by growth

rates then @Q(d;
)
@d

< 0 so that an increase in d increases �tness of x: In the

same way @Q(d;
)
@


> 0 for an increase in 
 to increase �tness of y: Then in

6This approach essentially adds a management dimension, in the form of harvesting
one species, to Red Queen dynamic models developed by Krakauer and Jansen (2002).
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equilibrium where _x = _y = 0; we have, for any �xed values of traits d and 
 :

x̂ =
�

Q (d; 
)
; ŷ =

s� rx̂

Q (d; 
)
; s � rx̂

Assume that species x is harvested, with harvest at each point in time

given by h = qEx; where E denotes e¤ort and q is the usual catchability

coe¢ cient. Then the evolution of x and y is given by:

_x = x (s� rx� yQ (d; 
))� qEx (1)

_y = y (xQ (d; 
)� �) (2)

For any �xed e¤ort ~E and �xed trait values the equilibrium (steady state)

for the two populations is de�ned as

~x =
�

Q (d; 
)
; ~y =

s� r~x� q ~E

Q (d; 
)
; s � r~x+ q ~E (3)

For a non negative steady state (~x; ~y) the Jacobian of (1), (2) is de�ned as

Jxy =

 
�r~x �~xQ (d; 
)

~yQ (d; 
) 0

!
(4)

Since trJ < 0 and det J > 0 the steady state (~x; ~y) is asymptotically stable.

The following result can be stated:

Result 1: For any �xed e¤ort level and �xed trait values, the steady
state of the host-parasite populations entailing positive abundances is asymp-

totically stable

Assuming constant mutation rates �d and �
 the evolutionary dynamics

for the traits d and 
; when population dynamics have reached the asymp-
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totically stable steady state, in the no harvesting case, are given by7

_d = ��dx̂ŷ
@Q (d; 
)

@d
(5)

_
 = �
x̂ŷ
@Q (d; 
)

@

(6)

2.1 Evolutionary dynamics in a fast time - slow time

framework

A coevolutionary model under harvesting can be developed by combining the

population dynamics (1), (2) with trait dynamics. In developing this model

of coevolution we explicitly introduce two time scales. Population dynamics

move fast, while mutation, that is trait dynamics move slow.8 Thus the whole

dynamic system that includes the host species, the parasite and mutation can

be written as:

" _x = x (s� rx� yQ (d; 
))� qEx ; x (0) = x0 (7)

" _y = y (xQ (d; 
)� �) ; y (0) = y0 (8)

_d = ��dxy
@Q (d; 
)

@d
; d (0) = d0 (9)

_
 = �
xy
@Q (d; 
)

@

; 
 (0) = 
0 (10)

where the small positive parameter " indicates the fact that the host - parasite

biomasses evolve faster than mutation. At the limit "! 0 and the dynamic

system for the host, the parasite and mutation (7) - (10) is reduced to a set

of two algebraic and two di¤erential equations. The set

M = f(x; y; d; 
) : x (s� rx� yQ (d; 
))� qEx = 0; y (xQ (d; 
)� �) = 0g
(11)

is a two-dimensional manifold and (9), (10) represents a dynamical system on

M: Solving (7), (8) for x and y, the manifold M can be locally parametrized

by x and y for any e¤ort level E; and we can obtain the abundances for x

7See Krakauer and Jansen (2002).
8See Dieckmann and Law (1966) and Marrow, Dieckmann and Law (1966).
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and y which converge fast to their equilibrium values

x̂ = x̂ (d; 
) =

(
0 or
�

Q(d;
)

; ŷ = ŷ (d; 
; E) =

(
0 or

s�rx̂�qE
Q(d;
)

; s > rx̂+ qE
(12)

Then, mutation evolves in slow time according to reduced system or slow

time scale system:

_d = ��dx̂ (d; 
; E) ŷ (d; 
; E)
@Q (d; 
)

@d
(13)

_
 = �
x̂ (d; 
; E) ŷ (d; 
; E)
@Q (d; 
)

@

(14)

The fast time scale system is obtained by rescaling time t to � = t=":

Then the boundary layer system is de�ned as:

x
0
= x (s� rx� yQ (d; 
))� qEx ; x (0) = x0 (15)

y
0
= y (xQ (d; 
)� �) ; y (0) = y0 (16)

d
0
= 0 ; d (0) = d0 ; 


0
= 0 ; 
 (0) = 
0 (17)

where z
0 � dz=d� ; z = x; y; d; 
 and d and 
 are "frozen" at their initial

values. The fast time scale system is de�ned from the boundary layer system

with d and 
 as �xed parameters. Then M; which is the slow manifold (11)

consists of the set equilibria of the fast system. The stable equilibria of the

fast system constitute the "attracting" portion of the slow manifold, while

the unstable equilibria constitute the "non attracting" portion of the slow

manifold.

Assume that population dynamics, the fast time scale system, tend to

an asymptotically stable steady state x̂ (d; 
) ; ŷ (d; 
) : Furthermore, the so-

lution of the boundary layer problem (15) - (17) is de�ned for all � � 0

and tend to the asymptotically stable equilibrium point x̂ (d0; 
0) ; ŷ (d0; 
0) :

Thus the fast transition of population dynamics bring the solution of the

full problem close to the "attracting" portion of the slow manifold. Then

the slow motion of mutation takes place near the slow manifold and can be

approximated by the solution of the reduced problem (13) - (14).
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It is interesting to note that if the population dynamics are characterized

by locally stable and unstable steady states, then mutation, the slow variable,

acts as a bifurcation parameter for the dynamics of the frozen boundary

layer problem (Sastry 1999). Thus if the steady state of the boundary layer

problem is close to the non attracting part of M; then disturbance and noise

may cause the state (x; y; d; 
) to "slip" and transit in�nitely fast to another

attracting portion ofM: Thus in this context population dynamics may show

jumps from the non attractive parts of M to attractive parts, with mutation

acting as a bifurcation parameter.

The approximations of the full system (7) - (10) by the fast and slow

systems can be described as follows. Let x0 (�) ; y0 (�) be the solution of the

boundary layer population problem with x0 (d; 
) ; y0 (d; 
) isolated locally

stable equilibria. Let d0 (t) ; 
0 (t) be the solution of the slow, mutation,

problem, and let d�; 
� be asymptotically stable equilibria of the reduced

system. As it has been shown in the general context of Tykhonov�s theorem

(Wasow 1965; Lobry, Sari and Touhami 1998) for t 2 [0;+1) and for any
solution (x ("�) ; y ("�) ; d (t) ; 
 (t)) ; � = t=" of the full system (7) - (10) there

exist, in some appropriately de�ned domain, � > 0 with " > � such that

kx ("�)� x0 (�)k < � ; ky ("�)� y0 (�)k < � ; � � L ; L > 0 (18)

kd (t)� d0 (t)k < � ; k
 (t)� 
0 (t)k < � (19)

These conditions imply that the solution of the reduced system can be used

to approximate the evolution of mutation, while the solution of the bound-

ary layer problem can be used to approximate the evolution of population

dynamics.

This type of time scale decomposition allows us to study decision making

in di¤erent time scales but also allows us to study, through the interrela-

tionship between the boundary layer and the reduced problem, the impact

on mutation of harvesting decisions taken in fast time. If mutation is so

slow that we do not consider its evolution important, then the solution cor-

responds to the solution of the boundary layer problem; if mutation is not so

slow then harvesting a¤ects the reduced problem and thus the evolution of
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traits. This is of course an empirical issue, however the conceptual framework

developed in this paper provides a fairly general approach to the problem.

Furthermore the solution of the full system can be approximated by syn-

thesizing the solution of the fast and the slow problem as:

x (t; ") = x0 (t) + x (�) +O (") (20)

y (t; ") = y0 (t) + y (�) +O (") (21)

d (t; ") = d0 (t) + d (�) +O (") (22)


 (t; ") = 
0 (t) + 
 (�) +O (") (23)

where (x0 (t) ; y0 (t)) = (�
x (d0 (t) ; 
0 (t)) ; �

y (d0 (t) ; 
0 (t))) ; (d (�) ; 
 (�)) =

(d0; 
0)

Krakauer and Jansen (2002) consider the slow time scale system, for the

no human intervention case corresponding to E = 0: Using s = 0 in the

growth of x and Q (d; 
) =
�

1�

1�(d+��2d�) +



1�(d+��2d�) + "

��1
; they show

that the equilibrium point for the reduced system (d�; 
�) : _d = _
 = 0; is not

attracting but the dynamics spiral away from this point. This behavior is

the oscillatory, Red Queen, dynamics of the host and parasite population.

By formally introducing di¤erent time scales, which allow us to examine

the impact of the slow mutation dynamics on the steady state of the system,

we seek: (i) to model the impact of harvesting on Red Queen dynamics,

and (ii) to de�ne in the context of coevolution the value of the ecosystem

at the steady state, with the value de�ned by the Bellman state valuation

function. This value concept of the ecosystem can prove useful in discussing

biodiversity valuation issues as well as ecosystem sustainability issues.

To accomplish this task we examine alternative harvesting rules for the

host species x:

Harvesting rules can vary from optimal harvesting where harvesting is

chosen to maximize utility from harvesting subject to the full system dy-

namics (7) - (10), to harvesting rules where optimization might not be an

objective or where optimization is taking place but some of the parasite or

the trait dynamics are ignored.
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2.2 Maximum Sustainable Yield Rule

We consider �rst the case where harvesting is taking place according to the

maximum sustainable yield (msy) rule and traits are considered as �xed.

This approach implies that the problem is solved in fast time, where the

values of the traits are �frozen�at the initial values (d0; 
0). If we rescale

time t to � = t="; then

@d

@�
=

@


@�
= 0 ; d (0) = d0 ; 
 (0) = 
0 (24)

@x

@�
= x (s� rx� yQ (d; 
))� qEx (25)

@y

@�
= y (xQ (d; 
)� �) (26)

Assuming further that at the msy rule that parasite evolution is ignored in

the sense that y is treated as a �xed parameter, �y, we have from (25) in

equilibrium that

x =
s� �yQ (d0; 
0)� qE

r

h = qEx = qE

�
s� �yQ (d0; 
0)� qE

r

�
Then the msy e¤ort is determined as

Ê = argmax
E

qE

�
s� �yQ (d0; 
0)� qE

r

�
=
s� �yQ (d0; 
0)

2q
(27)

It is clear from (27) that the msy e¤ort is reduced if we take into account

the abundance of the parasite, even while ignoring dynamic and considering

only �frozen�values. If this abundance is ignored then we have the usual

result that ~E = s=2q:

However if harvesting e¤ort is �xed at the Ê level, then using (12) on the

slow manifold M given by (11), the realized equilibrium abundances will be

x̂msy =

(
0 or
�

Q(d0;
0)

; ŷmsy =

(
0 or

s�2rx̂msy+�yQ(d0;
0)
Q(d0;
0)

(28)
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From Result 1 the equilibrium entailing positive abundances is asymptoti-

cally stable. Then the slow evolution of trait dynamics on the slow manifold

is given by:

_d = ��dx̂msyŷmsy
@Q (d; 
)

@d
=  d (d; 
) (29)

_
 = �
x̂msyŷmsy
@Q (d; 
)

@

=  
 (d; 
) (30)

Result 2: Assume that a steady state (d�; 
�) : _d = _
 = 0; in trait

dynamics (29) and (30) exists. Let J1 be the corresponding Jacobian ma-

trix evaluated at (d�; 
�) ; and let D be a simply connected region containing

(d�; 
�) Then:

� if the expression

div (�) =
@ _d

@d
+
@ _


@


does not change sign in D; then by Bendixon�s criterion, no limit cycle

can exist in D:

� if tr(J1) < 0 and � = [tr(J1)]2� 4 det(J1) � 0 the steady state cannot
be a focus or a centre.

This result provides su¢ cient conditions for the elimination of red

queen cycles. If the slow mutation system converges to the point attrac-

tor (d�; 
�) then host - parasite populations will converge to the long run

equilibrium values x̂�msy =
�

Q(d�;
�) ; ŷ
�
msy =

s�2rx̂�msy
Q(d�;
�) ; Ê

� =
s�ŷ�msyQ(d�;
�)

2q
:

2.3 Optimal Harvesting Rules and Ecosystem Valua-

tion

Assume that the �ow of bene�ts from harvesting the species is given by

S (qE (t)x (t))� cE (t) , where S (�) is an increasing strictly concave bene�t
function and c is �xed cost per unit e¤ort. The objective is to choose a path
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for e¤ort to maximize discounted net bene�ts or,

max
fE(t)g

Z 1

0

e��t [S (qE (t)x (t))� cE (t)] dt (31)

We can distinguish a number of cases regarding the constraints involved.

1. The optimization takes into account only the useful species population

dynamics, and ignores parasite dynamics and mutation. We call this

problem the Private Optimization Management Problem (POMP), be-

cause it can be regarded as the problem of a private agent that treats

parasite dynamics and mutation as externalities which are ignored.

2. The optimization is carried out in fast time and involves only species-

parasite dynamics. The values for the traits are �frozen�at some �xed

initial values.

3. The optimization takes into account all dynamic constraints and in ad-

dition accounts for the fast-slow variable structure. We call this prob-

lem the Social Optimization Management Problem (SOMP), because

all externalities are taken into account.

2.3.1 The POMP

The problem can be written as

max
fE(t)g

Z 1

0

e��t [S (qE (t)x (t))� cE (t)] dt (32)

subject to (1) where ; y; d; 
 are �xed parameters

The Hamilton Jacobi Bellman (HJB) equation for the problem, where V (x)

is the value function, is:

�V (x) = max
E

�
S (qEx)� cE +

@V

@x
[x (s� rx� �yQ (d0; 
0))� qEx]

�
(33)

12



The feedback optimal e¤ort is determined by

~E = ~E
�
x; �y; �d; �


�
: S

0
�
q ~Ex

�
qx� c� q ~E

@V

@x
= 0 (34)

The dynamic programming problem can be solved, either by considering trial

solutions for the value function and substituting them into (34) and (33),9 or

by substituting (34) into (33) and then solving the di¤erential equation for

the value function.

Once the value function has been determined, then (34) determines the

policy function Ê = Ê (x; �y; d0; 
0) = Ê (x) ; which determines the optimal

e¤ort for each level of the state variable x given the rest of the parameters.

At a locally stable steady state x�f ; the optimal steady state e¤ort is Êf =

Ê
�
x�f ; �y; d0; 
0

�
= Ê

�
x�f
�
:

The policy function can also be obtained if we use the Hamiltonian rep-

resentation for the problem. The current value Hamiltonian is

H = S (qEx)� cE + px (x (s� rx� �yQ (d0; 
0))� qEx) (35)

where the costate variable px re�ects the resource�s shadow value. As is well

known

�V (x) = H0

�
x;
@V

@x

�
px =

@V

@x
(36)

H0 (x; px) = max
E
fS (qEx)� cE + px [x (s� rx� �yQ (d0; 
0))� qEx]g

whereH0 is the maximized Hamiltonian with optimal e¤ort chosen such that:

~E = ~E (x; px) : S
0
�
q ~Ex

�
qx� c� qxpx = 0 (37)

The evolution of the state and the costate variable is obtained by the Modi�ed

9For example, with a linear quadratic problem the value function is quadratic. That is,
V (x) = a0 + a1x+ a2x

2: Standard procedures allow the determination of the coe¢ cients
a0; a1; a2 in terms of the parameters of the system. With a power bene�t function, the
solution for the value function can obtained in the class of the power functions.
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Hamiltonian Dynamic System (MHDS)

_x =
@H0

@px
(38)

_px = �px �
@H0

@x
(39)

A steady state is determined as usual as (x�; p�x) : ( _x; _px) = 0: Assume that for

the problem (32) such a steady state exists, with the saddle point property

which is a common result for these kind of models.10 A policy function

px = px (x) can be obtained from (38), (39) by dividing the two relations to

obtain:

p
0

x (x) =
dpx
dx

=
�px � @H0

@x
@H0

@px

(40)

Solving this di¤erential equation with boundary condition (x�; p�x) and using

the slope of the stable eigenvector of the steady state as the initial slope of the

policy function we can obtain the policy function px = px (x) :
11 Substituting

this function into (37) we obtain the policy function in terms of e¤orts as

Ê = Ê (x; px (x)) = Ê (x) (41)

with Êf = Ê
�
x�f
�
at the fast time steady state

The policy function determines what is perceived as optimal harvesting

e¤ort for the POMP. So harvesting is adjusted to changes in x; using (41)

without taking into account changes in the population of pathogens y or

the traits. However, in reality the host-parasite system evolves under the

in�uence of the parasite dynamics and the slow trait dynamics, which are

not taken into account by the POMP. In this case the policy function provides

a very useful tool for describing what is expected to happen in reality when

harvesting is determined according to the POMP. The host - parasite system

10See, for example, Clark (1990) chapter 5 for details.
11This is the time elimination method for determining the policy function Barro and

Sala-i-Martin (1995), pp. 488.
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evolves according to:

" _x = x (s� rx� yQ (d; 
))� qÊ (x)x (42)

" _y = y (xQ (d; 
)� �) (43)

In this case the actual equilibrium values for x and y; assuming positive

abundance in equilibrium, determine the slow manifold and are given by:

x̂a = x̂a (d; 
) =
�

Q (d; 
)
; ŷa = ŷa (d; 
) =

s� rx̂� qÊ (x̂a)

Q (d; 
)
(44)

Since at this steady state the Jacobian of the fast system is de�ned as

Jaxy =

 
�x̂a

�
r + Ê

0
(x̂a)

�
�x̂aQ (d; 
)

ŷaQ (d; 
) 0

!
(45)

it follows that if the policy function has a positive slope, Ê
0
(x̂a) > 0; then

the slow manifold is attracting by an argument similar to that in Result 1.12

On the slow manifold mutation dynamics are given by

_d = ��dx̂aŷa
@Q (d; 
)

@d
(46)

_
 = �
x̂aŷa
@Q (d; 
)

@

(47)

and the existence, or not, of Red Queen cycles is governed by result 1.

Assume that trait dynamics converge to a point attractor (d�; 
�) ; then

the host - parasite biomasses and the policy function will converge to

x�a = x̂a (d
�; 
�) ; y�a = ŷa (d

�; 
�) ; E�a = Ê (x�a)

Then from (33) the steady state valuation of the system with convergence in

12Although at this level of generality it is not possible to determine the slope of the
policy function, intuitively it is expected to have a positive slope. E¤ort increases at
higher biomass levels.
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slow time will be

V � =
S (qE�ax

�
a)� cE�a
�

(48)

On the other hand the perceived valuation of the system with convergence

in fast time and when parasite dynamics and trait dynamics are ignored is

V̂f =
S
�
qÊfx

�
f

�
� cÊf

�
(49)

It is clear that the di¤erence

V � � V̂f

will provide a measure of the change in the valuation of the system when

parasite dynamics and trait dynamics are ignored.

2.3.2 Optimal harvesting rules in fast time scale13

The problem is to maximize (31) subject to (1), (2) for �xed ("frozen") values

of d and 
: When the traits take their initial values (d0; 
0) ; the solution

corresponds to the boundary layer problem. The dynamic programming

equation becomes for the fast system:

�V 0 (x; y) = max
E
H0

�
x; y;

@V

@x
;
@V

@y

�
H0 = max

E

�
S (qEx)� cE + px

�
x
�
s� rx� yQ

�
�d; �

��
� qEx

�
+py

�
xQ
�
�d; �

�
� �
�	

px =
@V 0

@x
; py =

@V 0

@y

Let E0 = E0 (x; y; d0; 
0) = E0 (x; y) be the relevant policy function which

at the fast time steady state
�
x0f ; y

0
f

�
; assuming that it exists, will be E0f =

E0
�
x0f ; y

0
f ; d0; 
0

�
: Then the perceived steady state valuation of the system

in fast time will be

V 0
f =

S
�
qE0fx

0
f

�
� cE0f

�

13In the terminology of singular perturbation analysis, the solution to this control prob-
lem results in the fast controller.
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At the fast time steady state, the equilibrium values for x and y; assuming

positive abundance in equilibrium and stability, will be

x0f = x0f (d0; 
0) =
�

Q (d0; 
0)
; y0f = y0f (d0; 
0) =

s� rx̂� qE0f
�
x0f ; y

0
f ; d0; 
0

�
Q (d0; 
0)

(50)

Then mutation dynamics are given by

_d = ��dx0fy0f
@Q (d; 
)

@d
(51)

_
 = �
x
0
fy
0
f

@Q (d; 
)

@

(52)

and the existence of Red Queen cycles is governed by result 2.

Assume as before that trait dynamics converge to a point attractor (d�; 
�) ;

then the host - parasite biomasses and the policy function will converge to

x0� = x0f (d
�; 
�) ; y0� = y0f (d

�; 
�) ; E0� = E0f (x
�; y�; d�; 
�)

Then from (36) the steady state valuation of the system with convergence in

slow time will be

V 0� =
S (qE0�x0�)� cE0�

�
(53)

The di¤erence

V 0� � V 0
f

will provide a measure of the change in the valuation of the system when

only a fast controller is designed, and slow trait dynamics are not taken into

account.

2.3.3 The SOMP

To analyze the SOMP we consider the optimal control problem of maximizing

(31) subject to the constraints of the slow dynamics (9), (10) which evolve

on the slow manifold (11).14

14This is the slow controller. See, for example, Pan and Başar (1996).
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The current value Hamiltonian for this problem is

HS = S (qEx̂)� cE + �

�
��dx̂ŷ

@Q (d; 
)

@d

�
+ �

�
�
x̂ŷ

@Q (d; 
)

@


�
; (54)

x̂ =
�

Q (d; 
)
; ŷ =

s� rx̂� qE

Q (d; 
)

By Result 1 the steady state (x̂; ŷ) > 0 is asymtotically stable, therefore the
optimal control problem is solved on the attracting part of the slow manifold.

The maximum principle implies that optimal e¤ort is chosen as:

S
0
�
qE

�

Q (d; 
)

�
q�

Q (d; 
)
� c+ (55)

�
��d � ��


� q�

[Q (d; 
)]2
@Q (d; 
)

@d
= 0 (56)

or ~Es = ~Es (d; 
; �; �)

By comparing (55) with (37) it is interesting to note that in the POMP

marginal e¤ort bene�ts net of e¤ort costs are adjusted by the shadow value

of the resource�s biomass px; which is the standard approach in resource

economics. In contrast in the SOMP the adjustment is related to the shadow

values of the traits and the impact of mutation on �tness. This implies that if

mutation is taken into account, regulation should be adjusted appropriately.

The Modi�ed Hamiltonian Dynamic System in this case becomes

_� = ��� @H
@d

(57)

_� = �� � @H
@


(58)

_d =
@H
@�

= ��dx̂ŷ
@Q (d; 
)

@d
(59)

_
 =
@H
@�

= �
x̂ŷ
@Q (d; 
)

@

(60)

along with (9), (10), with everything evaluated at x̂; ŷ; ~Es = ~Es (d; 
; �; �) :

Assume that a steady state (d�; 
�; ��; ��) for the system (57) - (60) exists
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and consider the curvature matrix:

Q (d; 
; �; �) =

0BBBB@
@2H
@d2

@2H
@d@


��
2

0
@2H
@d@


@2H
@
2

0 ��
2

��
2

0 �@2H
@�2

� @2H
@�@�

0 ��
2

� @2H
@�@�

�@2H
@�2

1CCCCA
Result 2: If the curvature matrix Q (d�; 
�; ��; ��) is negative de�nite,

then by the Brock and Sheinkman (1976) condition all solutions of (57) -

(60) which are bounded for t � 0 converge to (d�; 
�; ��; ��) as t!1:

If the conditions of Result 2 prevail, then Red Queen dynamics are re-

moved by optimal management.

Assume that the policy function for this problem is given by

�E = �E (d; 
)

with �E� = �E (d�; 
�) at the optimal steady state. Then the socially-optimal

steady state valuation would be

V S� =
S
�
q �E��x�

�
� c �E�

�
(61)

�x� =
�

Q (d�; 
�)
; �y� =

s� r�x� � q �E�

Q (d�; 
�)

The optimal steady state valuation (61) can be augmented by allowing for

an additional value which is associated with the host biomass (e.g. existence

value). In this case the �ow of bene�ts would be S (qEc) � cE + B (x) ;

where B (x) is an increasing concave function re�ecting existence values.

The optimal steady state valuation becomes

V S�
1 =

S
�
q �E��x�

�
� c �E� +B (�x�)

�
(62)

It is clear that the di¤erences

V S�
1 � V 0� or V S�

1 � V � (63)
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re�ect the di¤erence between the socially-optimal valuation of the system

and the valuation of the system when trait dynamics and parasite dynamics

are ignored. This measure can be regarded as a measure of the costs from

deviating from socially-optimal management.

3 A general coevolutionary model with many

hosts and parasites

Having seen how to model harvesting decisions in a system with one host and

one parasite, we move now to a more general case. Combining Krakauer and

Jansen�s (2002) generalization to two hosts and two parasites, and allowing

interspecies interactions, a model with many hosts and parasites could be

developed. In this section, and in order to keep things as simple as possible,

we develop a two-host, two-parasite model, with the host species interacting

in the context of a mutualism model (Murray 2003).15 The structure of the

model for the host parasite part, where the host is �useful� in the sense of

being harvested at harvest rates hi = qiEixi; i = 1; 2 respectively, with both

host and parasite evolving in fast time, is:16

" _x1 = x1 (s1 � r1x1 � a12x2 � y1Q (d1; 
1)� y2Q (d1; 
2))� h1 (64)

" _x2 = x2 (s2 � r2x2 � a21x1 � y1Q (d2; 
1)� y2Q (d2; 
2))� h2 (65)

" _y1 = y1 (x1Q (d1; 
1) + x2Q (d2; 
1)� �) (66)

" _y2 = y2 (x1Q (d1; 
2) + x2Q (d2; 
2)� �) (67)

The �ow of bene�ts from each useful species, assuming separable bene�ts in

each species harvesting to simplify things, is given by

2X
i=1

[S (qiEixi)� ciEi +Bi (xi)]

15The generalization to any number of species and parasites is straightforward.
16In terms of our previous notation, hi = qiEixi; i = 1; 2:
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where Bi (xi) is a monotonically increasing and strictly concave function that

re�ects bene�ts associated with the biomass of each species (e.g. existence

values). If no existence values are imputed then Bi (xi) is identically zero.

If we consider the �myopic�bene�t maximization problem where parasite

dynamics and slow mutation is ignored, the problem becomes

max
fE1(t);E1(t)g

Z 1

0

e��t

"
2X
i=1

[S (qiEixi)� ciEi +Bi (xi)]

#
dt (68)

s:t:
dx1
d�

= x1 (s1 � r1x1 � a12x2 � Y1)� h1 (69)

dx2
d�

= x2 (s2 � r2x2 � a21x2 � Y2)� h2 (70)

Y1 = y1Q (d1; 
1) + y2Q (d1; 
2) �xed (71)

Y2 = y1Q (d1; 
1)� y2Q (d1; 
2) ; i = 1; 2 (72)

where Yi represents parasite and mutation e¤ects which are treated as �xed

parameters in the �myopic�model.

Let the dynamic programming equation be

�V (x1; x2) = max
E1;E2

(
2X
i=1

[S (qiEixi)� ciEi +Bi (xi)] +
@V

@x1

dx1
d�

+
@V

@x2

dx2
d�

)

and let Êi = Êi (x1; x2) be the policy function associated with the problem.

To analyze the impact of the "myopic" behavior on the whole system, we

consider the slow manifold consisting of the equilibria of the boundary layer

problem. For d = (d1; d2) ; 
 = (
1; 
2) the slow manifold can be locally

parametrized by x = (x1; x2) ;y = (y1; y2) as

M =

(
(x;y;d;
) : x1 (s1 � r1x1 � a12x2 � y1Q (d1; 
1)� y2Q (d1; 
2))

�q1Ê1 (x1; x2)x1 = 0;

x2 (s2 � r2x2 � a21x1 � y1Q (d2; 
1)� y2Q (d2; 
2))

�q2Ê2 (x1; x2)x2 = 0;
y1 (x1Q (d1; 
1) + x2Q (d2; 
1)� �) = 0; (73)

y2 (x1Q (d1; 
2) + x2Q (d2; 
2)� �) = 0g
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Equilibrium abundances for the fast host-parasite system are then de�ned

as

~xi = ~xi (d;
) ; ~yi = ~yi (d;
) ; i = 1; 2 (74)

The stability of the equilibria for the boundary layer problem and thus the

attracting parts of the slow manifold depend on the linearization matrix

J2 =

0BBBBB@
�x1

�
r1 + q1

@Ê1
@x1

�
�x1

�
a12 + q1

@Ê1
@x2

�
�x1Q11 �x1Q12

�x2
�
a21 + q2

@Ê2
@x1

�
�x2

�
r2 + q2

@Ê2
@x2

�
�x2Q21 �x2Q22

y1Q11 y1Q12 0 0

y2Q21 y2Q22 0 0

1CCCCCA (75)

where Qij = Q
�
di; 
j

�
; i; j = 1; 2: The trace of J2 is de�ned as:

trJ2 = �x1

 
r1 + q1

@Ê1
@x1

!
� x2

 
r2 + q2

@Ê2
@x2

!
S 0

and its sign depends on the parameters of the problem and the slope of the

policy function. On the other hand, det J2 = x1x2y1y2 (Q11Q22 �Q12Q21)
2 �

0: Therefore, the slow manifold might have attracting and non attracting

parts.

Then, mutation evolving in slow time implies, for the stable equilibria of

the population dynamics problem,

_d1 = ��d~x1

 
~y1
@Q (d; 
1)

@d

����
d=d1

+ ~y2
@Q (d; 
2)

@d

����
d=d1

!

_d2 = ��d~x2

 
~y1
@Q (d; 
1)

@d

����
d=d2

+ ~y2
@Q (d; 
2)

@d

����
d=d2

!

_
1 = �
 ~y1

 
~x1
@Q (d1; 
)

@d

����

=
1

+ ~x2
@Q (d2; 
)

@d

����

=
1

!

_
2 = �
 ~y2

 
~x1
@Q (d1; 
)

@d

����

=
2

+ ~x2
@Q (d2; 
)

@d

����

=
2

!
(76)

If a point attractor (d�;
�) exists for (d;
) ; then the steady states for the
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host parasite system and the steady state harvesting are de�ned as:

~x�i = ~xi (d
�;
�) ; ~y�i = ~yi (d

�;
�) ; ~E�i =
~Ei (x

�
1; x

�
2) ; i = 1; 2 (77)

In this case the steady state valuation of the system is:

V � =

P2
i=1

h
S
�
q�i ~E

�
i ~x

�
i

�
� c�i ~E

�
i +Bi (~x

�
i )
i

�

It should be noticed that the modeling is fairly general and allows for jumps

in the population variables, if the boundary layer problem is close to a non

attracting part of the slow manifold M . In this case noise might cause the

population variable to jump and move very fast to another part of M:

Consider now the SOMP problem where (68) is maximized subject to the

trait dynamics on an attractive part of the slow manifold. The problem is

formally de�ned as

max
fE1(t);E1(t)g

Z 1

0

e��t

"
2X
i=1

[S (qiEixi)� ciEi +Bi (xi)]

#
dt

subject to:

_d1 = ��dx̂1

 
ŷ1
@Q (d; 
1)

@d

����
d=d1

+ ŷ2
@Q (d; 
2)

@d

����
d=d1

!

_d2 = ��dx̂2

 
ŷ1
@Q (d; 
1)

@d

����
d=d2

+ ŷ2
@Q (d; 
2)

@d

����
d=d2

!

_
1 = �
 ŷ1

 
x̂1

@Q (d1; 
)

@d

����

=
1

+ x̂2
@Q (d2; 
)

@d

����

=
1

!

_
2 = �
 ŷ2

 
x̂1

@Q (d1; 
)

@d

����

=
2

+ x̂2
@Q (d2; 
)

@d

����

=
2

!
(78)

where x̂ = x̂ (d;
;E) ; ŷ = ŷ (d;
;E) are de�ned by the solutions of the al-
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gebraic equations on the slow manifold

M̂ =

(
(x;y;d;
) : x1 (s1 � r1x1 � a12x2 � y1Q (d1; 
1)� y2Q (d1; 
2))

�q1E1x1 = 0;

x2 (s2 � r2x2 � a21x1 � y1Q (d2; 
1)� y2Q (d2; 
2))

�q2E2x2 = 0;
y1 (x1Q (d1; 
1) + x2Q (d2; 
1)� �) = 0; (79)

y2 (x1Q (d1; 
2) + x2Q (d2; 
2)� �) = 0g

The dynamic programming equation for this problem is

�V S = max
E1;E2

(
2X
i=1

[S (qiEixi)� ciEi +Bi (xi)] + @VS
d
_d+@VS


 _


)
(80)

Then if Êi = Êi (d;
) is the policy function for this problem, and
�
dS;
S

�
is a steady state point attractor, the corresponding steady-state values for

the host-parasite system and harvesting will be

x̂Si = x̂i
�
dS;
S

�
; ŷSi = ŷi

�
dS;
S

�
; ÊSi = Êi

�
x̂S1 ; x̂

S
2

�
; i = 1; 2 (81)

By comparing (77) with (81) we can determine the changes in the ecosys-

tems diversity as expressed by the abundances in x;y as well tas he deviations

between the steady state privately optimal and socially optimal harvesting

rules. Since the steady-state valuation of the socially-optimal system is

V S =

P2
i=1

h
S
�
qiÊ

S
i x̂

S
i

�
� c�i Ê

S
i +Bi

�
x̂Si
�i

�

the di¤erence V S�V � denotes the change in the system value from not taking

into account the antagonistic coevolution of species and pests or parasites in

the system when we design the harvesting rule. To put it di¤erently, the

di¤erence re�ects the change in steady-state valuation by ignoring the Red

Queen dynamics in our harvesting rule.

Since V S and V � represent the ecosystems valuations corresponding to
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di¤erent biodiversity patterns, the di¤erence V S � V � can also be used to

value changes in biodiversity. This result in a sense complements and ex-

tends the result of Brock and Xepapadeas (2004) about biodiversity valua-

tion through the Bellman state valuation function, to the multi-species case

with antagonistic coevolution.

4 Ecosystem Sustainability Criteria

The most commonly used de�nition of sustainable development now is that

of the Brundtland Report stating that:

"[Sustainable development is] development which meets the needs

of the present without compromising the ability of future gener-

ations to meet their own needs".

The concept of sustainable development is at the center of current con-

cerns about environment and development. It is not only the best known

and most commonly cited idea linking environment and development, it is

also the best worked-out, in that it is the capstone of the World Conservation

Strategy.

In the attempt to make the de�nition of sustainability operational and

useful for the development of sustainability criteria and the design of sus-

tainable policies, many auxiliary de�nitions have been developed. A more

recent and prevailing one is a de�nition associated with non declining well

being.

The idea of non declining well being was formulated by Dasgupta and

Mäler (2001) in order to de�ne sustainability as the non declining genuine

wealth. The idea is that each generation should bequeath to each successor

at least as large a productive base as it inherited from its predecessors. For

this to be achieved, the productive base of the economy should be preserved

for the next generations. The productive base includes a list of assets: Man-

ufactured capital, human capital, natural capital and knowledge. Genuine

investment is the sum of the investment in the above forms of capital val-

ued at accounting prices. If genuine investment is non-decreasing over time,

25



then welfare is also non-decreasing and the development is sustainable. In a

similar way Pemberton and Ulph (2001), stated that:

"an economy was acting in a sustainable fashion at a particular

moment of time, if the value obtained from the vector of capital

stocks it was passing on to the future was the same as the value

obtained from the vector of capital stocks it inherited. Alterna-

tively, an economy was instantaneous value sustainable17 if the

instantaneous rate of change of its value at a particular moment

of time, was zero".18

The above de�nitions suggests that:

De�nition 1 If the value for the economy, or equivalently, the intergenera-
tional well being is de�ned as:

vt =

Z 1

t

e��(��t)fo (x (�) ;u (�)) d� ; � > 0; � � t (82)

_xi = fi (x (�) ;u (�)) ; i = 1; :::; n; x (0) = xo; �xed (83)

x 2 A; u 2 U

where x and u de�ne the state and control vector respectively and fi (�; �) are
the equations of motion of the system, then, the economy is sustainable for

any feasible control path u (�) and the associated state path x (�) generated

by (83) if the value is not declining, or

dvt
dt
� 0 (84)

17Instantaneous value sustainability requires that the present value of future utility be
constant at an instant of time.(Pemberton and Ulph 2001).
18While permanent �ow sustainability requires the �ow of utility to be constant for all

future time, instantaneous value sustainability requires that the present value of all future
utility be constant at an instant of time. Associated with the concept of instantaneous
value sustainability, Pemberton and Ulph de�ne instantaneous constant value income as
the maximum amount that an economy could consume at a moment of time and keep the
maximum present value of all future utility constant.
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The controls can be chosen optimally to maximize (82) subject to (83),

or by some arbitrary feedback rule.19 In any case we can write u = u (x) and

this could represent either the policy function of the optimization problem or

the arbitrary feedback control rule. Then the solution of the transition equa-

tions will provide paths for the state variables depending on initial conditions

or

x (�) = � (xt; � � t) ; � � t (85)

Substituting (85) into value (82) we obtain the value of the economy

as a function of the initial stocks of the state variables, which in actual

applications would be di¤erent types of capital stock (e.g. man made, human,

natural capital), or:

vt (xt) =

Z 1

t

e��(��t)fo (� (xt; � � t) ;u (� (xt; � � t))) d� (86)

The accounting or shadow price for state variable xi at time t is de�ned

as

qit =
@vt (xt)

@xit
(87)

The sustainability criterion (84) is satis�ed if

S = dvt
dt
=

nX
i=1

qit
@xi
@t

� 0 (88)

Thus sustainability requires that genuine investment, measured as the sum

of rate of change in the state variables (capital stocks) valued at the cor-

responding accounting prices, be non declining at time t. This is a local

measure which can become non local by integrating (88) (Arrow, Dasgupta

and Mäler 2003).

It is clear that this type of methodology can be applied in order to explore

the sustainability of ecosystems, where the value of the ecosystem or the well

19For example in the classic Solow model of economic growth, the control variable con-
sumption is chosen as a �xed proportion of output, or c = (1� s) f (k) ; where k is capital
stock which is the the state variable, and f (k) is a neoclassical production function. This
consumption rule is a feedback rule, not an optimizing one.
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being associated with it, from the human point of view, is determined using

function (68) as:

vt (dt;
t) =

Z 1

t

e��(��t)

"
2X
i=1

[S (qiEixi)� ciEi +Bi (xi)]

#
d� (89)

subject to the relevant dynamic constraints.

It should be noticed that di¤erent approaches to ecosystem management

correspond to di¤erent sustainability conditions.

Assume that the ecosystem is managed by ignoring parasite dynamics

and mutation. Then the only relevant state variables, from the manager�s

point of view, are the populations of the useful species. The manager will

use as accounting prices the costate variables associated with problem (68),

pxi = @V=@xi; and the sustainability criterion for the ecosystem will be

Sm =
2X
i=1

pxi _xi (90)

This is, however, the wrong measure since the harvesting e¤ort is not cho-

sen in a socially optimal way and parasite dynamics and mutation is ig-

nored. The equilibrium abundances of host parasites on the slow manifold

(73) and the policy functions; are determined by (74) as ~xi = ~xi (d;
) ; ~yi =

~yi (d;
) ; ~Ei = ~Ei (x1; x2) ; i = 1; 2: Then the solution of the system (76)

will determine time paths for the state variables (d;
) : d� = ~d (dt; � � t) ;


� = ~
 (
t; � � t) : Then the value of the ecosystem is de�ned as

vt (dt;
t) =

Z 1

t

e��(��t)

"
2X
i=1

h
S
�
qi ~Ei~xi

�
� ci ~Ei +Bi (~xi)

i#
d� (91)

~Ei = ~Ei (x) = ~Ei

�
~x
�
~d (dt; � � t) ; ~
 (
t; � � t)

��
~xi = ~xi

��
~d (dt; � � t) ; ~
 (
t; � � t)

��
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and the local sustainability criterion for the ecosystem at time t will be

Sa =
2X
i=1

�
@vt
@dit

_dit +
@vt
@
it

_
it

�
� 0 (92)

It is interesting to note that sustainability depends on the growth of traits

along a path implied by the harvesting rule and the corresponding account-

ing prices. The accounting price for a trait could be positive or negative

indicating the impact of the trait on the value of the system. In this case it

is mutation, the slow variable, that determines the sustainability conditions

of the ecosystem. By comparing (90) with (92), it is clear that the perceived

sustainability of the ecosystem determined by population dynamics alone

through (90), might be di¤erent from the "true" sustainability conditions of

the ecosystem which are determined by the slow evolution of mutation. Thus

sustainability criteria based on resource biomass might produce misleading

results regarding ecosystem sustainability, and are likely to require correction

by taking into account the evolution of slow variables re�ected in mutation.

In the social optimization model the sustainability criterion (92) remains

the same with the di¤erence that the accounting prices are determined by

the system of di¤erential equations resulting from the Pontryagin principle.

That is

_qdi = �qdi �
@H0S

@di
; i = 1; 2 (93)

_q
i = �q
i �
@H0S

@
i
; i = 1; 2

where H0S is the maximized Hamiltonian associated with the dynamic pro-

gramming equation (80).

Comparison of the local sustainability criterion (92) calculated using the

accounting prices resulting from the "not fully optimal model," with the

criterion calculated using the optimal accounting prices (93), could reveal

some insights regarding ecosystem sustainability when the full dynamics of

coevolution are not taken into account by management decisions.
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5 Concluding Remarks

In this paper we seek to provide a uni�ed economic/ecological conceptual

framework of ecosystem management when antagonistic coevolution among

species takes place. In our model population dynamics govern species�or par-

asites�biomasses and evolve in fast time scale, while mutation characterizes

the evolution of traits, and evolves in slow time scale.

We analyze various harvesting decision which could be suboptimal by

disregarding parasite dynamics and mutation, or fully optimal by taking into

account all the dynamic constraints of the problem, using the fast time scale

- slow time scale formalism.

We provide su¢ cient conditions under which human intervention through

harvesting could disrupt Red Queen cycles, and we also provide, using Bell-

mans state valuation function, a measure of change in the steady-state ecosys-

tem valuation, between suboptimal and fully-optimal decisions. Our results

suggest that suboptimal decisions which ignore mutation could lead to sur-

prises, in the sense that the actual evolution of the ecosystem under the in-

�uence of interacting population dynamics and mutation, could be di¤erent

from the one perceived when the management rules were designed. Crucial to

this is that evolution moves slowly, but not that slowly, to make the dynam-

ics of mutation irrelevant. Although this is an empirical issue, evidence from

resistance development in antibiotics or genetically-modi�ed crops suggests

that at least in certain cases evolution moves fast enough. Thus when human

management disregards this evolution the outcome of human management

in terms of ecosystem composition might not be the expected one.

Bellmans state valuation function can also be used to provide a measure

of value of changes in biodiversity as we move from one decision framework

to the other, which is a generalization of the Brock Xepapadeas (2003) result

in a coevolutionary set-up..

In the same context we also adopt the concept of non declining well being

as a sustainability criterion for the purpose of developing criteria for the

sustainability of ecosystems. Again we distinguish the sustainability criterion

between optimal and suboptimal decisions and we show that management
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decisions and subsequent sustainability criteria that ignore slow variables,

might obscure the fact that the actual sustainability characteristics of the

ecosystem, when slow mutation, is taken into account might be completely

di¤erent.

The analysis in this paper provides a conceptual framework, and at this

stage lacks analytical tractability due to the complexity of the models. A fu-

ture research task is to further investigate the developed framework through

appropriate simulation analysis using realistic parameters for population dy-

namics and evolution. However the conceptual framework developed in this

paper, complemented by appropriate simulations, could provide useful infor-

mation about: the existence or disruption of Red Queen cycles under various

management assumptions; the possibility of surprises, when mutation is ig-

nored; the valuation of changing ecosystem diversity; as well as about the

derivation of the relevant accounting prices which are necessary for de�ning

the sustainability criterion. These types of results can also form the basis for

a more e¢ cient regulation of ecosystems, through the regulation of harvest-

ing. Further elaboration of the fast - slow time scale framework can be used

to design management rules in fast and slow time scale and, furthermore, to

assist in the design of regulation in fast and slow time scales.
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