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PARAMETRIC DECOMPOSITION OF THE INPUT-ORIENTED 

MALMQUIST PRODUCTIVITY INDEX:  

WITH AN APPLICATION TO GREEK AQUACULTURE 
 
 
 
Using a stochastic frontier approach and a tranlog input distance function, this paper 
implements the input-oriented Malmquist productivity index to a sample of Greek 
aquaculture farms.  It is decomposed into the effects of technical efficiency change, 
scale efficiency change, input-mix and, technical change, which is further attributed 
to neutral, output- and input-induced shifts of the frontier. Implementable expressions 
for the aforementioned components are obtained using a discrete changes-approach 
that is consistent with the usual discrete-form data. Empirical findings indicate that 
the productivity of the farms in the sample increased during the period 1995-99 at a 
moderate rate of about two percent, and it was shaped up primarily by the input mix-
effect and technical change. 
 
JEL classification: 
 
Keywords: Malmquist productivity index; stochastic input distance function; Greek 

aquaculture farms 
 
 
1. Introduction 
 
The Malmquist productivity index, introduced by Caves, Christensen and Diewert 

(1982), started gaining popularity only after the influential work of Fare et al. (1992), 

who developed a tractable way to estimate it by non-parametric techniques (i.e., Data 

Envelopment Analysis, DEA) and provided an intuitive decomposition of it into two 

mutually exclusive sources (i.e., technical change and technical efficiency changes).  

Since then a considerable amount of effort (e.g., Ray and Desli, 1997; Balk, 2001, 

2004; Lovell, 2003; Grosskopf, 2003) has been devoted to extend this decomposition 

and to develop a more detailed analysis of its sources of growth.  Even though there is 

a general cohesion on measuring the effect of technical efficiency changes, several 

alternatives (more or less intuitive) exist for measuring the effects of technical change 

and of scale economies.  However, as clearly noted by Balk (2004) there is no unique 

way of decomposing any measure of productivity change.     

 Concerning the implementation of the Malmquist productivity index, on the 

other hand, it is evident from the survey of Fare, Grosskopf and Roos (1998) that the 

majority of empirical studies have used DEA.  In a non-parametric context, estimates 
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of the Malmquist productivity index as well as its sources of growth are obtained by 

computing appropriate ratios of distance function values corresponding to constant- 

and variable-returns-to-scale technologies.  The advantages of the non-parametric 

approach stem from its ability first, to function in cases with insufficient degrees of 

freedom; second, to overcome extreme invariability in the data and third, to model 

production technology without imposing a particular functional form.  Nevertheless, it 

lacks statistical hypotheses testing regarding the significance of the assembling parts 

of the Malmquist productivity index as sources of change.   

Several more recent studies (i.e., Coelli, Rao and Battese, 1998; Rossi, 2001; 

Balk, 2001; Fuentes, Grifell-Tatje and Perelman, 2001; Orea, 2002) have used the 

parametric (i.e., econometric).  Unlike DEA, the parametric approach does not require 

the estimation of constant-returns-to-scale production technology.  Instead estimates 

of various components, and consequently of the Malmquist productivity index, are 

obtained from a fitted distance function with variable returns to scale.1  In fact, two 

distinct routes have been used within the parametric approach.  First, Coelli, Rao and 

Battese (1998, p. 234) and Rossi (2001), following Nishimizu and Page (1982), 

estimated the Malmquist productivity index by using geometrical means of time 

derivatives for any two adjacent periods.  Second, Balk (2001), Fuentes, Grifell-Tatje 

and Perelman (2001) and Orea (2002) used discrete differences of the fitted distance 

function values evaluated at adjacent periods’ input and output quantity data.  Since 

economic data do not come in the form of continuous records, the use of time 

derivatives to estimate discrete changes may be misleading.   

The advantages of the parametric approach stem for the fact that first, it allows 

for an appropriate treatment of measurement errors and random noise and second, it 

permits formal statistical hypotheses testing.2  The latter is particularly important as it 

can be tested whether (i) technical efficiency is time varying; (ii) there is technical 

change; and (iii) production technology exhibits (local) constant returns to scale.3  In 

each case, one (or more) of the components constituting the Malmquist productivity 

index will remain unchanged and thus, it will not contribute to growth.  For example, 

if technical efficiency is found to be time invariant, then the contribution of the 

technical efficiency change effect on productivity would be zero.  Similarly, if the rate 

of technical change is statistically not different than zero, then the technical change 

effect vanishes.  Finally, if production exhibits (local) constant returns to scale, then 

there is no scale effect.  Even though these features have not explored in previous 
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parametric studies, it is clear that have important implications in obtaining appropriate 

empirical results and in dealing with policy measures design to enhance productivity.              

 The aim of this paper is to extend the methodology of Fuentes, Grifell-Tatjé 

and Perelman (2001) to accomplish the remaining assembling parts of the Malmquist 

productivity index, namely scale efficiency change and input-mix effects.  We also 

develop the necessary hypotheses testing regarding the statistical significance of the 

various sources of growth.  For these purposes, parametric restrictions are derived for 

testing the hypotheses of constant returns to scale, ray homogeneous technology, no 

technical change, and implicit Hicks input- and output-neutral technical change.  It is 

expected that these hypotheses testing strengthen further the parametric approach.  

 The proposed procedure is applied to a sample of Greek seabass and seabream 

farms for the period 1995-1999.  During the last two decades, seabass and seabream 

industry has been one of the faster growing industries in Greece and since the first 

half of the 1990s it has dominated the aquaculture sector.  Output grew dramatically 

and the number of seabass and seabream farms almost doubled in the first half of the 

1990s.  Eventually Greece became the largest producer of seabass and seabream in 

Europe accounting for around 50% of total European production and also the largest 

exporter.  Identifying the sources of growth in such a fast expanding industry is of 

considerable importance for gaining insights on its development process and also for 

designing future policies.           

 The rest of the paper is organized as follows.  In section 2 we present the 

decomposition of the Malmquist productivity index in an input-oriented framework.  

In the next section, we show how the assembling components of the input-oriented 

Malmquist index can be computed from the parameter estimates of a translog input 

distance function.  The data used in this study are presented in section 4.  In section 5 

we provide an empirical application by measuring the productivity of Greek seabass 

and seabream farms.  Concluding remarks follow in the last section. 

 
2. Decomposition of the input-oriented Malmquist productivity index 
 
Following Balk (2001), the input-oriented Malmquist productivity index , for any 

two successive time periods t and t+1, can be expressed as:

t
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where x and y denote inputs and outputs respectively, the subscript I refers to input 

orientation, and the four components on the right-side of (1) are defined as: 
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The technical change component, , corresponds to the radial shift in the input 

requirement set measured with period t+1 data.  As the same level of output can be 

produced with less (more) amount of inputs, technical progress (regress) results.  The 

former (latter) corresponds to values of  that are greater (less) than one.
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Fare et al. (1997) developed a further decomposition of .  In particular, 

they shown that (2a) can be rewritten as:  

1, +ttTC
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The  term is a technical change magnitude index that provides a local 

measure of the rate of technical change.  As the input requirement set contract 

(expand) along a ray through period t data, values greater (less) than one are assigned 

to the magnitude index.  The terms and  are the 

output and the input bias indices, respectively.  These terms compare the magnitude 

of technical change along a ray through period t+1 data to the magnitude of technical 

),( tt xyTCM

),,( 11 ++ ttt yxyOB ),,( 1+ttt xyxIB
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change along a ray through period t data.  If technical change is neutral (biased), the 

input requirement set shifts in or out by the same (different) proportion along a ray 

through period t+1 data as it does along the ray through period t data (Grifell-Tatje 

and Lovell, 1997).  The values of (4b) and (4c) are equal to one and thus they make 

no contribution to productivity if technology exhibits respectively implicit Hicks input 

neutral change, and implicit Hicks output neutral technical change and constant 

returns to scale (CRS) (Fare et al., 1997).   

The technical efficiency change component, TEC, measures firms’ ability to 

improve technical efficiency from period t to period t+1.  Given that input-oriented 

technical efficiency is defined as , technical efficiency between two 

successive time periods increases (decreases) as long as TEC is greater (less) than 

one.   

),(/1 ttt
I yxD

The remaining two components,  and , are defined in terms of the 

input-oriented scale efficiency measure , which evaluates the productivity of an 

observed input-output bundle  relative to that of the technically optimal scale 

(or the most productive scale size).  At the technically optimal scale, production 

technology exhibits CRS and average ray-productivity reaches its maximum.   is 

defined as: 
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where the symbol (˘) indicates an input distance function associated with CRS (also 

referred to as the cone technology).  Then, following Balk (2001),  is defined 

as:
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If  is greater (less) than one, then the output bundle at period t+1 lies closer to 

(farther away from) the point of technical optimal scale than the output bundle of 

period t does and thus scale efficiency increases (decreases).  That is,  measures 

how the input-oriented measure of scale efficiency changes over time, conditional on 

a certain input mix.    

t
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On the other hand, the input-mix effect, , measures how the distance of a 

frontier-point to the frontier of the cone technology changes when input mix changes, 

conditional on the same output mix.  It is formally defined as (Balk, 2001): 
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That is, the input-mix effect measures the change in the input-oriented measure of 

scale efficiency from a change in input mix when outputs remain unchanged.  As with 

the previous assembling parts of (1), values of  greater (less) than one indicate a 

positive (negative) contribution of the input-mix effect into productivity changes.  For 

any given output vector,  is associated with improvement (deterioration) 

of scale efficiency as input mix changes.  Finally, notice that if technology exhibits 

CRS then both  and  are identically equal to one.
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 The combined effect of the scale efficeicny change and of input-mix, defined 

as: 

 

  ),,,(
),(

),(),,(),,( 11
11

111 ++
++

+++ Δ==⋅ tttt
ttt

I

ttt
itttt

I
tttt

I yxyxS
yxSE
yxSEyxxMEyyxSEC           (8) 

                
was referred by Lovell (2003) as the activity or volume effect.  It is essentially an 

“overall” scale effect, which includes a radial scale effect and an input-mix effect.  

For this reason it was called “scale change factor” by Ray and Desli (1997).   

By substituting (2b), (4a), (4b), (4c), (6) and (7) into (1), it may be verified 

that the input-oriented Malmquist productivity index can be simply expressed as:  
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which is equivalent to the original definition used by Fare et al. (1992), namely by the 

ratio of the distance function values of the corresponding (virtual) cone technology, in 

periods t and t+1.8  This is a well-defined productivity index satisfying the desirable 

properties of identity, monotonicity, and proportionality, and under certain conditions 

that of separability.9       

 
3. Parametric estimation of the Malmquist productivity index 
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The parametric estimation of the Malmquist productivity index (1) requires the prior 

specification and estimation of the input distance function.  To weaken as much as 

possible the implications of assuming a particular functional form for the underlying 

input distance function, a flexible function form such as the translog is chosen.  The 

translog input distance function involving k=1,…,K inputs and m=1,…,M outputs over 

t=1,…, T time-periods is defined as (e.g., Coelli and Perelman, 1999; 2000):  
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The regularity conditions associated with input distance function require homogeneity 

of degree one in input quantities and symmetry, which in turn imply the following 

restrictions on the parameters of (10): 
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For notational convenience (10) may be rewritten as , where 

TL(⋅ ) denotes the translog specification and 
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parameters to be estimated. 

The homogeneity restrictions can be imposed by dividing the left-hand side 

and all input quantities in the right-hand side of (10) by the quantity of that input used 

as a numeraire.  Given linear homogeneity, (10) may be written as: 

 
                                                                (13) ),(ln);,(ln ,,,,,, tititi

I
tititi

K yxDtyxTLx −=− + θ
 

where ti
K

ti
k

ti xxx ,,, =+  for all  and the superscript i is used to index farms.   Since 

 is unobservable one may write  (Coelli and 

Perelman, 1999, 2000), where u

Kk ≠

),(ln ,,, tititi
I yxD ti

titit
I uyxD ,

,, ),(ln −=

it is a one-sided, non-negative error term representing 

 7



the stochastic shortfall of the ith farm output from its production frontier due to the 

existence of technical inefficiency.  Then, the stochastic input distance function model 

may be written as: 
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where vit depicts a symmetric and normally distributed error term (i.e., statistical 

noise), representing a combination of those factors that cannot be controlled by farms, 

omitted explanatory variables and measurement errors in the dependent variable.10  It 

is also assumed that vit and uit are distributed independently of each other. 

 The temporal pattern of uit is important in (2b) as the changes in technical 

efficiency over time rather than the degree of technical efficiency per se matters.  For 

this purpose Cuesta (2000) specification, which is an extension of Battese and Coelli 

(1992) formulation, is adopted to model the temporal pattern of technical inefficiency, 

i.e., 
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where ξi are firm-specific parameters capturing the temporal variation of individual 

technical efficiency ratings, and [ ]T ..., 2, ,1∈t .11  The main advantage of (15) is that 

allows for firm-specific patterns of temporal variation in technical efficiency.  If the 

parameter ξi is positive (negative), technical efficiency tends to improve (deteriorate) 

over time.  If 0=iξ , technical efficiency is time-invariant and the term in (2b) is 

equal to one and thus technical efficiency does not contribute to productivity changes.  

When ξξ =i  for all i, (15) collapses to Battese and Coelli (1992) model with a 

common time-pattern of technical inefficiency across producers.12

 Following Balk (2001) and Fuentes, Grifell-Tatje and Perelman (2001), the 

parameter estimates of the input distance function along with the observed values of 

input and output quantities can be used for the estimation of the assembling parts of 

the Malmquist productivity index as follows.  For technical change, the magnitude 

index may be expressed as (Fuentes, Grifell-Tatje and Perelman, 2001): 
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The input and output variables in the tranlog specifications involved in (16) belong to 

the same period; therefore only terms associated with the time-variable do not vanish.  

Thus, upon canceling out common terms and re-arranging results to: 
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The output bias index  in (4b) may be expressed as: ),,( 11 ++ ttt yxyOB
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By substituting the tranlog specifications involved in (18), canceling out common 

terms and re-arranging yields: 
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Similarly, the input bias index  in (4c) is given as:  ),,( 1+ttt yyxIB
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Hence, the technical change component (2a) of the Malmquist productivity index in 

(1) can be practically computed as the product of expressions (17), (19), and (20). 

 Following Fuentes, Grifell-Tatje and Perelman (2001), technical efficiency 

chagne is calculated as the ratio of two successive distance functions:  
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Given the stochastic nature of (14), the predicted value of the input distance function 

can be estimated either as a conditional expectation: 
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or as the fitted value of input distance function using (13) and (14).  The former has 

been used by Fuentes, Grifell-Tatje and Perelman (2001), while latter is employed in 

the present study.  It seems though that the fitted value procedure is computationally 

less demanded than the conditional expectation procedure.13  

Balk (2001) suggested that the remaining two components of the Malmquist 

productivity index (i.e., SEC and ME) can be computed by using estimates of the 

input-oriented scale efficiency with no need to re-estimate the input distance function 

by imposing CRS, as in the non-parametric approach.14  Extending Ray (1999) and 

Balk (2001) procedure to an input-oriented framework, it can be shown that, for a 

translog input distance function, the scale efficiency of an input-output bundle ),( yx  

may be computed as: 
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the scale elasticity.  Since by definition 1),( ≤yxISEt  it follows that 0),(ln ≤yxISEt , 

which in turn implies that 0<β .  (22) implies that the scale efficiency of a particular 

input-output bundle can be computed from the value of the local scale elasticity ε 

pertaining to this bundle.  The latter can be evaluated at any data point from the 

estimates of the parameters of the input distance function. 

Given (22), the scale efficiency change and the input-mix effects can be 

computed as follows.  First, (2c) is rewritten as: 
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Similarly, (2d) can be written as: 

 
                 [ ]),(ln),(lnexp),,( 11111 +++++ −= tttttttttt

I yxISEyxISEyxxME             (25) 
 
Then, (25) and (22) result in: 

 

   
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= +++

++

2

1

2

11
11 1

),(
11

),(
1

2
1exp),,( tttttt

ttt
I yxyx

yxxME
εεβ

      (26) 

 
Thus, SEC and ME can be computed from evaluating the expression of the scale 

elasticity at the input-output bundles involved in each of these two components. 

 Having computed the assembling parts of the Malmquist productivity index 

through (17), (19), (20), (21), (24) and (26), the parametric approach permits formal 

testing of the statistical significance of various sources of productivity changes.  In 

particular, TC=1 and its contribution to productivity changes is null when the three 

assembling parts, namely TCM, OB and IB, are all equal to one.  The former implies 

that , which in turn requires the following parameter restrictions on 

(17): 
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for all k and m.  On the other hand, according to Fare et al. (1997), OB (IB) equals 

unity when the technology exhibits CRS and implicit Hicks output-neutral technical 

change (implicit Hicks input-neutral technical change).  Implicit Hicks output- and 

input-neutral technical change imply respectively that (Chambers and Fare, 1994): 
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 when CRS prevails, by applying (28a) into (10) results in the following 

parameter restrictions for OB=1: 
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Analogously, by applying (28b) into (10) the following parameter restrictions are 

required for IB=1: 
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Thus, for TC=1 we should have CRS, joint input and output Hicks neutral technical 

change, and 0000 == γγ .15

 On the other hand, if technical efficiency is time invariant, then TEC=1 and 

its contribution to productivity changes is null.  Given (15), the hypothesis of time 

invariant technical efficiency implies that 0=iξ  for all i.  In addition, both SEC and 

ME are identically equal to unity if the technology exhibits CRS.  In terms of the input 

distance function, this requires to be homogenous of degree –1 in input quantities.  

For (10) this implies the following parameter restrictions:  

 

1−=∑
M

m
mβ , and .                  (31) 0== ∑∑

M

m
mm

M

m
km βδ

         
Hence, CRS are important for the statistical significance of three components in (1), 

namely SEC, ME and OB. 

 
4. Data Description 
 
The data used in this paper are taken from a questionnaire survey conducted annually 

by the Greek Ministry of Agriculture, Department of Fishery.  From this survey, a 

sample of 14 seabass and seabream farms is randomly selected for the period 1995-

1999, forming a balanced panel data set of 70 0bservations.  This sample corresponds 

to about one fourth of fish farms producing seabass and seabream in Greece during 

the period examined.  For each farm, the available information includes production 

and annual sales of seabass and seabream; quantities of stocking rate; fish feed 

consumption; total cage area; and the number of workers employed.  Summary 

statistics of these variables are presented in Table 1.  
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Two outputs and four inputs are included in (10).  The two outputs are the total 

annual production of seabass and seabream, measured in tonnes.  The four inputs are: 

(a) labor, measured as the number of workers employed in the farm; (b) stocking rate, 

measured as the number of (seabass and seabream) juveniles utilized annually; (c) fish 

feed consumption, measured in tonnes and; (d) the total cage area used in production, 

measured in m2.  Seabass and seabream stocking rates were aggregated by computing 

Divisia indices, using cost shares as weights.  Moreover, output and input data were 

converted into indices by choosing a representative fish farm as a base to normalize 

these series.  The choice of the representative fish farm was based on total sales and 

the smallest deviation from the sample mean.   

 
5. Empirical Results 

 
The ML parameter estimates of the translog input distance function (10) are reported 

in Table 2.  At the point of approximation, the estimated translog input distance 

function is found to be non-increasing in output quantities and non-decreasing in input 

quantities.  In addition, at the point of approximation, the Hessian matrix with respect 

to output quantities is found to be negative-definite and that with respect to input 

quantities to be positive-definite.  These indicate respectively the concavity and the 

convexity of the estimated translog input distance functions with respect to input and 

output quantities.  The variance parameters, σ2 and γ, are statistical significant at the 

5% level.  Moreover, the ratio parameter γ is estimated at 0.9038 indicating that the 

technical inefficiency is likely to have a significant role in explaining output 

variability among fish farms in the sample.   

Several hypotheses concerning model representation were examined using the 

likelihood ratio test (see Table 3).  First, the “average” input distance function does not 

represent adequately the structure of technology for Greek fish farms.  The null 

hypothesis that  0=== iξμγ for all i is rejected at the 5% level of significance 

indicating that the technical inefficiency effects are in fact stochastic.  This finding is 

also depicted from the statistical significance of the γ-parameter.  In addition, the 

estimated frontier model cannot be reduced to Aigner, Lovell and Schmidt (1977) 

specification as the null hypothesis that 0 =μ  is rejected at the 5% level of 

significance.  This is also true for the time-pattern of inefficiency as the hypothesis 

that this is common among fish farms, i.e., θξ =i , is rejected at the 5% significance 
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level.  Thus, the estimated frontier model cannot be reduced to Battese and Coelli 

(1992) specification.   

The next set of hypotheses testing is related to the structure of production and the 

sources of productivity changes.  The first of these hypotheses concerns with technical 

change.  Specifically, the hypothesis that there is no technical change, i.e., TC=1 and 

thus its contribution to productivity is null, is rejected at the 5% level of significance 

(see Table 3).  Notice that this hypothesis requires that each of the TCM, OB and IB is 

equal to one.  Thus the next hypothesis concerns with the individual components of the 

technical change effect.  In particular, the hypotheses that each of the TCM, OB and IB 

is individually equal to one are rejected at the 5% level of significance.16  In turn this 

implies that both neutral and biased elements are presented in determining the 

technical change effect.          

The hypothesis that technical inefficiency is time-invariant, i.e., 0=iξ  for all i, 

is also rejected at the 5% level of significance (see Table 3). During the period 1995-

99, technical efficiency tended to increase over time for the most of the fish farms in 

the sample, as the estimated iξ  parameters reported in Table 2 indicate.  Specifically 

of the 14 farms in the sample only two seem to worsen the use of their resources, and 

only one of the estimated parameters is not statistically different than zero at the 5% 

level of significance level (this implies that technical efficiency may have been time 

invariant for that particular fish farm).  In addition, the hypothesis of constant returns 

to scale is rejected at the 5% level of significance.  This implies that scale inefficiency 

should be considered as an additional reason for not achieving the maximum output, 

and that the “overall” scale effect should be taken into account in measuring 

productivity changes.    

The frequency distribution of input-oriented technical and scale efficiency are 

presented in Table 4.  The vast majority of fish farms in the sample have consistently 

achieved scores of technical efficiency between 65 and 75% during the period 1995-

99, but there are no fish farms that achieved technical efficiency scores greater than 

90%.  The estimated mean technical efficiency was found to be 70.8% during the 

period 1995-99 ranging from a minimum of 53.9% to a maximum of 83.7%.  

However, the variation of technical efficiency ratings is not significant as the average 

standard deviation is only 5.6%.  Thus, on average, a 29.2% decrease in total cost 

could have been achieved without altering the total volume of output, the production 
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technology and the levels of inputs used.  These estimates are comparable with those 

reported by Karagiannis, Katranidis and Tzouvelekas (2000, 2002) for 1994.   

On the other hand, scale efficiency was found to be considerably higher than 

technical efficiency.  Specifically, the average input-oriented scale efficiency over 

farms and time was found to be 85.3%, namely 15% higher than the average technical 

efficiency.  The variation of scale efficiency estimates is also moderated but higher 

than that of technical efficiency (the average standard deviation is 7.5%).  In 

particular, mean scale efficiency ranges from a minimum of 67.4% to maximum of 

97.1%.  However, the vast majority of fish farms in the sample have achieved scale 

efficiency scores between 85 and 100%.  This means that Greek fish farms could 

considerably improve their resource use by operating at optimal scale wherein their 

ray average productivities are maximal.  The vast majority of the farms in the sample 

is found to operate under sub-optimal scale, thus with decreasing returns to scale.  

There is only one farm that consistently operated with the most productive scale size.   

Estimates of the Malmquist productivity index as well as its sources of growth 

are reported in Table 5.17  According to these estimates, during the period 1995-1999, 

productivity increased with an average annual rate of 1.9%.  However, the annual 

growth rate was sufficiently lower during the period 1995-1997.  Concerning its 

sources of growth, it can be seen from Table 5 that technical change and the input-mix 

effect have contributed positively to productivity growth, whereas the temporal 

changes of technical and scale efficiency have been sources of deterioration. In 

particular, the estimated annual rate of technical change is on average 0.4%.  This 

rather slow rate of change is due to the input and the output bias indices, which 

counteracted with the magnitude index and eventually tended to outweigh its impact.  

Without accounting for the biased components, the estimated annual rate of technical 

change could have been in the order of 3.3%.   

The input-mix effect was the most important source of productivity growth 

during the period examined.  The average value of the input-mix effect indicates that 

scale efficiency associated with the input combinations used in two successive periods 

- conditional on the same output-mix - increases at an annual rate of 6.6%.  On the 

other hand, the average value of the  component indicates that the radial scale 

efficiency associated with the output combinations produced in two successive 

periods - conditional on the same input-mix – decreases at an annual rate of 4.5%. 

However, the input-mix effect was strong enough to outweigh the negative effect of 

SEC
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the scale efficiency changes on productivity.  Hence the “scale effect”, that is, the 

combined contribution of radial scale efficiency changes and scale efficiency changes 

associated with temporal changes in the input mix raised productivity by 1.8%.   

On the other hand, the temporal changes of technical efficiency had virtually no 

impact on productivity growth.  Hence, the absence of technical efficiency 

improvements and the low rate of technical change made the TFP growth of the fish 

farms to be determined mostly by the scale effect, and more precisely by the input 

mix-part of this effect.             

 
6. Concluding Remarks 
 
The paper demonstrates how the generalized decomposition of the Malmquist 

productivity index suggested by Balk (2001) can be implemented in an input-oriented 

analytical framework using the parametric approach, a tranlog specification for the 

distance function of the underlying production technology, and discrete-form data.  In 

assembling the various components of the index we explore further its technical 

change-component by decomposing it into a neutral part, an input bias and an output 

bias.  Thus, we specify an input-oriented Malmquist productivity index which allows 

for technical efficiency change; scale efficiency change; an input-mix effect; and, 

technical change further decomposed into neutral, output-induced and input-induced 

shifts of the technology frontier over time.  In addition, we show how the statistical 

significance of the assembling parts of technical change can be formally tested via 

parameter restrictions and LR-tests.   

The detailed decomposition of technical change we suggest offers additional 

insights as it tests formally, and illuminates the nature of the overall technical change 

that shapes up the Malmquist TFP index.  Moreover, we show how this Malmquist 

index may become operational in the case of a tranlog input distance function by 

deriving computable expressions for all its assembling parts.  The expressions we 

derive are obtained via a discrete changes-approach.  This is an additional gain 

because economic data do not come in continuous form and therefore the use of time 

derivatives in estimating productivity growth indices may well be misleading (e.g., 

Coelli et al. 1998, p.233-234). 

 We offer an application of the suggested Malmquist index specification by 

measuring and decomposing the TFP of a sample of Greek, seabass and seabream-

producing farms during the period 1995-99.  Findings indicate that the TFP of the 
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Greek fish farms increased over the period examined at a moderate rate of about two 

percent, and it was shaped up primarily by the input mix-effect and technical change.  

Specifically, the fish farms in the sample show considerable technical inefficiency 

which remained stable over time; thus, the contribution of technical efficiency in 

productivity growth was null.  Scale inefficiency also appears to be present among the 

fish farms examined although at a lower degree than technical inefficiency.  

Moreover, the observed scale inefficiency shows temporal variation and contributes 

negatively to the farms’ TFP growth.  This implies that by adjusting their scale of 

production fish farms could improve their productivity. 

In contrast to the technical and scale efficiency, technical change and the 

impact of the input mix used seem to be the driving forces behind the TFP growth of 

the fish farms.  Overall, technical change appears to contribute positively to TFP 

growth; however, the input and output bias parts of the technical change moderate the 

neutral shifts of the technology frontier over time.  The input mix effect turns out to 

be the major factor in shaping up the TFP growth of the fish farms.  This implies that 

during the period examined, the input-mix used by the fish farms in successive time 

periods tends to increase scale efficiency, conditional on the output mix. 
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Table 1: Descriptive Statistics of the Variables 

Variable Mean Max Min Standard Deviation 

Outputs:     

Seabass (tonnes) 99 390 11 75.3 

Seabream (tonnes) 93 312 2 72.0 

Inputs:     

Labour (No of workers) 14 75 3 12.8 

Stocking rate (ths) 846 2,600 139 558.2 

Fish Feed (tonnes) 210 729 41 123.8 

Cages (m2) 3,214 7,561 934 1,797.1 
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Table 2: Parameter Estimates of the Translog Input-Distance Function and Technical 
Ineffciency Model. 
 
Parameter Estimate StdError Parameter Estimate StdError 

Stochastic Input Distance 

α0 0.1709 (0.0690)** δBrF -0.0189 (0.1255) 

αΒs -0.5677 (0.0976)* δBrC -0.2058  

αΒr -0.4960 (0.0962)* ζBs -0.2165 (0.0810)**

βL 0.2993 (0.1231)** ζBr 0.0882 (0.0384)**

βS 0.3425 (0.0977)* βLS -0.0266 (0.0774) 

βF 0.1129 (0.0481)** βLF 0.1544 (0.0392)*

βC 0.2453  βLC 0.0345  

γ1 0.0529 (0.0142)* βLL -0.1623 (0.0539)*

γ2 -0.0388 (0.0175)** βSF -0.0042 (0.0891) 

αBsBr 0.0904 (0.0348)** βSC -0.0467  

αBsBs -0.0566 (0.0884) βSS 0.0774 (0.0918) 

αBrBr -0.1634 (0.0592)** βFC 0.0052  

δBsL -0.2761 (0.0762)* βFF -0.1554 (0.0593)**

δBsS 0.0444 (0.0921) βCC 0.0070  

δBsF 0.1379 (0.0491)* θL -0.0181 (0.0929) 

δBsC 0.0938  θS -0.1762 (0.0595)*

δBrL 0.0764 (0.0327)** θF 0.1035 (0.0359)*

δBrS 0.1482 (0.0394)* θC 0.0907  

Technical Inefficiency Model 

ξ1 -1.7216 (0.1412)* ξ8 -0.3195 (0.2008) 

ξ2 4.0733 (0.1691)* ξ9 2.8831 (0.1229)*

ξ3 1.9842 (0.0981)* ξ10 1.3071 (0.1374)*

ξ4 0.1211 (0.1850) ξ11 1.5264 (0.1736)*

ξ5 2.4571 (0.1042)* ξ12 2.1358 (0.1903)*

ξ6 0.9373 (0.1997)* ξ13 2.3382 (0.1539)*

ξ7 3.5985 (0.1003)* ξ14 2.0194 (0.1625)*

γ 0.9038 (0.1058)* σ2 0.1126 (0.0092)*

μ -2.1836 (0.0171)* Ln(θ) -25.369 

Where Bs stands for Sea-Bass, Br for Sea-Bream, L for Labour, S for stocking rate, F for feeding staff 
and C for cages.  * (**) indicate statistical significance at the 1 (5)% level.  



Table 3: Model Specification Tests 

 

Hypothesis LR-test Critical Value 

  (α=0.05) 

No technical inefficiency  75.69 2
16 26 30χ .=  

Aigner et al. (1997) model  14.95 2
1 3 84χ .=  

Time-varying technical inefficiency with common pattern  49.85 2
14 23 68χ .=  

Zero technical change  33.52 2
7 14 07χ .=  

Input Hicks neutral technical change 21.23 2
4 9 49χ .=  

Output Hicks neutral technical change and CRS 39.02 2
7 14 07χ .=  

Input and output Hicks neutral technical change and CRS 24.98 2
13 22 36χ .=  

Time-invariant technical inefficiency 52.14 2
14 23 68χ .=  

Constant returns to scale  35.98 2
7 14 07χ .=  

Cobb-Douglas and Hicks neutral technical change 56.75 2
20 31 4χ .=  

Ray-homogeneity 6.85 2
1 3 84χ .=  

Input-output separability    16.04 2
6 12 59χ .=  
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Table 4: Frequency Distribution of Input-Oriented Technical and Scale Efficiency 

 
Efficiency (%) 1995 1996 1997 1998 1999 1995-99 

Technical Efficiency 

50-55 0 0 1 1 1 1 

55-60 1 1 0 0 0 0 

60-65 1 1 1 1 1 1 

65-70 3 3 4 3 4 4 

70-75 5 5 5 5 4 4 

75-80 2 2 2 2 2 2 

80-85 1 1 1 1 1 1 

85-90 1 1 0 1 1 1 

90-95 0 0 0 0 0 0 

95-100 0 0 0 0 0 0 

Mean 71.4 70.9 71.2 70.6 70.1 70.8 
StDev 5.4 6.0 5.8 6.3 5.9 5.6 

Maximum  85.8 86.3 84.2 87.9 86.3 83.7 

Minimum 57.3 56.7 54.2 53.5 51.2 53.9 

Scale Efficiency 

55-60 0 0 0 1 1 0 

60-65 1 0 1 0 0 0 
65-70 1 1 1 1 0 1 

70-75 1 1 1 1 1 0 

75-80 1 1 1 1 1 2 

80-85 2 2 2 1 2 1 

85-90 3 4 3 3 4 5 

90-95 2 3 3 3 3 3 

95-100 3 2 2 2 2 2 

Mean 86.4 90.3 86.5 83.2 80.1 85.3 

StDev 9.2 9.6 9.1 8.6 7.4 7.5 

Maximum  100 100 100 100 100 95.4 

Minimum 62.3 66.9 60.2 58.6 57.4 67.4 

 23



Table 5: Decomposition of Malmquist Productivity Index (1995-1999) 
 

 95-96 96-97 97-98 98-99 Mean 

Total Factor Productivity  1.014 1.012 1.028 1.028 1.019 

Technical Change 0.885 1.076 1.042 1.024 1.004 

Technical Change Index 1.011 1.090 1.012 1.020 1.033 

Output Bias Index 0.922 0.999 1.043 0.988 0.987 

Input Bias Index 0.950 0.988 0.986 1.016 0.985 

Techn. Efficiency Change 0.998 0.998 0.999 0.999 0.998 

Scale Efficiency Change 1.093 0.901 0.909 0.929 0.955 

Input Mix Effect 1.050 1.045 1.088 1.082 1.066 
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Endnotes 
                                                 

t
IME

1 Another difference between the non-parametric and the parametric approach, when 

the latter is based on stochastic frontiers, is that we are unable to estimate directly the 

Malmquist productivity index (Fuentes, Grifell-Tatje and Perelman, 2001).  Instead it 

should be computed indirectly through its components.  The reason is that dealing 

with stochastic frontiers it is not possible to estimate the conditional expectation 

resulting in the predicted value of the distance function by combining the technology 

and the data of two different periods.  This problem does not however arise when a 

deterministic frontier is employed.    
2 The main disadvantages of the parametric approach are: first, a particular function 

form should be used to approximate the underlying production technology; second, it 

cannot function in cases with insufficient degrees of freedom; and third, it cannot 

provide precise estimates when there is extreme invariability in the data. 
3 It is also possible to test whether technical change is implicit Hicks input and output 

biased or neutral. 
4  A backward-looking approach is employed for the construction of the Malmquist 

productivity index by using period t technology as a reference point.  Alternatively, 

either a forward-looking approach or a geometric mean of the two could have been 

used.   
5  For technical change, as well as all other assembling parts of (1), values equal to 

one indicate no contribution to productivity changes. 
6  Since the same technology is used in both the numerator and the denominator of (6), 

SEC is independent of technical change (Balk, 2001). 
7 Also notice that in the single-input case  is identically equal to one. 
8 Actually speaking this is the reciprocal of the input-oriented Malmquist productivity 

index used by Fare et al. (1992).  It has however an appealing interpretation common 

to productivity literature since progress (regress) is depicted by values greater (less) 

than one. 
9   The separability property implies that the productivity index can be interpreted as a 

relationship between an aggregated output and an aggregated input (Orea, 2002).  

This property is related to a separability restriction on production technology, which 

in a parametric framework can be tested statistically.   
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)(

10 A general concern with estimation of (13) is that the normalized inputs appearing, 

as regressors may not be exogenous.  According to Coelli and Perelman (1999, 2000), 

however, the transformed input variables in (13) are measures of input mix, which are 

more likely to be exogenous in an expected profit maximization framework. 
11 In the case of unbalanced panels, t includes a subset of integers representing the 

periods for which observations on individual producers are obtained. 
12  Notice that both the hypotheses of common temporal pattern and of time invariant 

technical efficiency can be tested statistically. 
13 Another advantage of the fitted value procedure is that, in the case of global CRS, 

the Malmquist productivity index can directly be computed through (9), regardless of 

whether a stochastic or a deterministic frontier is used. 
14 Actually, the procedure used in the non-parametric approach cannot be applied 

because there is nothing to ensure that the CRS distance function necessarily envelops 

the corresponding VRS distance function when the parametric approach is used (Orea, 

2002).   
15  CRS and joint input and output Hicks neutrality imply that •A )(•B and  in (28) 

depend only on t and they are equal to each other (Fare and Grosskopf, 1996, pp. 86-

91).  Moreover, in this case the Malmquist productivity index satisfies the circular 

test, which means that both productivity and technical change are path independent.     
16  In addition, the hypothesis of joint CRS and input and output Hicks neutrality is 

rejected at the 5% level of significance (see Table 3).  This implies that the estimated 

Malmquist productivity index does not satisfy the circular test and consequently, both 

productivity and technical change are path dependent. 
17  Since the separability between inputs and outputs in the estimated distance function 

is rejected at the 5% level of significance (see Table 3), the estimated productivity 

index cannot be interpreted as a relationship between an aggregated output and an 

aggregated input. 
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