
Conditional Autoregressive Value at Risk by Regression Quantiles:  
Estimating market risk for major stock markets 

 
 

by 
 

Georgios P. Kouretas* 
Department of Economics 

University of Crete 
University Campus 

GR-74100 
Rethymno, Greece 

 
and 

 
Leonidas Zarangas 

Department of Finance & Auditing 
Technological Educational Institute of Epirus 

GR-48100 
Preveza, Greece 

 
November 2005 

 
Abstract 

 
This paper employs a new approach due to Engle and Manganelli (2004) in order to 
examine market risk in several major equity markets, as well as for major companies 
listed in New York Stock Exchange and Athens Stock Exchange. By interpreting the 
VaR as the quantile of future portfolio values conditional on current information, 
Engle and Manganelli (2004) propose a new approach to quantile estimation that does 
not require any of the extreme assumptions of the existing methodologies, mainly 
normality and i.i.d. returns. The CAViaR model shifts the focus of attention from the 
distribution of returns directly to the behaviour of the quantile. We provide a 
comparative evaluation of the predictive performance of four alternative CAViaR 
specifications, namely Adaptive, Symmetric Absolute Value, Asymmetric Slope and 
Indirect GARCH(1,1) models. The main findings of the present analysis is that we are 
able to confirm some stylized facts of financial data such as volatility clustering while 
the Dynamic Quantile criterion selects different models for different confidence 
intervals for the case of the five general indices, the US companies and the Greek 
companies respectively.     
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1. Introduction 
 

During the 1990s we have observed a substantial increase in financial 

uncertainty as a result of the increased volatility that was observed in the stock returns 

of the mature markets but mainly of those of the emerging markets. This was the 

outcome of the increased flow of portfolio capital from the mature markets to the 

emerging markets of the South East Asia and the economies of transition of Central 

and Eastern European countries. Singh and Weisse (1998) report that during the 

period 1989-1995 the inflow of funds in emerging markets amounted to 107.6 billion 

US dollars as opposed to a mere 15.1 billion US dollars in the previous period 1983-

1988. There are several reasons for these enormous inflow of portfolio funds to the 

emerging markets but certainly the most important was the fact that during the 1990s 

the mature markets has reached their limitations with respect to profit opportunities 

and made portfolio managers and institutional investors to look for new opportunities 

in these new markets. 

However, the financial crisis of 1997-1998 as well as the bankruptcy of 

several financial institutions such as the BCCI and Barrings international banks have 

led to the increased price volatility and financial uncertainty. Such financial 

uncertainty have increased the likelihood of financial institutions to suffer substantial 

losses as a result of their exposure to unpredictable market changes. These events 

have made investors to become more cautious in their investment decisions while it 

has also led for the increased need for a more careful study of price volatility in stock 

markets. Indeed, recently we observe an intensive research from academics, financial 

institutions and regulators of the banking and financial sectors to better understanding 

the operation of capital markets and to develop sophisticated models to analyze 

market risk. 
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Market risk is one of the four types of risk that financial institutions can 

exposed themselves. It is considered as the most significant one since it represents the 

potential economic loss caused by the reduction in the market value of a portfolio. 

The existence of market risk and the recent financial disasters have raised the need for 

the development of practical risk management tools for financial institutions. This 

need has been reinforced by the Basel Committee of Banking Supervision (1996) has 

called for the use of internal market risk management to capital requirement by the 

financial institutions such as banks and investment firms.1 

Value-at-Risk has become the standard tool used by financial analysts to 

measure market risk. VaR is defined as a certain amount lost on a portfolio of 

financial assets with a given probability over a fixed number of days. The confidence 

level represents ‘extreme market conditions’ with a probability that is usually taken to 

be 99% or 95%. This implies that in only 1% (5%) of the cases will lose more than 

the reported VaR of a specific portfolio. VaR has become a very popular tool among 

financial analysts which is widely used because of its simplicity. Essentially the VaR 

provides a single number that represents market risk and therefore it is easily 

understood.2 

Although the VaR is conceptually a simple measure of market risk there exists 

a controversy with respect to the suitability of the alternative existing techniques 

employed to estimate the VaR. Indeed, the measurement of VaR is a very interesting 

statistical problem. Artzner et al. (1997, 1999) have derived a set of axioms that 

specify a coherent risk measure. Thus, a risk measure must poses the following 

characteristics. First. it should not exceed the maximum possible loss to occur 

                                                 
1For a detailed analysis see the Basle Committee on Banking Supervision’s (1996), “Amendment to the 
Capital Accord to Incorporate Market Risks”. Duffie and Pan (1997), Alexander (2005) and Drzik 
(2005) provide a comprehensive overview of value at risk measures.   
2 See also Bank for International Settlements (1988, 1999a,b,c, 2001). 
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Second, the proposed risk measure should be greater than the mean loss implying 

capital adequacy to cover losses. Third, in the event that there is a proportional change 

in the loss then we require that the risk measure changes proportionally as well. 

Finally, it must satisfy the property of superadditivity, implying that the risk measure 

calculated for two separate losses should be equal to the risk measure calculated on 

the sum of the two portfolios. As Boyle et al. (2005),  Alexander et al. (2005) and 

Longin (2001) among others underline that the VaR methodology has certain 

limitations since it does not satisfy the properties of subadditivity and excess of the 

mean loss. Given these reservations regarding the use of the VaR as a measure for 

market risk several researchers have developed alternative risk measures.3   

Calculating the VaR requires accurate knowledge of the distribution of 

extreme events. This is a difficult task since the distribution of portfolio returns is not 

constant over time and given that VaR is nothing more than a specific quantile of 

future portfolio values subject to current information we must find an appropriate 

model for time varying conditional quantiles. This crucial issue is coupled with the 

need for providing accurate estimates of the chosen distribution of portfolio returns. 

As Engle and Manganelli (2004) argue, if we do not correctly estimate the underlying 

market risk then this can lead to an allocation of capital below first-best and that can 

affect the profitability and/or the financial stability of the corresponding bank or an 

investment firm.   

During the last decade several approaches in estimating the profit and losses 

distribution of portfolio returns have been developed and a substantial literature of 

empirical applications have emerged. These alternative methodologies have mainly 

focused on modeling the entire distribution of returns and there are based on the strict 
                                                 
3 CVaR is an alternative risk measure that satisfies the coherency criteria by Artzner et al. (1997, 
1999). It’s advantage over VaR measures is that focuses on both the frequency and the size of extreme 
events.   
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assumptions of normality or i.i.d. returns. Engle and Manganelli (2004) have recently 

proposed an alternative approach that models not the entire distribution but focuses on 

the regression quantile which does require the above mentioned strict assumptions. 

This methodology which is called Conditional Autoregressive Value at Risk or 

CAViaR uses an autoregressive process in order to model the evolution of the 

regression quantile over time. The estimation of the unknown parameters is done with 

the use of the framework suggested by Koenker and Bassett (1978). Furthermore, 

Engle and Manganelli (2004) prove that these estimators are asymptotically efficient 

and consistent. Finally, they develop the Dynamic Quantile test which is used to 

examine the quality of the CAViaR results.4 

In this paper we apply the CAViaR methodology in order to calculate VaR 

measures. We estimate and perform an evaluation of the predictive performance of 

four alternative CAViaR specifications, namely, Adaptive, Symmetric Absolute Value, 

Asymmetric Slope and Indirect GARCH(1,1). The data used consists of daily 

observations for the period January 3, 1990 to November 31, 2004. We focus our 

analysis to three groups of variables. The first group of data consists of the returns of 

six US companies traded in the NYSE. The second group of data refers to the stock 

returns of six major Greek firms. Finally, the third group of data includes the returns 

of five stock indices: The Standard and Poor’s 500 (S&P500), the CAC40, the 

FTSE100, the NIKKEI225 and finally the FTSE20 for the Athens Stock Exchange. 

Our purpose is to compare the results obtained from the estimation of the four 

alternative CAViaR specification for a mature market, for an emerging market which 

is characterized by liquidity shortages and higher price volatility and finally across 

five equity markets of different characteristics. 

                                                 
4 Chernozhukov (1999) has derived independently the same dynamic quantile test. 
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The remainder of the paper is organized as follows. Section 2 presents some of 

the most widely used VaR models. In section 3 we discuss the CAViaR methodology 

and its proposed alternative specifications. Section 4 we report our empirical results 

and finally section 5 provides our concluding remarks.           

                  

2. Review of the literature 
 

During the 1990s several alternative modeling methodologies for the 

estimation of the VaR were advanced. The purpose of these models was to provide 

risk managers with a comprehensive and intuitively easily understood measure of the 

VaR. The motivation for the development of the VaR models relies on the stylized 

characteristics of financial data which have been firstly documented by Mandelbrot 

(1963) and Fama (1965). To recapitulate, these characteristics imply that the returns 

of financial assets have leptokurtic distributions, that their distributions are negatively 

skewed and finally they exhibit volatility clustering. As Engle and Manganelli (2001, 

2004) point out these alternative methodologies adopted a common general structure: 

(a) We mark-to-market the portfolio on a daily basis; (b) Estimation of the 

distribution of returns and (c) Computation of the portfolio’s VaR. The main 

difference among the alternative methodologies is linked to the estimation of the 

appropriate distribution of the portfolio returns. We can briefly discuss the advantages 

and disadvantages of the alternative VaR models using the following broad 

classification.5  

The first class of models are fully parametric and includes applications such 

J.P. Morgan’s Riskmetrics (1996) and GARCH models. These methodologies 

combine an econometric model with the assumption of conditional normality for the 

                                                 
5 Jorion (2000) provides a complete analysis of the VaR methodology and alternative estimation 
methodologies 
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returns series. Specifically, these models rely on the specification of the variance 

equation of the portfolio returns and the assumption that the standardized errors are 

i.i.d. Additionally, when the GARCH methodology is applied we are also required to 

specify the distribution of the errors, which is usually taken to be the normal one, 

while it is assumed that the negative returns follow the same process like the rest of 

portfolio returns, (Bams et al. 2005; Burns, 2005; Angelidis et al. 2005; Alexander et 

al., 2005; Pojarlev and Polasek, 2000 and Polasek and Pojarlev, 2005 are among some 

of the many recent applications of GARCH methodology)  

The application of the parametric methodologies has been criticized since they 

tend to give coefficients which underestimate the VaR mainly due to their failure to 

take into account the characteristic that the distribution of the portfolio returns have 

heavy tails. This underestimation of the VaR as well as possible misspecifications 

with respect to the variance equation along with the distribution of errors can be 

corrected by allowing alternative distributions of the errors such as the Gaussian, 

Student’s t and Generalized Error Distribution. However, it is further shown that the 

GARCH-type models provide satisfactory estimates of the quantile only when a bad 

event has already occurred.  

The second approach for the estimation of the distribution of profits and losses 

is the non-parametric historical simulation. This methodology makes no assumption 

about the distribution of the portfolio returns and is based on the concept of rolling 

windows. The idea is to select a window which is usually taken to be anywhere 

between 6 months to 2 years and assume that any portfolio return has the same 

likelihood to occur. Moreover, a return which falls outside the chosen window has 

probability equal to zero to occur. This methodology has several deficiencies. It is 

inappropriate to provide extreme quantiles since we cannot extrapolate beyond past 



 7

observations. The proposed solution to this problem is the increase of the sample of 

observations but this will lead to estimates of the VaR which are biased downwards 

(or upwards) since we have a mixture of periods with low volatility with periods of 

high volatility.  

Within this group of VaR models falls the hybrid approach developed by 

Boudoukh et al. (1998) which combines the historical simulation and Riskmetrics. 

This methodology applies weights to the portfolio returns that decline exponentially. 

Although this approach improves the previously discussed methodologies it also has 

problems since the selection of the parameters as well the calculation of the VaR do 

not depend on sound statistical theory but it is rather ad hoc. 

The final group for the estimation of the VaR are the semiparametric models. 

The first approach in this category is the Extreme Value Theory proposed by 

Danielsson et al. (1998) and Danielsson and de Vries (2000). The advantage of this 

approach is that it is based on sound statistical theory which offers a parametric form 

for the tail of a distribution. This approach focuses on the asymptotic form of the tail, 

rather than modeling the complete distribution of portfolio returns and therefore we 

are able to obtain more efficient forecasts of the risk associated with a particular 

market position. Although this methodology is very appealing it does have two 

shortcomings. First, as Danielson and de Vries (2000) argue this approach performs 

well at very low quantiles but they fail to provide accurate estimations of the VaR at 

levels which are not considered very extreme. Second, this methodology is also based 

on the assumption of i.i.d. standardized errors which is as we have already discussed 

an important limitations. Despite its limitations this approach have found substantial 

applications recently, (Longin 2000; McNeil and Saladin, 2000; McNeil and Frey, 

2000, Naftci 2000; Bekiros and Georgoutsos, 2005a,b; Brooks et al. 2005). 
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3. CAViaR 

 
Recently, Engle and Manganelli (2004) proposed an alternative 

semiparametric method to estimate Value at Risk, namely Conditional Autoregressive 

Value at Risk (CAViaR). This approach is based on the simple intuition that it is 

better to model directly the quantile as it evolves through time instead of attempting to 

model and estimate the entire distribution of portfolio returns. Modelling the quantile 

instead of the entire distribution has the main advantage that we are not required to 

adopt the set of extreme assumptions which are invoked by alternative methodologies, 

among them normality or that returns are i.i.d.  

As we know the basic motivation that relies behind the VaR methodologies is 

usually based on the characteristics of financial data as these have been firstly 

theorized by Mandelbrot (1963) and Fama (1965) and have been verified by 

numerous empirical works. Volatility clustering of portfolio returns is one of these 

stylized facts of financial data leads to the understanding that the corresponding 

distributions are autocorrelated. As a consequence the VaR must also follow a similar 

pattern since is directly linked with the standard deviation of the distribution. 

Therefore, Engle and Manganelli (2004) and Manganelli and Engle (2001) developed 

a conditional autoregressive quantile specification (CAViaR) in order to take account 

of the particular characteristic of the VaR. 

Following Engle and Manganelli (2004) and Manganelli and Engle (2001) we 

consider a vector of portfolio returns that is observable defined as T
tty 1}{ = . Let θ  be 

the probability tied to VaR, tx  be a vector of observable variables at time t  and θβ  to 

be a vector of unknown parameters. We also define ),()( 1 θββ −≡ tt xff to be the θ -



 9

quantile of the distribution of the portfolio returns at time t  which has been formed at 

time 1−t .6 Therefore, a general formulation of CAViaR can be written as follows: 

 

∑∑
=

−
=

− ++=
p

i
iti

q

i
itit xlaff

11
0 ),()()( ϕβγγβ                  (1) 

where ),,( ϕγβ ′′′=′ a and l  is a function of a finite number of lagged values of 

observables. Moreover, in order for the quantile to have a smooth transition we use 

the autoregressive terms qif iti ,.....1),( =− βγ . Finally, we use the term ),( ϕitxl − to 

provide a relationship between the θ -quantile )(βtf and the observable variables 

which are included in the information set. As Engle and Manganelli (2004) point out 

we can consider the lagged portfolio returns as the best choice for 1−tx . This implies 

that as 1−ty  becomes negative then one should expect the VaR to increase while the 

VaR tends to decline in good days. Therefore, we expect that changes in 1−ty will 

affect symmetrically the VaR. 

The purpose is to develop alternative specifications for the function l  and then 

estimate the different models. Engle and Manganelli (2004) propose four alternative 

CAViaR specifications which we will estimate in our case. The first specification is 

called Adaptive which takes the following formulation: 

 

})])]([exp(1{[)()( 1
1111111 θββββ −−++= −

−−− tttt fyGff                              (2) 

 

where G  is some positive finite number and we underline that as ∞→G , the last 

term of equation (1) converges to ]))(([ 1111 θββ −≤ −− tt fyI , where (.)I is the 

                                                 
6 For simplicity we have eliminated the subscript θ  from the vector of unknown parameters  
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indicator function. The intuition behind the adaptive specification tells us that in those 

cases that the VaR has been exceeded then we should increase its value whereas in 

those cases that we do not exceed it then we should reduce its value by a small 

magnitude. Such a strategy will lead to a reduction of the probability to observe a 

sequence of hits while at the same time it is highly unlike that we will have zero 

number of hits. Engle and Manganelli (2004) also point out that this CAViaR 

specification has a unit coefficient on the lagged VaR. 

A second specification is called Symmetric Absolute Value (SAV) and its 

mathematical formulation is given by: 

 

||)()( 13121 −− ++= ttt yff βββββ       (3) 

This model responds symmetrically to past portfolio returns and it is mean 

reverting since the coefficient of the lagged VaR is not constrained to equal one. 

Furthermore, we could properly specify this quantile specification using a GARCH 

model with the standard deviation (and not the variance) is considered to follow a 

symmetric distribution with i.i.d. errors.7  

The Asymmetric Slope (AS) is the third commonly used specification to 

estimate the l  function. It is written as follows: 

 

−
−

+
−− +++= )()()()( 1413121 tttt yyff ββββββ     (4) 

 

The Asymmetric Slope model allows for an asymmetric response to positive 

and negative past portfolio returns.8 Again this model is mean reverting. As with the 

                                                 
7 See also Taylor (1986), Schwert (1988) and Engle (2002). 
8 )0,min()( ),0,max()( xxxx −== −+ .  
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SAV model we can correctly specify this specification by fitting a GARCH process 

with the standard deviation following this time an asymmetric distribution with i.i.d. 

errors. 

The final specification is called Indirect GARCH(1,1) which is also mean 

reverting and as with the SAV specification it responds symmetrically to past returns. 

This specification can be correctly modeled under the assumption that the underlying 

data process follows a true GARCH(1,1) with an i.i.d. error distribution.9 The 

algebraic expression of this specification as follows:  

 

2/12
13

2
121 ))(()( −− ++= ttt yff βββββ       (5) 

 

The next to the analysis is the estimation of the parameters of the alternative 

CAViaR models. They are estimated using linear and non-linear quantile techniques. 

These techniques have been first introduced by Koenker and Basett (1978) who 

provide a thorough analysis how to apply the concept of sample quantile to a linear 

regression model. We consider the following model proposed by Engle and 

Manganelli (2004): 

 

ttt xy θεβ +′= 0                       0)|( =tt xQuant θθ ε     (6) 

where tx  is a p -vector of regressors and )|( tt xQuant θθ ε is, as we have already 

defined, the θ -quantile of tθε  conditional, on tx . White (1994) has shown that if we 

minimize the regression quantile objective function that was developed by Koenker 

                                                 
9 It is worth to note that the CAViaR specifications are more general than the fitted GARCH models. 
They can allow for a wide range of assumptions the error distribution and they can also handle 
distributions with non-i.i.d. errors.  
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and Basett (1978) we can obtain consistent estimates under certain assumptions.  This 

minimization can be consider as follows:  

We define ββ tt xf ≡)( . Then any 
^
β  that solves the following problem: 

 

)]())][(([1min ββθ
β tttt fyfyI

T
−<−      (7) 

Defines the thθ  regression quantile.  

Within this framework Engle and Manganelli (2004) show that the only 

assumption required is the appropriate specification of the quantile process and more 

specifically we do not have to specify the entire distribution of the error terms. 

Furthermore, even if we erroneously specify the regression quantile process Engle and 

Manganelli (2004) argue that we can still obtain a minimization of equation (5) that 

satisfies the Kullback-Leibler Information Criterion (which measures the deviation 

between the true specification and the actual model). 

Engle and Manganelli (2004) consider the case that 
^
β  is a non-linear 

regression quantile estimator and they prove that this estimator is consistent and 

asymptotically normal. Furthermore, they show that there is a consistent estimator of 

the variance-covariance matrix. Engle and Manganelli (2004) then go on to derive the 

asymptotic distribution of the estimator. This allows us to conduct hypothesis tests of 

the quantile models.10  

                                                 
10Following the seminal paper by Koenker and Bassett (1978) a number of alternative regression 
quantile models have been developed over the last twenty years that takes into account alternative 
assumptions about the errors. Among others, Koenker and Bassett (1982) allow for the case of 
heteroskedastic errors, whereas Portnoy (1991) considers the case of non-stationary dependent errors. 
Furthermore, we have extensions that cover the cases of time series models, simultaneous equations 
and censored regression models and recently we have also extensions that deal with the case of 
autoregressive quantiles (Koenker and Zhao), (see Engle and Manganelli, 2004 for the relevant 
literature). All these models differ from Engle and Manganelli (2004) CAViaR models since they are 
linear in the parameters.       
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Engle and Manganelli (2004) also propose a new test for the evaluation of the 

alternative specifications which has better power properties than other existing tests. 

This test allows for the inclusion of a variety of alternative specifications. We define: 

 

θββ −<≡ ))(()( 00
ttt fyfHit       (8) 

Where the function )( 0βtHit is assumed to take a value )1( θ−  every time ty  falls 

below the quantile, and it takes the value θ−  in all other cases. Equation (8) implies 

that the expectation of )( 0βtHit is zero. Furthermore, based on the definition of the 

quantile given in equation (1) we also assume that the conditional expectation of 

)( 0βtHit given a set of information at period 1−t is zero. This implies that 

)( 0βtHit must be uncorrelated with its own lagged values as well as with )( 0βtf and 

its expected value should equal zero. If these assumptions hold for )( 0βtHit  then we 

are certain that we have no misspecification error introduced, there is no 

autocorrelation in the hits, and we will obtain the correct fraction of exceptions. Based 

on definition (8) Engle and Manganelli (2004) derive two test statistics. First, they 

construct an in-sample Dynamic Quantile test. This test is a specification test which is 

used to select among alternative model specifications of a particular CAViaR process. 

Second, they construct an out-of-sample Dynamic Quantile test. This test is useful to 

the market regulators and/or the risk managers, since they can examine whether the 

VaR estimates that a particular financial institution satisfy certain properties such as 

that they are unbiased, they provide independent hits and they give quantile estimates 

which are independent. Moreover, it is argued that this second test has some nice 

features since it is simple in its application and it does not depend on the procedure 
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used for the estimation. We obtain the results from this test simply by using a series of 

VaR values and the respective value of the portfolio.11 

   

4. Empirical results 
 

We apply the alternative conditional autoregressive Value at Risk model 

specifications on daily data for the period January 3, 1990 to November 30, 2004. The 

data was taken from Datastream. Our sample of 3261 observations is divided in three 

groups. The first refers to six stocks of US companies which are traded in the NYSE, 

namely ALCOA, McDONALDS, MERK, PEPSICO, COCA COLA and EXXON. 

The second one includes six blue chips of the Athens Stock Exchange, namely 

EMPORIKI BANK, NATIONAL BANK, PIREOS BANK, ALPHA BANK, COCA 

COLA and INTRACOM. The final group includes five general stock price indices 

namely, CAC40, FTSE100, NIKKEI225, NASDAQ and FTSE20 (of the ASE). We 

follow this strategy in order to investigate the performance of the CAViaR measures 

of market risk for the case of stocks trade in a mature market, in an emerging market 

and across different stock markets. In order to implement our analysis we construct 

historical series of portfolio for each case and we choose a specification of the 

functional form of the quantile. The daily returns are computed as 100 times the 

difference of the log of the prices. 

 Our analysis begins with estimation of the four CAViaR specifications 

described in section 3. For the estimation of the models we used the first 2761 

observations and the last 500 for conducting the out-of-sample testing performance. 

                                                 
11 The complete derivation of the two tests is given in Engle and Manganelli (2004, 370-371). Granger 
et al. (1989) and Cristoffersen (1998) are among other studies which have developed test statistics for 
the validity of the forecast model, but as Engle and Manganell (2004) point out they have low power 
against misspecification introduced by the presence of serial correlation in the conditional probabilities 
leading to a quantile measurement error.  
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We estimated 1% and 5% one day Value-at-Risk.12 As Engle and Manganelli (2004) 

proved all the models are both continuous and continuously differentiable in β .13 Our 

results are summarized in Tables 1-6 and Figures 1-17. The 5% VaR estimates for the 

returns of each individual equity and for each price index are plotted on the top of 

Figures 1-17.The bottom of Figures 1-17 reports a plot of the CAViaR new impact 

curve for the 1% VaR estimates for the returns of each equity and each price index. 

Looking into these plots we note that the Adaptive and the Asymmetric Slope new 

impact curves differ from the other two. That is, both the Indirect GARCH and 

Symmetric Absolute Slope models we observe that positive or negative returns have a 

symmetric impact on VaR. Furthermore, in the case of the Adaptive model it is clear 

that the most important news is whether past returns exceeded the previous VaR 

estimate or not.  

We now turn to the results reported in Tables 1- 6 and we begin with an 

explanation of the relevant lines. Each table reports the value of the estimated 

parameters, the respective standard errors and the one-sided p-values. Furthermore, 

each table shows the value of the regression objective function given by equation 3 

above. Finally, we report the percentage of times the VaR is exceeded and the in and 

out-of-sample p-value of the Dynamic Quantile test. The computation of the VaR 

series with the CAViaR models has been done with the initialization of )(1 βf to the 

empirical θ -quantile of the first 300 observations. With respect to the computation of 

the DQ test we used a constant, the VaR forecast and the first four lagged hits as 

instrumental variables. In contrast, to avoid the presence of collinearity in the matrix 

of the first and higher order derivatives we did not include the constant and the VaR 

                                                 
12 To estimate the Adaptive model we set 10=G , in all cases that G  entered the definition of the 
Adaptive model in section 3. 
13 All assumptions which these models need to satisfy are given in Appendix A of Engle and 
Manganelli (2004) and they refer to asymptotic results but difficult to verify in finite samples. 
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forecast.14 Following Engle and Manganelli (2004) we compute the standard errors 

and the variance covariance matrix of the in-sample DQ test and the calculation of the 

statistics TD
^

 and TM
^

 was done with the use of the k-nearest neighbour estimators, 

with 40=k  for the 1% VaR and 60=k for the 5% VaR.15 

The first important observation we make in all six tables is that the coefficient 

2β  is very significant and this implies that volatility clustering is verified not only for 

the stock price returns of the five general indices but also in the returns of the 

companies’ equity and more specifically this carries over to the tails of the 

distribution. Second, we note the accuracy of the alternative models. This is measured 

by the percentage of in-sample hits. Consider the results of the 1% VaR. We observe 

that for either the case of the mature market or the emerging market or even the case 

of the general stock indices the Symmetric Absolute Value, the Asymmetric Slope 

and the Indirect GARCH models provide estimates which are extremely close to the 

value of 1 and this is taken as evidence that they describe the evolution of the tail for 

most of the cases. Specifically, the results are particularly good for the stock returns 

of McDONALDS, MERK, COCA COLA and EXXON companies. In these cases we 

further observe that the out-of-sample hits are exactly equal to one or about 1.2%. For 

the stock returns of ALCOA and PEPSICO the accuracy of the in-sample hits is fairly 

good but the out-of sample hits are substantially below the value of 1. Furthermore, 

for most cases the Adaptive model provides inferior results either for in and out-of 

sample hits. Similar evidence is also obtained for the case of the companies listed in 

                                                 
14 As  Engle and Manganelli (2004) point out the lagged hit variables contain the indicator function. 
Given that the indicator function is Lipschitz continuous it satisfies condition DQ3 of theorem 4 (Engle 
and Manganelli, 2004).  
15 The calculation of the two statistics is described in Engle and Manganelli theorem 3 and 4. 
Furthermore, we for the optimization procedures we adopt the strategy explained in Engle and 
Manganelli (2004). The computations were made in Matlab 6.1 using the functions fminsearch and 
fminunc as the optimization algorithms while the loops to compute the recursive quantile functions 
were coded in C and they have been developed by Manganelli. 
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the Athens Stock Exchange. Again we see that the Symmetric Absolute Value, the 

Asymmetric Slope and the Indirect GARCH models provide accurate in-sample 

estimations whereas the Adaptive specification provides estimates well away from the 

1% benchmark. The picture emerging for the comparison of the results for the five 

stock indices provides a similar pattern. The Symmetric Absolute Value, the 

Asymmetric Slope and the Indirect GARCH provide in-sample hits near the value of 

1 but the out-of sample hits are in distance from this value. This is more evident for 

the FTSE20 which measures the performance of the 20 most important companies in 

the Athens Stock Exchange.   

We then turn to the results for the 5% VaR. We first discuss the results for the 

U.S. companies which are traded in the NYSE. The in-sample hits range from 4.9% to 

5.1% for the Symmetric Absolute Value, the Asymmetric Slope and the Indirect 

GARCH models while the Adaptive model misses the target in this case as well. The 

out-of sample forecasts are the cases of MERK when we apply any of these three 

models and also for the case of ALCOA when we apply the Indirect GARCH 

specification. When we turn to the case of the companies from the emerging markets 

we note that  we obtain estimates which are extremely close to the value of 5% and 

this is taken as evidence that they describe the evolution of the tail for all cases under 

consideration. Looking into the out-of-sample forecasts the performance is similar to 

the one obtained in the developed market. Finally, a similar pattern emerges for all 

three specifications as well the adaptive model when we examine the five stock 

indices. A noticeable exemption is the FTSE20 index. The rejection of all 

specifications by the Dynamic Quantile-in-sample test may be attributed to the 

presence of a speculative bubble during the period 1998-2000.  
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A final comment we make is that in most cases the estimation of the 

Asymmetric Slope model give coefficient estimates for the negative lagged returns 

which are always negative while the estimates associated with the positive returns are 

not significantly different than zero. 

The overall results from the present analysis show that the DQ test statistics 

select different CAViaR specifications for different confidence internals and this may 

lead to the argument that the process guiding the tail behaviour changes over time 

which contradicts the fundamental assumptions of the volatility parametric models 

that the tails of the distribution follow the same process like the rest of the portfolio 

returns. 

 

5. Summary and concluding remarks 

The present paper utilized a new framework for the estimation of the VaR for 

portfolio returns. The CAViaR modeling procedure has been recently proposed by 

Engle and Manganelli (2004) and it is a semiparametric method which shifts the 

analysis of developing a good measure of the VaR from the distribution of the 

portfolio returns directly to the behavior of the quantile.  

We apply this methodology to estimate the VaR using daily observations for 

the period January 3, 1990 to November 30, 2004. We study the behaviour of four 

alternative CAViaR specifications for three sets of portfolio returns. We consider the 

equities of six U.S. companies, then the equities of six companies listed in the Athens 

Stock Exchange and finally five general indices. 

The overall results show that this methodology provides very accurate 

measurement of the VaR for the US companies but provides less satisfactory results 
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for the case of the companies whose stocks are traded at the ASE as well as for the 

five price indices.     
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TABLE 1:  Estimates and Relevant Statistics for the four Conditional Autoregressive Value at Risk Models 
1%VaR Symmetric Absolute Value Asymmetric slope Indirect GARCH Adaptive 

 ALCOA MCD MRK ALCOA MCD MRK ALCOA MCD MRK ALCOA MCD MRK 
Beta 1 0.0129 0.1085 0.1364 0.0310 0.1378 0.0554 0.1538 0.2204 0.0706 1.1023 0.4687 0.3404 
Standard Errors 0.0053 0.0403 0.0516 0.0242 0.0665 0.0328 0.1029 0.1823 0.0753 0.0943 0.1188 0.1046 
p values 0.0076 0.0035 0.0041 0.1004 0.0192 0.0455 0.0674 0.1133 0.1742 0.0000 0.0000 0.0006 
Beta 2 0.9923 0.9419 0.9475 0.9653 0.8964 0.9711 0.9731 0.9432 0.9859 0 0 0 
Standard Errors 0.0033 0.0295 0.0162 0.0170 0.0361 0.0161 0.0049 0.0144 0.0044 0 0 0 
p values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 
Beta 3 0.0223 0.1483 0.1059 -0.0009 0.1263 0.0090 0.1081 0.2500 0.0633 0 0 0 
Standard Errors 0.0084 0.0729 0.0394 0.0312 0.0713 0.0432 0.3793 0.2190 0.3635 0 0 0 
p values 0.0039 0.0209 0.0036 0.4885 0.0382 0.4172 0.3878 0.1268 0.4309 0 0 0 
Beta  4 0 0 0 0.1823 0.3119 0.0936 0 0 0 0 0 0 
Standard Errors 0 0 0 0.0993 0.1485 0.0334 0 0 0 0 0 0 
p values 0 0 0 0.0332 0.0178 0.0025 0 0 0 0 0 0 
RQ 195.47 188.14 190.88 190.86 1.88.14 189.86 196.34 190.17 192.91 199.49 190.10 194.03 
Hits in-sample(%) 0.9822 0.9822 0.9822 0.9515 0.9822 0.9822 1.0129 1.0129 0.9822 1.0436 1.0743 1.1050 
Hits out-of-sample(%) 0.6000 1.0000 1.0000 1.2000 1.4000 1.0000 0.8000 1.0000 1.0000 0.8000 0.4000 1.0000 
DQ in-sample (p values) 0.0433 0.0967 0.5054 0.7451 0.7436 0.7340 0.0262 0.0655 0.4657 0.5298 0.0702 0.5975 
DQ out-of-sample (p values) 0.9912 0.9430 0.9996 0.8445 0.9044 0.9998 0.9966 0.9809 0.9980 0.8857 0.9133 0.0012 

 
5%VaR Symmetric Absolute Value Asymmetric slope Indirect GARCH Adaptive 

 ALCOA MCD MRK ALCOA MCD MRK ALCOA MCD MRK ALCOA MCD MRK 
Beta 1 0.0071 0.0387 0.0306 0.0069 0.0038 0.0414 0.0573 0.0175 0.0043 0.1501 0.2859 0.4779 
Standard Errors 0.0029 0.0115 0.0167 0.0042 0.0138 0.0214 0.0448 0.0271 0.0241 0.0355 0.0602 0.0675 
p values 0.0073 0.0004 0.0339 0.0497 0.3919 0.0267 0.1005 0.2588 0.4299 0.0000 0.0000 0.0000 
Beta 2 0.9927 0.9595 0.9652 0.9858 0.9601 0.9512 0.9650 0.9695 0.9667 0 0 0 
Standard Errors 0.0039 0.0068 0.0089 0.0036 0.0086 0.0119 0.0069 0.0045 0.0043 0 0 0 
p values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 
Beta 3 0.0146 0.0792 0.0703 0.0071 0.0757 0.0190 0.0677 0.0655 0.0747 0 0 0 
Standard Errors 0.0065 0.0142 0.0154 0.0083 0.0232 0.0224 0.0816 0.1061 0.2297 0 0 0 
p values 0.0118 0.0000 0.0000 0.1936 0.0006 0.1980 0.2032 0.2687 0.3726 0 0 0 
Beta  4 0 0 0 0.0425 0.0785 0.1163 0 0 0 0 0 0 
Standard Errors 0 0 0 0.0079 0.0146 0.0278 0 0 0 0 0 0 
p values 0 0 0 0.0000 0.0000 0.0000 0 0 0 0 0 0 
RQ 677.75 592.47 627.77 674.74 592.88 620.30 677.95 594.59 630.23 681.04 605.12 622.69 
Hits in-sample(%) 5.0031 5.0031 4.9724 5.0031 4.9724 4.9724 5.0645 4.9417 5.0645 5.4328 5.1565 4.8496 
Hits out-of-sample(%) 4.4000 3.8000 5.4000 4.4000 4.4000 4.8000 5.2000 3.2000 5.0000 3.4000 3.2000 4.4000 
DQ in-sample (p values) 0.0140 0.1404 0.0140 0.1782 0.1606 0.7128 0.0858 0.1879 0.0627 0.0528 0.0180 0.3899 
DQ out-of-sample (p values) 0.9565 0.8789 0.0189 0.8185 0.8299 0.0001 0.8871 0.5762 0.0932 0.6494 0.2679 0.0001 
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TABLE 2:  Estimates and Relevant Statistics for the four Conditional Autoregressive Value at Risk Models 
1%VaR Symmetric Absolute Value Asymmetric slope Indirect GARCH Adaptive 

 PEPSI COCA EXXON PEPSI COCA EXXON PEPSI COCA EXXON PEPSI COCA EXXON 
Beta 1 0.1531 1.4012 0.1670 0.1893 0.6336 0.0669 1.0975 1.4216 0.1877 0.3986 0.7651 0.5317 
Standard Errors 0.0894 0.0463 0.0273 0.1461 0.1865 0.0416 1.1544 0.7568 0.1475 0.1512 0.1216 0.0703 
p values 0.0434 0.0003 0.0000 0.0975 0.0002 0.0538 0.1709 0.0302 0.1016 0.0042 0.0000 0.0006 
Beta 2 0.9335 0.5229 0.8988 0.8908 0.6457 0.8963 0.8907 0.7763 0.8978 0 0 0 
Standard Errors 0.0341 0.1213 0.0159 0.0159 0.0847 0.0251 0.0622 0.0545 0.0186 0 0 0 
p values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 
Beta 3 0.1428 0.6255 0.2782 0.1347 0.3432 0.2328 0.3138 0.8323 0.5366 0 0 0 
Standard Errors 0.0674 0.1288 0.0392 0.0567 0.2089 0.1054 0.2677 0.4695 0.1362 0 0 0 
p values 0.0000 0.0000 0.0000 0.0087 0.0502 0.0133 0.1206 0.0381 0.0000 0 0 0 
Beta  4 0 0 0 0.2831 0.9444 0.2960 0 0 0 0 0 0 
Standard Errors 0 0 0 0.1890 0.4007 0.0602 0 0 0 0 0 0 
p values 0 0 0 0.0671 0.0092 0.0000 0 0 0 0 0 0 
RQ 189.41 177.50 135.52 187.63 173.17 136.14 191.72 176.32 135.89 193.89 185.87 140.26 
Hits in-sample(%) 0.9813 1.0120 0.9813 0.9813 0.9813 0.9813 1.0120 1.0120 1.0120 1.0120 1.0426 1.1653 
Hits out-of-sample(%) 0.6000 1.0000 1.2000 0.6000 1.2000 1.2000 0.2000 1.2000 1.2000 0 0.6000 0.2000 
DQ in-sample (p values) 0.7362 0.5610 0.0429 0.7391 0.6177 0.5510 0.7484 0.5684 0.5809 0.4893 0.0032 0.0807 
DQ out-of-sample (p values) 0.9833 0.9966 0.8638 0.9879 0.9860 0.9498 0.7805 0.9943 0.9552 0.9601 0.9073 0.7836 

 
5%VaR Symmetric Absolute Value Asymmetric slope Indirect GARCH Adaptive 

 PEPSI COCA EXXON PEPSI COCA EXXON PEPSI COCA EXXON PEPSI COCA EXXON 
Beta 1 0.0946 0.1934 0.0437 0.0662 0.1443 0.0066 0.1454 0.2656 0.0202 0.3468 0.3201 0.2053 
Standard Errors 0.0214 0.0515 0.0107 0.0217 0.0323 0.0076 0.0560 0.1431 0.0233 0.0656 0.0366 0.0428 
p values 0.0000 0.0001 0.0000 0.0011 0.0000 0.1948 0.0047 0.0317 0.1928 0.0000 0.0000 0.0000 
Beta 2 0.9344 0.8660 0.9525 0.9319 0.8581 0.9525 0.9368 0.8652 0.9504 0 0 0 
Standard Errors 0.0131 0.0390 0.0147 0.0151 0.0170 0.0099 0.0081 0.0281 0.0055 0 0 0 
p values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 
Beta 3 0.0893 0.1726 0.0953 0.0648 0.0653 0.1264 0.0923 0.2080 0.1161 0 0 0 
Standard Errors 0.0192 0.0525 0.0249 0.0191 0.0306 0.0242 0.1177 0.0587 0.1135 0 0 0 
p values 0.0000 0.0005 0.0001 0.0003 0.0163 0.0000 0.2165 0.0002 0.1532 0 0 0 
Beta  4 0 0 0 0.1091 0.2681 0.0533 0 0 0 0 0 0 
Standard Errors 0 0 0 0.0389 0.0277 0.0219 0 0 0 0 0 0 
p values 0 0 0 0.0025 0.0000 0.0074 0 0 0 0 0 0 
RQ 623.46 579.55 484.60 622.10 568.39 480.85 623.65 579.41 483.60 630.41 579.35 494.31 
Hits in-sample(%) 4.9678 4.9678 5.0291 4.9371 5.0291 5.0291 5.0291 5.0598 4.8758 4.9371 5.2131 48.496 
Hits out-of-sample(%) 2.4000 3.4000 4.2000 2.4000 3.0000 3.2000 2.4000 3.4000 4.0000 3.6000 4.0000 3.2000 
DQ in-sample (p values) 0.3575 0.0067 0.5124 0.8367 0.1924 0.3690 0.3200 0.0072 0.3057 0.0460 0.0000 0.0994 
DQ out-of-sample (p values) 0.1050 0.4659 0.6450 0.1253 0.4333 0.4603 0.1385 0.7249 0.5205 0.3270 0.2391 0.2233 
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TABLE 3:  Estimates and Relevant Statistics for the four Conditional Autoregressive Value at Risk Models 
1%VaR Symmetric Absolute Value Asymmetric slope Indirect GARCH Adaptive 

 EMPOR NATL PIREOS EMPOR NATL PIREOS EMPOR NATL PIREOS EMPOR NATL PIREOS 
Beta 1 0.4835 2,1290 3.6870 0.7331 1.4806 2.5196 0.3568 7.8829 0.6931 1.0399 0.7350 0.5332 
Standard Errors 0.2192 0.5544 3.4230 0.3842 0.3142 2.5472 0.3222 3.1256 0.6514 0.1434 0.3740 0.2170 
p values 0.0137 0.0000 0.1411 0.0282 0.0000 0.1613 0.1341 0.0058 0.1436 0.0000 0.0247 0.0070 
Beta 2 0.8853 0.4313 0.4382 0.7995 0.4985 0.5521 0.9778 0.3071 0.9817 0 0 0 
Standard Errors 0.0470 0.1379 0.4523 0.0752 0.0778 0.3197 0.0094 0.1169 0.0106 0 0 0 
p values 0.0000 0.0009 0.1663 0.0000 0.0000 0.0421 0.0000 0.0043 0.0000 0 0 0 
Beta 3 0.1795 0.9970 0.3303 0.1861 0.3913 0.3072 0.0881 3.4734 0.0426 0 0 0 
Standard Errors 0.0835 0.4031 0.1164 0.0887 0.0837 0.1491 0.4934 2.3526   0.1701 0 0 0 
p values 0.0158 0.0067 0.0023 0.0179 0.0000 0.0197 0.4291 0.0699 0.4012 0 0 0 
Beta  4 0 0 0 0.4316 1.0516 0.4577 0 0 0 0 0 0 
Standard Errors 0 0 0 0.1840 0.3405 0.2100 0 0 0 0 0 0 
p values 0 0 0 0.0095 0.0010 0.0147 0 0 0 0 0 0 
RQ 119.78 123.06 129.36 116.88 114.36 128.41 118.64 124.68 130.99 120.04 137.64 134.68 
Hits in-sample(%) 1.0695 1.0695 1.0027 1.0695 1.0027 1.0027 1.0027 1.0027 1.0027 0.7353 0.6016 0.8690 
Hits out-of-sample(%) 0.2000 0.4000 0.0000 0.2000 0.6000 0.0000 0.0000 0.4000 0.8000 0.2000 0.8000 0.6000 
DQ in-sample (p values) 0.1813 0.0004 0.8680 0.9281 0.9770 0.9872 0.2268 0.2743 0.0482 0.0976 0.0284 0.0200 
DQ out-of-sample (p values) 0.7675 0.8612 0.8512 0.7839 0.8290 0.9321 0.9189 0.9423 0.9319 0.9983 0.9877 0.7415 

 
5%VaR Symmetric Absolute Value Asymmetric slope Indirect GARCH Adaptive 

 EMPOR NATL PIREOS EMPOR NATL PIREOS EMPOR NATL PIREOS EMPOR NATL PIREOS 
Beta 1 0.7409 0.7495 1.0755 0.5382 0.4286 1.0766 2.9160 1.9948 1.5333 0.7912 0.4151 1.1619 
Standard Errors 0.2864 0.1750 0.0107 0.1944 0.0891 0.3022 1.1063 0.3666 0.7489 0.0742 0.1340 0.1021 
p values 0.0203 0.0000 0.0000 0.0028 0.0000 0.0002 0.0042 0.0000 0.0203 0.0000 0.0034 0.0000 
Beta 2 0.7086 0.6478 0.5677 0.7162 0.6843 0.6843 0.4940 0.6392 0.6151 0 0 0 
Standard Errors 0.1158 0.0825 0.1279 0.0704 0.0449 0.0449 0.0919 0.0867 0.0434 0 0 0 
p values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 
Beta 3 0.2653 0.4102 0.4386 0.1687 0.2814 0.2194 0.4039 0.5401 0.4878 0 0 0 
Standard Errors 0.1298 0.0823 0.0827 0.0827 0.0479 0.0576 0.4735 0.2613 0.1974 0 0 0 
p values 0.0067 0.0000 0.0000 0.0000 0.0000 0.0001 0.1968 0.0194 0.0067 0 0 0 
Beta  4 0 0 0 0.4274 0.5459 0.6461 0 0 0 0 0 0 
Standard Errors 0 0 0 0.1005 0.0784 0.0886 0 0 0 0 0 0 
p values 0 0 0 0.0000 0.0000 0.0000 0 0 0 0 0 0 
RQ 405.49 400.22 449.08 394.87 389.85 437.31 407.67 399.33 446.34 426.05 448.56 469.39 
Hits in-sample(%) 5.0134 5.0134 4.9465 5.0134 5.0134 5.0134 5.0134 5.1471 5.0134 5.1471 4.6123 4.9465 
Hits out-of-sample(%) 3.2000 2.8000 3.0000 3.6000 2.8000 3.6000 2.8000 3.2000 3.6000 2.8000 4.4000 4.8000 
DQ in-sample (p values) 0.0107 0.0004 0.0461 0.9904 0.0937 0.8497 0.0069 0.0001 0.3057 0.3500 0.0068 0.0000 
DQ out-of-sample (p values) 0.6045 0.2053 0.0182 0.4389 0.2606 0.4977 0.3923 0.3304 0.0628 0.4411 0.2778 0.4747 
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TABLE 4:  Estimates and Relevant Statistics for the four Conditional Autoregressive Value at Risk Models 
1%VaR Symmetric Absolute Value Asymmetric slope Indirect GARCH Adaptive 

 ALPHA COCA INTRAC ALPHA COCA INTRAC ALPHA COCA INTRAC ALPHA COCA INTRAC 
Beta 1 1.4927 6.3413 1.2069 0.9554 2.7066 0.9683 1.7594 21.8432 4.8359 0.8267 0.1781 0.5916 
Standard Errors 0.4021 4.4284 0.5123 0.4837 3.5445 0.5805 1.0322 48.1658 2.2902 0.4996 0.3611 0.2144 
p values 0.0001 0.0761 0.0092 0.0242 0.2225 0.0477 0.0441 0.3251 0.0174 0.0490 0.3110 0.0029 
Beta 2 0.5945 0.1557 0.6764 0.6189 0.6070 0.6625 0.8226 0.5943 0.6787 0 0 0 
Standard Errors 0.0629 0.5282 0.0930 0.0706 0.4883 0.1071 0.0369 0.7880 0.0761 0 0 0 
p values 0.0000 0.3841 0.0000 0.0000 0.1069 0.0000 0.0000 0.2254 0.0000 0 0 0 
Beta 3 0.7158 0.1643 0.5244 0.7033 -0.0306 0.4937 0.9738 0.2294 1.1203 0 0 0 
Standard Errors 0.0778 0.1238 0.0948 0.0925 0.0918 0.1148 0.1285 0.1909   0.6541 0 0 0 
p values 0.0000 0.0922 0.0000 0.0000 0.3695 0.0000 0.0000 0.1148 0.0434 0 0 0 
Beta  4 0 0 0 0.8742 0.1815 0.6573 0 0 0 0 0 0 
Standard Errors 0 0 0 0.4414 0.1480 0.1511 0 0 0 0 0 0 
p values 0 0 0 0.0238 0.1100 0.0000 0 0 0 0 0 0 
RQ 88.73 115.07 88.03 89.55 114.47 87.22 89.05 114.36 86.67 102.28 117.31 97.58 
Hits in-sample(%) 0.9959 1.0788 0.9959 0.9959 0.9959 0.9129 0.9959 1.0788 0.9959 0.6639 0.7469 0.4979 
Hits out-of-sample(%) 0.8000 0.2000 0.6000 1.0000 0.2000 0.6000 0.8000 0.2000 0.8000 0.8000 0.2000 0.6000 
DQ in-sample (p values) 0.9798 0.9851 0.9897 0.9793 0.9880 0.1261 0.9853 0.9882 0.1675 0.9995 0.9981 1.0000 
DQ out-of-sample (p values) 0.8899 0.7594 0.9910 0.0010 0.7840 0.9907 0.9520 0.7839 0.9990 0.0002 0.7511 0.8849 

 
5%VaR Symmetric Absolute Value Asymmetric slope Indirect GARCH Adaptive 

 ALPHA COCA INTRAC ALPHA COCA INTRAC ALPHA COCA INTRAC ALPHA COCA INTRAC 
Beta 1 0.8476 1.0556 0.9945 1.8229 1.0786 0.8248 2.9534 3.9872 4.3256 0.4977 -0.0514 0.3803 
Standard Errors 0.3176 0.4259 0.3019 0.2970 0.3862 0.3590 1.1873 1.8558 1.1824 0.1827 0.0651 0.1184 
p values 0.0038 0.0066 0.0005 0.0000 0.0026 0.0108 0.0064 0.0158 0.0001 0.0032 0.2149 0.0007 
Beta 2 0.6039 0.6370 0.5869 0.2173 0.6327 0.5948 0.5332 0.6309 0.4205 0 0 0 
Standard Errors 0.1185 0.1206 0.1013 0.0909 0.0908 0.0994 0.0896 0.0856 0.0704 0 0 0 
p values 0.0000 0.0000 0.0000 0.0084 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 
Beta 3 0.5401 0.3658 0.4347 0.5217 0.1671 0.2713 0.8778 0.4947 0.7805 0 0 0 
Standard Errors 0.1415 0.1001 0.1537 0.2060 0.0692 0.0500 0.2100 0.1239 0.2309 0 0 0 
p values 0.0004 0.0001 0.0023 0.0057 0.0079 0.0000 0.0000 0.0000 0.0004 0 0 0 
Beta  4 0 0 0 0.8110 0.4052 0.5062 0 0 0 0 0 0 
Standard Errors 0 0 0 0.1003 0.1200 0.0743 0 0 0 0 0 0 
p values 0 0 0 0.0000 0.0004 0.0000 0 0 0 0 0 0 
RQ 328.17 396.05 316.52 325.50 391.16 311.99 324.59 395.25 311.33 357.88 409.43 329.83 
Hits in-sample(%) 4.9793 4.9793 5.0622 4.8133 5.0622 5.0622 5.0622 4.9793 5.0622 4.6473 4.5643 4.7303 
Hits out-of-sample(%) 3.2000 2.8000 2.8000 2.0000 3.2000 2.4000 2.2000 3.6000 2.4000 4.8000 1.0000 4.8000 
DQ in-sample (p values) 0.4828 0.0377 0.0030 0.7456 0.5790 0.4113 0.4624 0.2472 0.0594 0.0000 0.0016 0.0000 
DQ out-of-sample (p values) 0.0348 0.4221 0.2285 0.0396 0.5460 0.2457 0.0268 0.4080 0.2197 0.1837 0.0103 0.3573 
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TABLE 5:  Estimates and Relevant Statistics for the four Conditional Autoregressive Value at Risk Models 
1%VaR Symmetric Absolute Value Asymmetric Slope Indirect GARCH Adaptive 

 CAC40 FTSE20 NIKKEI CAC40 FTSE20 NIKKEI CAC40 FTSE20 NIKKEI CAC40 FTSE20 NIKKEI 
Beta 1 0.1756 0.0196 0.1600 0.1359 0.5886 0.3751 0.2344 0.0029 0.1611 0.7361 1.0875 1.1999 
Standard Errors 0.0829 0.0080 0.0473 0.0523 0.2954 0.1279 0.1597 0.0670 0.1464 0.1247 0.1570 0.1184 
p values 0.0170 0.0072 0.0004 0.0047 0.0232 0.0017 0.0712 0.4826 0.1357 0.0000 0.0000 0.0000 
Beta 2 0.9147 0.9820 0.9152 0.9102 0.6610 0.7371 0.9332 0.9374 0.8318 0 0 0 
Standard Errors 0.0468 0.0059 0.0315 0.0265 0.0629 0.1028 0.0134 0.0105 0.0344 0 0 0 
p values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 
Beta 3 0.1859 0.0737 0.2026 0.0529 0.4222 -0.0916 0.2912 0.4632 1.2497 0 0 0 
Standard Errors 0.0818 0.0228 0.0779 0.0608 0.4241 0.1092 0.2758 0.6007   0.9294 0 0 0 
p values 0.0116 0.0006 0.0047 0.1923 0.1597 0.2009 0.1455 0.2203 0.0894 0 0 0 
Beta  4 0 0 0 0.2552 1.0165 0.9297 0 0 0 0 0 0 
Standard Errors 0 0 0 0.0658 0.1658 0.3542 0 0 0 0 0 0 
p values 0 0 0 0.0001 0.0000 0.0043 0 0 0 0 0 0 
RQ 81.48 111.01 84.22 79.29 107.25 77.25 80.94 110.47 83.01 88.03 118.82 89.88 
Hits in-sample(%) 1.0246 0.9734 1.0246 0.9734 1.0758 1.0246 1.0246 1.0758 1.0758 1.3320 1.0758 1.0758 
Hits out-of-sample(%) 05988 0.5988 1.1976 0.9980 0.1996 1.5968 0.5988 0.7984 1.1976 0.1996 0.7984 0.7984 
DQ in-sample (p values) 0.0004 0.1214 0.0000 0.0543 0.6991 0.2244 0.0005 0.0786 0.2540 0.0001* 0.0000* 0.0000* 
DQ out-of-sample (p values) 0.9694 0.9903 0.9630 0.9841 0.7823 0.1204 0.9746 0.9632 0.7756 0.7750 0.7984 0.7984 

 
5%VaR Symmetric Absolute Value Asymmetric slope Indirect GARCH Adaptive 

 CAC40 FTSE20 NIKKEI CAC40 FTSE20 NIKKEI CAC40 FTSE20 NIKKEI CAC40 FTSE20 NIKKEI 
Beta 1 0.1311 0.1126 0.1588 0.0312 0.3842 0.1122 0.0799 0.4431 0.1262 0.6720 0.9906 0.8242 
Standard Errors 0.0264 0.0283 0.0341 0.0140 0.1388 0.0324 0.0459 0.2502 0.0417 0.0739 0.1106 0.0650 
p values 0.0000 0.0000 0.0000 0.0130 0.0028 0.0003 0.0409 0.0383 0.0012 0.0000 0.0000 0.0000 
Beta 2 0.8919 0.9075 0.8368 0.9221 0.6349 0.8300 0.8939 0.7553 0.7824 0 0 0 
Standard Errors 0.0340 0.0190 0.0576 0.0289 0.0780 0.0392 0.0116 0.0508 0.0166 0 0 0 
p values 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 
Beta 3 0.1903 0.1667 0.3014 0.0598 0.2100 -0.0210 0.2791 0.5059 0.4751 0 0 0 
Standard Errors 0.0552 0.1001 0.0890 0.0531 0.1216 0.0392 0.2453 0.3811 0.3255 0 0 0 
p values 0.0003 0.0001 0.0003 0.1300 0.0421 0.2959 0.1277 0.0922 0.0722 0 0 0 
Beta  4 0 0 0 0.2137 0.7067 0.4391 0 0 0 0 0 0 
Standard Errors 0 0 0 0.0668 0.0781 0.1505 0 0 0 0 0 0 
p values 0 0 0 0.0007 0.0000 0.0018 0 0 0 0 0 0 
RQ 298.91 380.54 243.99 295.29 361.72 228.74 297.37 377.12 244.83 304.58 387.01 249.12 
Hits in-sample(%) 5.0205 5.0205 5.0205 4.9693 5.0717 4.9693 5.0205 5.0717 5.1230 5.0205 4.9693 4.7643 
Hits out-of-sample(%) 3.9920 3.7924 6.3872 4.3912 4.5908 8.3832 3.5928 3.1936 6.5868 3.3932 4.7904 4.9900 
DQ in-sample (p values) 0.4757 0.0000* 0.0045* 0.8365 0.0090* 0.0676 0.9484 0.0001* 0.0141 0.8822 0.0575 0.1657 
DQ out-of-sample (p values) 0.5708 0.6619 0.2786 0.8020 0.9689 0.0001 0.4439 0.4835 0.2790 0.2264 0.0937 0.3811 
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TABLE 6:  Estimates and Relevant Statistics for the four Conditional Autoregressive Value at Risk Models 
1%VaR Symmetric Absolute Value Asymmetric Slope Indirect GARCH Adaptive 

 NASDAQ FTSE100  NASDAQ FTSE100  NASDA FTSE100  NASDAQ FTSE100  
Beta 1 0.5159 0.0674  0.2461 0.0471  0.7020 0.0772  0.9360 0.0124  
Standard Errors 0.3314 0.0737  0.1741 0.0508  0.3597 0.1674  0.0903 0.1243  
p values 0.0598 0.1802  0.0788 0.1769  0.0232 0.3223  0.0000 0.4602  
Beta 2 0.7005 0.9527  0.6062 0.9593  0.5940 0.9454  0 0  
Standard Errors 0.1718 0.0488  0.1295 0.0297  0.0710 0.0492  0 0  
p values 0.0000 0.0000  0.0000 0.0000  0.0000 0.0000  0 0  
Beta 3 0.9168 0.1226  0.7504 -0.0094  2.2256 0.2103  0 0  
Standard Errors 0.2230 0.0520  0.1677 0.0448  0.7681 0.4721  0 0  
p values 0.2203 0.0092  0.0000 0.4171  0.0019 0.3279  0 0  
Beta  4 0 0  1.5136 0.1087  0 0  0 0  
Standard Errors 0 0  1.0013 0.0588  0 0  0 0  
p values 0 0  0.0653 0.0323  0 0  0 0  
RQ 63.32 49.74  60.02 48.84  62.33 49.88  88.47 51.18  
Hits in-sample(%) 0.9734 1.0246  0.9734 1.0246  1.0758 1.0246  0.9734 0.7684  
Hits out-of-sample(%) 0.9980 0.7984  1.3972 0.7984  0.7984 0.7984  0.9980 0.3392  
DQ in-sample (p values) 0.2292 0.4542  0.9610 0.9598  0.2292 0.9667  0.0000* 0.9944  
DQ out-of-sample (p values) 0.8073 0.9968  0.5547 0.9962  0.9838 0.9994  0.6600 0.7911  

 
5%VaR Symmetric Absolute Value Asymmetric Slope Indirect GARCH Adaptive 

 NASDA FTSE100  NASDAQ FTSE100  NASDAQ FTSE100  NASDAQ FTSE100  
Beta 1 0.2797 0.1466  0.2068 0.0903  0.1615 0.1566  0.5404 0.1577  
Standard Errors 0.0220 0.1526  0.0282 0.0493  0.0376 0.0954  0.0506 0.0519  
p values 0.0000 0.0000  0.0000 0.0335  0.0000 0.0504  0.0000 0.0012  
Beta 2 0.7067 0.8719  0.6642 0.8965  0.6758 0.8731  0 0  
Standard Errors 0.0143 0.1476  0.0434 0.0429  0.0162 0.0600  0 0  
p values 0.0000 0.0000  0.0000 0.0000  0.0000 0.0000  0 0  
Beta 3 0.5544 0.0639  0.0238 -0.0094  0.8632 0.0694  0 0  
Standard Errors 0.0163 0.0636  0.0465 0.0337  0.5659 0.1216  0 0  
p values 0.0000 0.1574  0.3048 0.3898  0.0636 0.0421  0 0  
Beta  4 0 0  0.7806 0.1360  0 0  0 0  
Standard Errors 0 0  0.1148 0.0628  0 0  0 0  
p values 0 0  0.0000 0.0151  0 0  0 0  
RQ 199.44 169.08  184.03 166.15  198.56 169.08  213.93 169.43  
Hits in-sample(%) 4.9693 4.9693  5.0205 4.9180  4.8668 4.9693  4.8156 4.1496  
Hits out-of-sample(%) 5.5888 3.9920  5.5888 4.9900  5.3892 3.9920  4.7904 5.1896  
DQ in-sample (p values) 0.9765 0.0000*  0.9392 0.8597  0.8079 0.0004  0.0745 0.9593  
DQ out-of-sample (p values) 0.0956 0.1905  0.1762 0.0941  0.0272* 0.4143  0.2356 0.1716  
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Figure  1(a):   5% Estimated Conditional Autoregressive VaR Plots for ALCOA: (a) Symmetric 
Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
 

 
Figure  1(b):   1% Estimated Conditional Autoregressive VaR News Impact Curve for ALCOA: (a) 
Symmetric Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
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Figure  2(a):   5% Estimated Conditional Autoregressive VaR Plots for McDONALDS: (a) Symmetric 
Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
 

 
Figure  2(b):   1% Estimated Conditional Autoregressive VaR News Impact Curve  for McDONALDS: 
(a) Symmetric Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
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Figure  3(a):   5% Estimated Conditional Autoregressive VaR Plots for MERK: (a) Symmetric 
Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
 

 
Figure  3(b):   1% Estimated Conditional Autoregressive VaR News Impact Curve  for MERK: (a) 
Symmetric Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
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Figure  4(a):   5% Estimated Conditional Autoregressive VaR Plots for PEPSICO: (a) Symmetric 
Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
 

 
Figure  4(b):   1% Estimated Conditional Autoregressive VaR News Impact Curve  for PEPSICO: (a) 
Symmetric Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
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Figure  5(a):   5% Estimated Conditional Autoregressive VaR Plots for COCA COLA: (a) Symmetric 
Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
 

 
Figure  5(b):   1% Estimated Conditional Autoregressive VaR News Impact Curve  for COCA COLA: 
(a) Symmetric Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
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Figure  6(a):   5% Estimated Conditional Autoregressive VaR Plots for EXXON: (a) Symmetric 
Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
 

 
Figure  6(b):   1% Estimated Conditional Autoregressive VaR News Impact Curve  for EXXON:  (a) 
Symmetric Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
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Figure  7(a):   5% Estimated Conditional Autoregressive VaR Plots for EMPORIKI: (a) Symmetric 
Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
 

 
Figure  7(b):   1% Estimated Conditional Autoregressive VaR News Impact Curve  for EMPORIKI: 
(a) Symmetric Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
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Figure  8(a):   5% Estimated Conditional Autoregressive VaR Plots for NATIONAL: (a) Symmetric 
Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
 

 
Figure  8(b):   1% Estimated Conditional Autoregressive VaR News Impact Curve  for NATIONAL: 
(a) Symmetric Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
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Figure  9(a):   5% Estimated Conditional Autoregressive VaR Plots for PIREOS: (a) Symmetric 
Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
 

 
Figure  9(b):   1% Estimated Conditional Autoregressive VaR News Impact Curve  for PIREOS: (a) 
Symmetric Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
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Figure  10(a):   5% Estimated Conditional Autoregressive VaR Plots for ALPHA: (a) Symmetric 
Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
 

 
Figure  10(b):   1% Estimated Conditional Autoregressive VaR News Impact Curve  for ALPHA: (a) 
Symmetric Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
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Figure 11(a):   5% Estimated Conditional Autoregressive VaR Plots for COLA(GR): (a) Symmetric 
Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
 

 
Figure  11(b):   1% Estimated Conditional Autoregressive VaR News Impact Curve  for COLA(GR): 
(a) Symmetric Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
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Figure  12(a):   5% Estimated Conditional Autoregressive VaR Plots for INTRAKOM: (a) Symmetric 
Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
 
 

 
Figure  12(b):   1% Estimated Conditional Autoregressive VaR News Impact Curve  for INTRAKOM: 
(a) Symmetric Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
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Figure  13(a):   5% Estimated Conditional Autoregressive VaR Plots for CAC40: (a) Symmetric 
Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
 

 
Figure  13(b):   1% Estimated Conditional Autoregressive VaR News Impact Curve  for CAC40: (a) 
Symmetric Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
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Figure  14(a):   5% Estimated Conditional Autoregressive VaR Plots for FTSE100: (a) Symmetric 
Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
 

 
Figure  14(b):   1% Estimated Conditional Autoregressive VaR News Impact Curve  for FTSE100: (a) 
Symmetric Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
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Figure  15(a):   5% Estimated Conditional Autoregressive VaR Plots for NASDAQ: (a) Symmetric 
Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
 

 
Figure  15(b):   1% Estimated Conditional Autoregressive VaR News Impact Curve  for NASDAQ: (a) 
Symmetric Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
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Figure  16(a):   5% Estimated Conditional Autoregressive VaR Plots for NIKKEI: (a) Symmetric 
Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
 

 
Figure  16(b):   1% Estimated Conditional Autoregressive VaR News Impact Curve  for NIKKEI: (a) 
Symmetric Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
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Figure  17(a):   5% Estimated Conditional Autoregressive VaR Plots for FTSE20: (a) Symmetric 
Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
 

 
Figure  17(b):   1% Estimated Conditional Autoregressive VaR News Impact Curve  for FTSE20: (a) 
Symmetric Absolute Value; (b) Asymmetric Slope ; (c) GARCH ; (d) Adaptive. 
 


