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Explaining movements in UK stock prices: 

How important is the US market? 
 

 

 

 

Abstract 

 

 
This paper provides evidence on the causes of movements in monthly UK stock prices, 

examining the role of macroeconomic and financial variables in a nonlinear framework.  

We allow for time-varying effects through the use of smooth transition models.  We 

find that past changes in the dividend yield are an important transition variable, with 

current US stock market price changes providing a second nonlinear influence.  This 

model explains the declines in the UK market since 2000, whereas a competing model 

excluding current US prices does not.  The conclusion is that the principal explanation 

of recent declines in the UK lies in the nonlinear influence of declines in the US, and 

not the domestic economic environment. 
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1. Introduction 

There is a great deal of interest, and a correspondingly large literature, on the 

relationship between international financial markets. In particular, it is now well 

established that returns across important world stock markets are time-varying; 

important recent contributions to understanding this phenomenon include Ang and 

Bekaert (2002), Hamilton and Susmel (1994), King, Sentana and Wadhwani (1994), 

Longin and Solnik (1995, 2001), and Ramchand and Susmel (1998).  The overall 

conclusion from these studies is that inter-market correlations are higher in volatile 

periods than in periods of relative calm. This points to an important role for the return 

variances, with ARCH-type models typically used to capture time variation in the 

(conditional) variance. 

However, in focusing on relationships across markets, this literature largely 

ignores the impact of domestic economic and financial information on stock market 

price movements; an exception is King et al (1994). The role of such information is also 

documented by (among others) Cochrane (1991), Fama (1990), McMillan (2001), and 

Pesaran and Timmermann (1995, 2000). Our purpose in this paper is to examine 

movements in monthly UK stock market prices in the light of both time-varying 

international stock market correlations and domestic conditions. In particular, we study 

the extent to which movements in the London market can be attributed to new domestic 

economic and financial information (including dividend yields) and the extent to which 

these movements can be attributed to the US market. 

The central role played by models of the ARCH class over the 1990s in 

modelling time-varying correlations has begun to be questioned. In particular, Longin 

and Solnik (2001) use extreme correlations to establish that the time-variation in 

bivariate correlations between returns for important stock markets and that of the US are 
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associated with the underlying direction of change in the markets, rather than their 

volatility. Specifically, correlations are higher during bear markets than bull markets. 

Further, Ang and Bekaert (2002) show that an asymmetric GARCH model cannot 

capture the correlation pattern documented by Longin and Solnik (2001), but a regime-

switching model does. 

Regime-switching models are now popular in empirical macroeconomics in the 

context of capturing phenomena associated with the business cycle. By allowing for 

distinct “states of the world” or regimes, these nonlinear models can represent situations 

where mean behaviour depends on the regime, with a positive mean during business 

cycle expansions and a negative mean during recessions. One key issue is the modelling 

of switches between the regimes. In the Markov switching model, originally employed 

in the business cycle context by Hamilton (1989), this switch is governed by a regime-

dependent probability.  Recent applications to stock price movements include Ang and 

Bekaert (2002), Perez-Quiros and Timmermann (2000), and Guidolin and Timmermann 

(2003). 

A different approach is to explicitly model the regime as a continuous function 

of an explanatory variable. This approach explicitly allows interactions between 

variables, and also allows for the possibility of intermediate positions between the two 

regimes.  These so-called smooth transition models have been developed primarily by 

Teräsvirta and his co-authors (Teräsvirta and Anderson, 1992; Teräsvirta, 1994, 1998), 

with these developments reviewed by van Dijk, Teräsvirta and Franses (2002). 

Applications of these models to financial data include McMillan (2001), Michael, 

Nobay and Peel (1997), and Sarantis (2001). 

We follow this recent literature by adopting regime-switching models to 

characterise the time-varying correlations and strong nonlinearities in these series 
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(Abhyankar, Copeland and Wong, 1997; Qi, 1999). In doing so, we adopt the smooth 

transition models. We prefer these to Markov switching models in our context because 

we wish to explore the nature of the underlying regimes, so that the explicit modelling 

of these regimes is an attractive feature of the smooth transition models. Further, our 

experience in modelling macroeconomic variables (for example, Sensier, Osborn and 

Öcal, 2002; Simpson, Osborn and Sensier, 2001) has convinced us of the greater 

tractability of the smooth transition models in practice when estimating specifications 

with more than one or two explanatory variables. 

From a statistical perspective, we can take two different stances in examining 

the impact of movements in the US stock market on the UK. In one set of models we 

specify a priori that contemporaneous causation runs from the US to the UK market, 

hence allowing current US stock price movements to be an explanatory variable in the 

models. While we cannot test this position statistically using our monthly data, it is 

compatible with results of studies using higher frequency data (see Gerrits and Yüce, 

1999, and references therein). For comparison purposes, we also develop a set of 

models that are conditioned on past price movements, together with current economic 

and financial information. By excluding contemporaneous movements in the US as an 

explanatory variable, this set of models essentially leaves the contemporaneous 

correlation with the US as part of the unexplained residual in our model for UK stock 

market prices and implicitly assumes that this correlation is constant over time. 

The organization of this paper is as follows. In Section 2 we describe the smooth 

transition models and explain their desirable features for modelling stock market prices. 

This section also discusses the procedures we use for specifying, estimating and 

evaluating such models. In Section 3 we report our model estimation results, separately 

using contemporaneous and lagged US price movements. The recent (post-sample) 
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performance of the estimated models is evaluated in Section 4. Conclusions in Section 5 

complete the paper. 

 

 

2. Smooth Transition Regression Models 

As noted above, the smooth transition regression (STR) model is a form of regime-

switching model. In the simplest case of two regimes, the model is given by (Teräsvirta, 

1998) 

        (1) ttttt uwsFwy ++= '
1

'
0 )( ββ

where wt is a (k + 1) × 1 vector of explanatory variables (including a constant), β0 and β1 

are (k + 1) × 1 coefficient vectors, the disturbance ut is iid(0, σ2) and F(st) is the 

transition function defining the regime. The transition function is bounded by zero and 

unity, with st being the transition variable that determines the regime. For any given 

value of F(st), the STR model of (1) is linear, with coefficient vectors of β0 and β0 + β1 

at the extremes of F(st) = 0 and F(st) = 1 respectively. Therefore, the nonlinearity in (1) 

is evidenced as F(st) changes as a function of st. A particular attraction of the STR 

model in our context is that different potential transition variables st can be considered 

for their role in generating nonlinearity in UK stock market price movements, which is 

the dependent variable yt. Thus, for instance, business cycle indicators or changes in US 

stock prices can be examined in this light. 

The transition function F(st) is defined as the logistic function1  

  F(st) = {1 + exp[-γ(st – c)]}-1  γ > 0    (2) 

                                                 
1 McMillan (2001) and Sarantis (2001) both follow the general approach of Teräsvirta (1994, 1998) in 
considering an exponential, in addition to a logistic, transition function. However, the exponential form 
has no ready interpretation in terms of either bull versus bear markets or of business cycle regimes, so we 
prefer to use only the logistic form. 
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which is a monotonically increasing function of st. The parameter  is the threshold and 

locates the transition function in terms of the values of s

c

t, with F(st) = 0.5 when st = c, 

while γ defines the slope of the transition function. In practice, we allow the transition 

variable st to be any element of the vector of explanatory variables, wt of (1), excluding 

the intercept  

In the stock market context, regimes might be bull versus bear markets. If the 

transition variable st is the lagged UK stock price change or the contemporaneous US 

change, the STR model of (1) and (2) can capture these regimes by F(st) close to zero 

for negative st and F(st) close to unity for positive st. Thus, the model is sufficiently 

flexible to capture the time-varying correlations documented by Longin and Solnik 

(2001) in terms of bull and bear markets. On the other hand, if st is an indicator of 

economic activity, the regimes can be business cycle recessions versus expansions. 

Notice also that the role of all explanatory variables in wt can be potentially different in 

the two regimes through the coefficient vector β1.  

The slope parameter γ in (2) indicates the nature of the transition between 0 and 

1 as a function of st. As γ → ∞, F(st) becomes a step function and the transition between 

the regimes is abrupt. In that case, the model approaches a threshold model of the type 

analysed by Tong (1990). More generally, however, intermediate values 0 < F(st) <1 

can apply. 

The two-regime STR model of (1) assumes that all nonlinearity in stock market 

prices is captured through a single transition variable. However, one transition variable 

and its two associated regimes may not be sufficient to reflect the potentially complex 

nonlinearities in the determination of stock market prices (Qi, 1999). The analysis 

below also employs two transition functions, so that the model becomes 

      (3) ttttttt uwsFwsFwy +++= '
222

'
111

'
0 )()( βββ
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where each transition function Fi(sit), i = 1, 2, is a logistic function, defined analogously 

to (2). The transition variables s1t and s2t may be the same variable (with distinct 

locations c1 and c2, in order to ensure that F1 and F2 capture distinct regime behaviour) 

or different variables. Öcal and Osborn (2000) and Sensier et al. (2002) successfully use 

two transition function models as in (3) for modelling macroeconomic variables over 

the business cycle. 

Our procedure for STR modelling is essentially that utilised in Sensier et al. 

(2002)2.  This differs from the procedure of Teräsvirta (1994, 1998) in that we rely on 

grid search procedures for the selection of the appropriate transition variable and 

ordinary least squares (OLS) initial estimation of the STR model. More specifically, in 

order to select st in (1), we consider each element of wt in turn (except the constant and 

the January dummy variable), using 40 potential values for c over the observed range of 

the variable and values3 γ = 1, 2, …, 100, with this latter range extended if γ = 100 

minimises the residual sum of squares. The variable yielding the minimum residual sum 

of squares in this three dimensional grid search over wt, c and γ is used as the transition 

variable. 

Having selected st, and in order to obtain a more parsimonious model, OLS 

estimation is employed for the STR model, conditional on the transition function that 

minimises the residual sum of squares in the grid search. In this estimation, the elements 

of wt and F(st)wt are treated as distinct variables. Beginning from a general model with 

all variables included, these are dropped sequentially (using the smallest t-ratio) to 

obtain the model that minimises the Akaike Information Criterion (AIC). The model 

with these selected variables is then estimated by nonlinear least squares, with the 

                                                 
2 We use Gauss 3.2 for our nonlinear models.  The linear models and graphs are computed in Givewin 
(Doornik and Hendry, 2001). 
3 Following the recommendation of Teräsvirta (1994), we divide st by its sample standard deviation to 
avoid scaling problems. 
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transition function parameters c and γ also estimated4. Further individual coefficients 

may be dropped at this stage if these are very insignificant. 

Specification of the two transitions model of (3) takes the first transition variable 

as given from the single transition model, with each element of wt (excluding the 

constant and the January dummy) considered as the second transition variable s2t. For 

each variable, a four dimensional grid search is undertaken over γ1, c1, γ2 and c2, using 

γ1, γ2 = 1, 2, …, 50 and ten values of c1, c2 over the ranges of the corresponding 

variables. After selection of the second transition variable from this grid search, an 

analogous modelling procedure is followed to the single transition case. 

The validity of the assumptions underlying the STR model are investigated 

using the Lagrange multiplier tests of Eitrheim and Teräsvirta (1996). These are 

diagnostic tests for autocorrelation, additional nonlinearity and parameter constancy. 

The last of these is the most general test of the three proposed by Eitrheim and 

Teräsvirta. The test for additional nonlinearity considers each explanatory variable and 

time, with time included to examine whether any apparent nonlinearities may be due to 

unexplained time-variation. The residuals of all models are also checked for ARCH 

effects using a Lagrange multiplier test. The conventional RESET test (including 

squares and cubes of the predicted values) provides an overall test of possible 

nonlinearity in the context of the linear models. A parameter constancy test is also 

applied to the linear model, in an analogous way to the STR parameter constancy test. 

The normality test we report uses the Lomnicki-Jarque-Bera statistic. 

 

 

                                                 
4 We intentionally use AIC here, as it is a conservative criterion in the retention of potentially relevant 
variables. Further, we always informally check that the γ and c from the nonlinear estimation are not too 
far from the values obtained in the initial grid search.  
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3. Estimated Models: 1978-1999 

We model movements in the monthly index of UK stock prices.  More precisely, the 

dependent variable in our analysis is the end-of-month value of the Financial Times  All 

Share Index (FT). Based on the UK analysis of Pesaran and Timmermann (2000), we 

consider a benchmark set of explanatory variables that may influence the UK stock 

market.  These are5: the dividend yield of the FT Actuaries All Share Index (DY), the 

Standard and Poor’s composite index (S&P) to measure the influence of the US market, 

UK industrial production (IOP) and retail sales (RS) volumes to represent domestic real 

economic activity, the average nominal 3-month prime bank bill discount rate as the 

short interest rate (SR), the average rate for 2.5% Consols for the long rate (LR), the 

exchange rate of US dollars to pounds sterling (ER), the nominal narrow money base 

(M0) and the oil price measured in US dollars (OIL).  All these variables (including the 

dependent variable) are used as 100 times the first difference of the logarithms, apart 

from the interest rate series and the dividend yield for which we take only first 

differences. Data sources are detailed in Appendix 1. In addition, based on the UK 

results of Clare, Psaradakis and Thomas (1995) and Pesaran and Timmermann (1995), 

all models include a dummy variable for January. 

In considering which variables may explain movements in monthly UK stock 

market prices, care must be taken in relation to the lag at which macroeconomic 

variables become available. While retail sales and M0 data relating to a specific month 

are released during the immediately subsequent month, that for industrial production is 

not. Therefore, lags of one month are employed for the first two variables, but IOP is 

lagged by two periods. Financial data on the exchange rate, oil prices, short and long 

                                                 
5 Our initial models also included the retail price index (RPI) to represent UK inflation, but this was not 
significant in any model and is excluded from the results presented. Pesaran and Timmermann (2000) do 
not include retail sales, but we do so in order to capture broader indications of domestic economic activity 
than are reflected in industrial production alone. 
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interest rates are available continuously, and hence current average values for the month 

are used for these variables. The dividend yield is lagged by one month to avoid the 

simultaneity that would result if the current value was employed. 

The sample period for model estimation is January 1978 to December 1999.  We 

initially investigated models using data from the mid-1970s, but found evidence of 

parameter change around the end of 1977. During 1974 the UK stock market 

experienced a sequence of substantial monthly declines in stock market prices, followed 

by an extremely large positive value at the beginning of 1975.  These dramatic 

movements may be explained by a series of special events (both international and 

domestic) that were associated with economic and political uncertainty during the early 

and mid-1970s.  These were crisis years of accelerating inflation, rising unemployment, 

massive industrial unrest and the first oil price shock (Dow, 1998).  In their Markov 

switching model for UK returns, Guidolin and Timmermann (2003) associate one 

regime with negative mean returns and a large variance primarily with this period. In 

order to focus on the recent past, we exclude this unusual historical period. 

We reserve data from January 2000 to June 2002 for a genuine post-sample 

check on the models. Results relating to this period are discussed in Section 4. 

Our sample period includes the effect of the stock market crash in October 1987, 

for both the UK and US series. To ensure this single event does not unduly influence the 

estimated models, we replace the single outlier in each series (∆FTt and ∆S&Pt) by the 

average value of the series over the sample period, computed excluding the outlier 

observation. We also remove outliers associated with extreme events in the industrial 

production, retails sales and money series (see Appendix 1 for details). 

As discussed in the Introduction, we estimate models using contemporaneous 

US stock market price changes, and also models using only lagged US values. We deal 
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with these two sets of results in separate subsections below, with general discussion in 

subsection 3.3. 

 

3.1 Models with contemporaneous US stock prices  

The results for a linear model using all explanatory variables are presented in the second 

column of Table 1.  This model explains half of the variation in UK stock market price 

movements, with the most significant single variable being contemporaneous US price 

changes. Nevertheless, domestic factors also play a substantial role, with changes in 

industrial production, long and short interest rates and the exchange rate all being 

individually significant at the 5 percent level and of the anticipated signs. An increase in 

ER represents an appreciation of the pound, and this has a very significant negative 

impact. At a 10 percent level, changes in the dividend yield enters with a positive 

coefficient. However, lagged changes in the UK stock market prices are not significant, 

in line with the weak form of the efficient market hypothesis. Further, changes in oil 

prices, retail sales and M0 have no significant effect in this specification.  

Nevertheless, despite the overall plausibility of the estimated linear model, the 

diagnostic tests results indicate some inadequacies. Specifically, using the conventional 

5 percent level, there is evidence of time varying conditional volatility (ARCH) in the 

residuals and of nonlinearity in the model (RESET test). At least in terms of the p-

values, these two effects are equally strong. 

As proposed by Teräsvirta (1994, 1998), we use the linear model as the null 

model for testing linearity against STR-type nonlinearity.  According to the results, 

presented in the second column of Table 2, nonlinearity is evident particularly in 

relation to the dividend yield (p-value = .005), although there is also some evidence in 

relation to the short-term interest rate and US price movements.  Using our grid search 

procedure (results are presented in Appendix Table A.3), the dividend yield is selected 
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as the transition variable for the single transition model of (1). Our STR modelling 

procedure, outlined in Section 2, then yields the model in the third column of Table 1.  

Figure 1 illustrates of the estimated transition function F(∆DYt-1) over time and 

in relation to the value of ∆DYt-1. In effect, the transition function implies one regime 

when the dividend yield is falling and a smooth transition between regimes for positive 

changes, with F(∆DYt-1) = 1 applying only for a small number of large increases in 

dividend yields. The “normal” regime corresponds to relatively small F(∆DYt-1). 

Therefore, the estimated coefficients shown in the first block of column three (Table 1) 

capture the estimated “normal” responses of stock market price movements to the 

explanatory variables. 

Comparing the single transition model with the linear one of Table 1, the broad 

pattern of the results is largely unchanged, although the exchange rate, oil prices, short 

interest rates and industrial production are now found to affect UK price movements 

only when changes in dividend yields are positive (and hence the value of the transition 

function is non-zero). The important impact of the US market remains, with an 

estimated coefficient that does not vary with the transition function and remains largely 

unchanged from that of the linear model. However, the diagnostic tests for this single 

transition model are not satisfactory. Although marginal at 5 percent, there remains 

some evidence of ARCH. Further, the tests for additional nonlinearity (presented in the 

third column of Table 2) indicate unexplained nonlinearity at the 5 percent level in 

relation to Time, short-term interest rates and retail sales. 

To investigate this additional nonlinearity, we conduct a grid search taking the 

dividend yield as the first transition variable and searching over the explanatory 

variables for the second; the results of these are shown in Appendix Table A.4. This 

points to contemporaneous changes in the S&P index as the second transition variable, 
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and our STR modelling procedure then results in the two transition model in the final 

column of Table 1. 

Figures 2 and 3 illustrate the first and second transition functions for the 

contemporaneous S&P model.  The first transition function, for dividend yields, has 

now moved to the left with a much steeper transition between regimes compared to 

Figure 1, with the location in Figure 2 centred on 0.19 percent.  In effect, F1(∆DYt-1) = 0 

for changes of less than 0.1 percent and F1(∆DYt-1) = 1 for changes above 0.3 percent. 

While F1(∆DYt-1) = 0 corresponds to the “normal” dividend yield regime, a nontrivial 

number of sample observations correspond to F1(∆DYt-1) ≈ 1 or lie intermediate 

between these values. The second transition function, for ∆S&Pt, shown in Figure 3, is 

relatively abrupt with an estimated gamma of 10.8. For practical purposes, this 

effectively defines a threshold effect, with one regime defined by falls of more than 1.95 

percent per month in US prices, and the other regime by less severe declines or rises in 

the US market. As can be observed from the upper panel of Figure 3, both regimes in 

the US market have been frequently observed during the sample period to the end of 

1999. 

To facilitate the interpretation of this last model, note that Figures 2 and 3 imply 

that the “normal” regime corresponds to F1(∆DYt-1) = 0 and F2(∆S&Pt) = 1. In this case, 

the two-transition model implies that the fitted value for the monthly change in FT 

(ignoring the January effect) is given by: 

111

11

70.427.0047.0
19.516.0&27.004.017.1ˆ

−−−
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In comparison with the situation when the US market falls steeply, when F2(∆S&Pt) = 0 

and the coefficients in the upper block of the final column of Table 1 apply, changes in 
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M0 and RS, together with lagged ∆FT, are relatively unimportant6 for the determination 

of changes in UK prices in (4). Thus, it is “normal” for these domestic UK variables to 

play little role. 

Comparing the implications of the model when the S&P transition function 

moves from the normal regime F2(∆S&Pt) = 1 to the lower regime F2(∆S&Pt) = 0, the 

domestic variables ∆FTt-1, ∆M0t-1 and ∆RSt-1 all become more important (in terms of the 

magnitudes of their coefficients), whereas the dividend yield becomes less important 

and changes sign. The coefficients of neither the long rate nor ER are found to change 

with the S&P regime, with LR being highly significant in the model and ER marginally 

so (at 5 percent). Overall, however, the extent to which the UK market follows the US 

when the latter falls by a large amount will be influenced by domestic macroeconomic 

conditions. 

We now turn to consider the implications of the model for the correlation 

between the UK and US markets. In comparison with the linear and single transition 

models of Table 1, the coefficient of ∆S&P in the two transition model is approximately 

halved to 0.27 and its significance declines. There is, however, a further direct effect of 

this variable that operates through F2(∆S&Pt). In a bull market, a fall in S&P by more 

than the threshold of 1.95 percent in a month triggers an estimated decline of 3.6 

percent in FT, in addition to the effects attributable to the other explanatory variables7. 

Thus, although the coefficient of ∆S&Pt does not change between regimes, a very 

substantial effect is implied by this model for the impact on the UK market of large 

declines in the US. Through this, strong bear markets in the US are transmitted to the 

                                                 
6 The p–value is 0.43 for a test of the joint null hypothesis that the coefficients of ∆FTt-1, ∆M0t-1, ∆RSt-1 
are equal in magnitude and opposite in sign when F2(∆S&Pt) = 0 and F2(∆S&Pt) = 1. This p-value also 
applies to a joint test that the coefficients on these variables in (4) are zero. 
 
7 The difference between the intercept of 1.17 in (4) for F2(s2t) = 1 and the estimated intercept of –2.46 
corresponding to F2(s2t) = 1 in Table 1 is 3.63, which is the intercept shift that applies in moving from the 
upper to the lower regime. 
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UK, which supports the findings of Longin and Solnik (2001) that the correlation 

between the US and UK markets is lower in bull than bear markets.  

The highly significant negative coefficient of the activity indicator ∆RSt-1 when 

F2(∆S&Pt) = 0 is not anticipated. It may, however, reflect market concerns that high 

growth in retail sales could indicate increases in inflation in the future.  

In relation to the first transition function F1(∆DYt-1), the results imply that when 

dividend yields in the previous month have risen sufficiently that F1(∆DYt-1) = 1, then 

compared with the normal regime where F1(∆DYt-1) = 0, the FT index increases by 1.76 

percent through a shift in the intercept. In addition, economic and financial conditions 

generally become more relevant in the higher dividend yield regime. In particular, the 

negative effect of ∆ERt increases significantly, while short interest rates and industrial 

production become significant and of the expected signs. The coefficient for M0, 

however, effectively becomes zero. Nevertheless, the implication is that the market 

assesses a relatively large increase in the dividend yield in the light of current economic 

conditions. 

Finally, the diagnostics of the two-transition model are satisfactory. Indeed, the 

evidence of ARCH effects in the linear and single transition models is now accounted 

for by the second (∆S&P) transition function. As the linearity test results in the final 

column of Table 2 show, there is no evidence of further nonlinearity associated with any 

explanatory variable at even the 10 percent significance level. 

 

3.2 Models with lagged US stock prices 

Repeating the modelling strategy, but now conditioning only on lagged changes in S&P 

yields the estimated models of Table 3. Overall, except for the coefficient relating to 

∆S&P, the linear and single transition models here are very similar to those of Table 1. 
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Rather than repeat the discussion of subsection 3.1, subsection 3.3 below comments on 

the general patterns of the results across the two sets of models. Here we concentrate on 

points specific to Table 3. 

Although the RESET test applied to the linear model in Table 3 does not 

strongly point to nonlinearity, the tests of Table 4 provide very strong evidence in 

relation to the dividend yield as the transition variable. This is confirmed by the grid 

search (results in Appendix Table A.5), and hence the single transition model of Table 3 

again uses ∆DYt-1 as the transition variable.  

There is, however, no clear evidence from the diagnostic test results for the 

single transition model in Table 3, or the additional nonlinearity tests for this model in 

Table 4, that there is substantial unexplained nonlinearity in this single transition model. 

Nevertheless, we explore a possible second transition function for comparability with 

the results of Table 1. Undertaking a grid search for a second transition variable 

(Appendix Table A.6) indicates that the lowest residual sum of squares is associated 

with Time as the transition variable. However, the residual sum of squares delivered by 

∆ERt is only 0.3 percent higher. As we prefer an economic transition variable, the two 

transition model of Table 3 is based on ∆ERt as the second transition variable8. The 

estimated transition functions F1(∆DYt-1) and F2(∆ERt) for this model are shown in 

Figures 4 and 5 respectively. The dividend yield transition function is very similar to 

that shown in Figure 2 for the single transition function model of Table 1 and (although 

it is not shown) to that for the single transition model of Table 3.  

The transition function of Figure 5, together with the associated large estimated 

value of γ2 and insignificant estimated c2 in Table 3, point to a threshold model where 

exchange rate appreciations and depreciations induce different responses of the stock 
                                                 
8  Based on the similar residual sum of squares, we also specified and estimated a model using the change 
in oil prices as the second transition variable. However, AIC was lower for the model using exchange 
rates. 
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market to other financial variables. In particular, the model attributes responses to 

increases in oil prices and the dividend yield only to the appreciation regime, where 

F2(∆ERt) = 1, with these variables having no effect when F1(∆DYt-1) =  F2(∆ERt) = 0. 

Further, changes in the long interest rate have a substantially greater impact in the 

appreciation regime. Nevertheless, we treat the two transition model of Table 3 with 

some caution, since the evidence of the need for the second transition function is not 

strong.  

 

3.3 General Discussion 

It is notable, but unsurprising, that the models of Table 1 using contemporaneous 

changes in S&P have greater explanatory power than those using only lagged S&P in 

Table 3. However, from another perspective, the estimated coefficients of the models in 

these tables are remarkably similar. In particular, the magnitudes and significance of the 

coefficients of the linear and single transition models are similar in the two tables9. As 

already noted, the estimated transition function F1(∆DYt-1) is also effectively the same 

across these models. Therefore, these results imply that contemporaneous changes in 

S&P have an effect on the UK stock market that can be considered as additional to that 

of domestic variables.  

It should also be noted that when lagged (but not contemporaneous) ∆S&P is 

considered, it is not significant in the linear model and does not enter the selected 

nonlinear model for either the single or two transition case in Table 3. Further, ∆FTt-1 

plays a role here only in the relatively rare regime F1(∆DYt-1) = 1. In Table 1, similar 

comments apply in that ∆FTt-1 is significant only in the relatively unusual regime 

                                                 
9 Although the short interest rate is significant in the linear model of Table 1, but not in Table 3, it should 
be noted that the magnitude and significance of the long rate is higher in the latter.  
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F2(∆S&Pt) = 0. Therefore, in general, past price changes do not provide any predictive 

information for current changes, as would be expected from an efficient market. 

A further interesting feature of the results in Tables 1 and 3 relates to the 

characteristics of conditional heteroscedasticity and non-normality widely documented 

for stock market price changes, including changes in the FT index at the monthly 

frequency (Poon and Taylor, 1992). It has already been commented that the introduction 

of the S&P transition function in the models of Table 1 removes evidence of ARCH 

effects. Interestingly, none of the models of Table 3 demonstrate any evidence of 

ARCH. Therefore, at least at this monthly frequency, it appears that volatility clustering 

of the ARCH type in UK prices is not present once due account is taken of the effects of 

domestic macroeconomic and financial variables, together with US stock prices. 

The results concerning non-normality are striking. The normality diagnostic test 

statistics of Table 3 show that all models excluding contemporaneous S&P exhibit 

highly significant non-normality. This is, however, much less marked in Table 1, with 

no model here having significant non-normality in the residuals at the 1 percent level. 

Indeed, the introduction of the second (S&P) transition function effectively removes any 

evidence of non-normality. Therefore, we conclude that non-normality in monthly UK 

stock market price movements can be attributed to the effects of the US market on the 

UK. Once these (contemporaneous) effects are adequately accounted for within the 

model, no significant non-normality remains. 

 

 

4. Post-Sample Performance: 2000-2002 

Table 5 provides an evaluation of the post-sample performance of the six estimated 

models of Tables 1 and 3. For this evaluation, the post-sample period from January 
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2000 to June 2002 is divided into two equal (and non-overlapping) periods of fifteen 

months. The second of these provides a severe post-sample test, since it represents a 

period of overall decline, in contrast to the substantial overall growth experienced 

during the sample period used for the estimation of the models. None of the models is 

re-specified or re-estimated during the post-sample period. Actual and predicted values 

over the entire post-sample period, January 2000 to June 2002, are shown in Figures 6 

and 7 for the models of Table 1 and 3 respectively. 

The first set of results in Table 5 provide tests of structural change based on the 

2000-2001 and 2001-2002 sub-periods. These tests are based on a comparison of the 

squared prediction errors in relation to the sample residual variance, namely 

        (5) 222 /
2

1

se
n

nt
t∑

=

=χ

where et is the prediction error for period t, n1 and n2 are the first and last months 

(respectively) of the relevant sub-period, and s is the sample period estimate of the 

residual disturbance standard deviation, presented for each model in Table 1 or 3 as 

appropriate. The periods used for t in (5) are January 2000 to March 2001 or April 2001 

to June 2002. If the disturbances of the (linear or nonlinear) model are normally 

distributed, then for each sub-period of 15 months, the statistic in (5) approximately 

follows a χ2 distribution with 15 degrees of freedom under the null hypothesis of no 

structural change (Dufour, Ghysels and Hall, 1994)10. 

The models with contemporaneous S&P provide no evidence of any structural 

change over the sub-period to March 2001. Although the two transition model indicates 

some evidence of a structural break over the subsequent fifteen months, this is 

                                                 
10  This result is an asymptotic one in terms of the number of observations in the sample period used for 
model estimation. 
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significant at the 5 percent but not the 1 percent level. Overall, these models generally 

perform well in this respect over the post-sample period, as can also be seen in Figure 6.  

In contrast, the nonlinear models that exclude contemporaneous S&P do not. 

These cope less well with the period January 2000 to March 2001 than the nonlinear 

models with contemporaneous S&P, and fare much worse over the second sub-period, 

April 2001 to June 2002. The highly significant p-values for this latter case should be 

treated with some caution, however, as these models in Table 3 show clear evidence of 

non-normality. Nevertheless, Figure 7 indicates that the predictions of these models are 

poor in relation to actual movements in FT. 

Table 5 also shows conventional predictive error statistics, namely the mean 

square prediction error (MSE) and statistics on the predicted compared with actual 

direction of change. In addition to the raw MSE value, this is shown divided by the 

sample residual variance for the corresponding estimated model, to order to measure 

post-sample accuracy in relation to that of the sample period. Direction of change 

statistics show the number of months where the direction is correctly predicted, 

separating months when the actual change is positive and negative. To sharpen the 

comparisons of the MSEs we compute the Diebold and Mariano (1995) predictive 

accuracy test for our competing models, in each case comparing the nonlinear model to 

the corresponding linear model (with contemporaneous or lagged S&P, as appropriate). 

The null hypothesis is that the models have the same underlying accuracy. To compare 

our direction of change results we calculate the Pesaran and Timmermann (1992) non-

parametric test with the null hypothesis here that each set of forecasts and the actual 

values are independent. Such independence would indicate poor directional forecasts.  

Note that the Pesaran-Timmermann test statistic is not defined when one direction of 

change is not forecast by the model, as this involves division by zero. 
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A comparison of raw predictive accuracy statistics across models when 

contemporaneous S&P is used and when it is not are unfair, in the sense that the former 

use more information than the latter. Nevertheless, such comparisons also emphasise the 

extent of the information provided by movements in the US stock market for the UK 

market. The importance of ∆S&P in explaining the six observed declines in FT between 

January 2000 and March 2001 is clear, since all contemporaneous models predict all of 

these declines, whereas the models without this information predict at most two 

declines. The better performance of the lagged S&P models (compared with the ones 

using the contemporaneous S&P value) in predicting increases in FT can effectively be 

discounted, since this better performance arises because these predicted values are 

essentially flat over this period; see Figure 7. Indeed, no model excluding current S&P 

predicts a decline in FT until mid-2001. The Pesaran-Timmermann test statistics 

emphasise this result, as all are significant for the current S&P models, but none are for 

the models using lagged S&P, in the sub-period from January 2000 and March 2001.  

When we allow for the differing information content of the models of Tables 1 

and 3 by measuring MSE in relation to the sample variance of the residuals, there is 

again evidence of a structural break in the models using only lagged S&P, especially 

after April 2001. In particular, the nonlinear lagged S&P models have MSE values 2.28 

and 2.80 times the sample residual variance, respectively, for the one and two transition 

lagged S&P models over April 2001 to June 2002. Although the linear model does 

better in this respect, it is still performs poorly in relation to predicting declines in FT. 

The Diebold-Mariano test statistics do not indicate that any of the nonlinear models 
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produce forecasts that are significantly different from the linear ones over either forecast 

sub-period11.  

Of the models using contemporaneous S&P it should be noted that although the 

two transition model tracks the post-sample values of ∆FT very well between January 

2000 and March 2001, it is the least accurate of the contemporaneous S&P models over 

the period April 2001 to June 2002. Indeed, there is evidence of some deterioration in 

the performance of this model over the latter period in the predictive stability test, in the 

ratio of the MSE to sample residual variance and with the Pesaran-Timmermann test. 

However, we believe that analysis of this unusual period of decline in stock market 

prices will provide information additional to that of our sample period (ending 

December 1999) in terms of the nature of the relationship between international 

markets.  

 

 

5. Concluding remarks 

This paper contributes to the growing literature on the relationship between 

international stock markets by analysing monthly changes in UK prices in relation to 

both domestic variables and movements in the US market. Our results support two 

general conclusions. Firstly, the recent (January 2000 to June 2002) movements in the 

UK stock market cannot be understood without using information relating to 

contemporaneous US prices. Models based on domestic variables and lagged price 

movements break down over this period, and fail to predict the declines that have 

actually occurred. In contrast, models using contemporaneous US prices generally do 

not show evidence of structural change and correctly predict the direction of almost all 

                                                 
11 The Diebold-Mariano statistics comparing the single and two transition models yield insignificant 
values of –0.5548 and –0.3659 in the first and second forecast sub-periods, respectively. 
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changes that have actually occurred. Therefore, it appears that the recent declines in the 

UK stock market have very little to do with the UK economy, and the underlying causes 

need to be sought in the US. 

The second broad conclusion is that UK stock market prices respond in a 

nonlinear way to domestic macroeconomic information and to US price movements. 

Once these nonlinearities are modelled, we find no evidence for ARCH effects or non-

normality in monthly price movements. Therefore, our results support the finding of 

Longin and Solnik (2001) that it is “regimes” or nonlinearities that are important, rather 

than changing volatility.  

Nonlinearities in the response of UK stock market prices are most marked in 

relation to changes in the dividend yield for the market. In particular, increases in the 

dividend yield of around 2 percent lead to a different regime, in comparison with 

smaller increases or declines. These different regimes imply different responses for the 

UK stock market in response to other variables, including interest rates, oil prices and 

industrial production. The important role of dividends for the UK market is shown, in a 

different context, by Mills (1991). Although not explored further here, an interesting 

possibility is that news in dividend yield causes a nonlinear effect on the market due to 

the operation of “fads” (West, 1988).  

However, dividend yields do not account for all the nonlinearity, with changes 

in the US market also contributing a second set of regimes. These latter regimes imply 

that substantial declines in the US market trigger different effects compared with 

increases or small declines. Although our approach is quite different and allows for the 

effect of domestic factors, our overall finding that the UK market follows the US when 

the latter declines by a large amount supports the implications of the extreme correlation 

analysis of Longin and Solnik (2001). 
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Table 1: Estimated Models using Contemporaneous S&P 
 

Variable Linear Model Single Transition 
Model 

Two Transitions 
Model 

Constant 0.0584 (0.20) -0.5411 (-1.55) -2.457 (-3.31) 
January dummy 1.554 (2.13) 1.190 (1.93) 1.258 (2.10) 
∆FTt-1 -0.0144 (-0.24)  -0.3027 (-2.46) 
∆S&Pt 0.5880 (11.3) 0.5177 (11.8) 0.2687 (3.75) 
∆ERt -0.3251 (-4.01)  -0.1596 (-1.99) 
∆OILt -0.0309 (-1.14)   
∆SRt -1.186 (-2.66)   
∆LRt -3.227 (-3.72) -4.963 (-7.67) -5.186 (-7.80) 
∆M0t-1 0.5495 (1.36) 1.459 (3.11) 2.159 (2.78) 
∆RSt-1 -0.3393 (-1.77) -0.7752 (-4.05) -1.478 (-4.28) 
∆IOPt-2 0.5837 (3.11)   
∆DYt-1 2.3220 (1.73)  -7.287 (-2.70) 
F1(∆DYt-1)  8.102 (2.54) 1.759 (1.25) 
F1(∆DYt-1) × ∆ERt  -3.432 (-2.32) -1.236 (-3.81) 
F1(∆DYt-1) × ∆OILt  -0.1818 (-1.57) -0.2374 (-2.89) 
F1(∆DYt-1) × ∆SRt  -4.799 (-2.49) -2.784 (-2.92) 
F1(∆DYt-1) × ∆M0t-1  -7.111 (-2.18) -2.148 (-1.63) 
F1(∆DYt-1) × ∆RSt-1  4.344 (1.86)  
F1(∆DYt-1) × ∆IOPt-2  4.891 (2.78) 2.264 (4.01) 
γ1  1.533 (3.68) 6.433 (0.93) 
c1  0.3482 (3.52) 0.1875 (8.34) 
F2(∆S&Pt)   3.626 (3.97) 
F2(∆S&Pt) × ∆FTt-1   0.3409 (2.50) 
F2(∆S&Pt) × ∆M0t-1   -1.690 (-1.84) 
F2(∆S&Pt) × ∆RSt-1   1.213 (2.97) 
F2(∆S&Pt) × ∆DYt-1   11.99 (3.67) 
γ2   10.81 (1.50) 
c2   -1.951 (-5.63) 
s 3.244 3.007 2.880 
AIC 2.398 2.257 2.202 

2R  0.50 0.57 0.62 
Diagnostic tests:    
Autocorrelation 0.0514 0.2056 0.2357 
ARCH 0.0211 0.0509 0.2669 
Normality 0.0378 0.0172 0.2879 
RESET 0.0217   
Parameter Constancy: 
All coefficients 
Intercept 

 
0.1274 
0.3966 

 
0.2160 
0.3941 

 
0.1417 
0.1134 

Notes: Values in parentheses are t-values; results for the diagnostic tests are presented 
as p-values. Diagnostic tests for autocorrelation and ARCH are Lagrange multiplier 
tests using lags 1 to 6 inclusive. 
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Table 2: Linearity Tests for Contemporaneous S&P Models 

 
Potential Transition 
Variable 

Linear Model Single Transition 
Model 

Two Transitions 
Model 

Time 0.2348 0.0422* 0.1049 
∆FTt-1 0.4241 0.5915 0.5019 
∆S&Pt  0.0386* 0.1824 0.6259 
∆ERt  0.5074 0.8186 0.9252 
∆OILt  0.2017 0.4805 0.5368 
∆SRt  0.0307* 0.0372* 0.5276 
∆LRt 0.2428 0.2888 0.4582 
∆M0t-1 0.0613 0.0507 0.1010 
∆RSt-1 0.3961 0.0296* 0.2144 
∆IOPt-2 0.5309 0.7418 0.7081 
∆DYt-1 0.0052* 0.7664 0.8078 
Notes: All results are presented as p-values; * indicates significance at 5 percent. 
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Table 3: Estimated Models using Lagged S&P 
 

Variable Linear Model Single Transition 
Model 

Two Transitions 
Model 

Constant 0.6235 (1.74) 0.6093 (1.95) 0.4904 (1.66) 
January dummy 2.115 (2.37) 1.611 (2.10) 1.853 (2.68) 
∆FTt-1 -0.0912 (-1.04)   
∆S&Pt-1  0.0546 (0.69)   
∆ERt  -0.3724 (-3.75) -0.1777 (-1.91)  
∆OILt  -0.0464 (-1.38)   
∆SRt  -0.751 (-1.37)   
∆LRt  -5.576 (-5.60) -7.474 (-10.2) -4.375 (-4.52) 
∆M0t-1 0.6814 (1.37) 1.339 (3.02) 1.342 (2.80) 
∆RSt-1 -0.3967 (-1.68) -0.7810 (-3.86) -1.020 (-4.72) 
∆IOPt-2 0.4818 (2.08)   
∆DYt-1 3.1981 (1.94) 4.117 (2.84)  
F1(∆DYt-1) × ∆FTt-1  -0.8223 (-2.80) -0.8459 (-2.88) 
F1(∆DYt-1) × ∆ERt   -4.633 (-2.68) -5.597 (-2.92) 
F1(∆DYt-1) × ∆SRt   -7.336 (-2.72) -6.427 (-2.66) 
F1(∆DYt-1) × ∆M0t-1  -7.287 (-2.50) -6.340 (-2.67) 
F1(∆DYt-1) × ∆RSt-1  7.742 (2.50) 7.272 (2.36) 
F1(∆DYt-1) × ∆IOPt-2  6.925 (3.48) 7.386 (3.46) 
γ1  2.408 (3.80) 1.928 (4.56) 
c1  0.3503 (5.75) 0.3442 (5.10) 
F2(∆ERt) × ∆OILt    -0.0759 (-2.11) 
F2(∆ERt) × ∆LRt   -6.578 (-4.56) 
F2(∆ERt) × ∆DYt-1   6.966 (3.72) 
γ2   1464 (0.01) 
c2   -0.3216 (-0.16) 
s 3.977 3.587 3.447 
AIC 2.805 2.610 2.541 

2R  0.25 0.40 0.45 
Diagnostic tests:    
Autocorrelation 0.3263 0.4478 0.6317 
ARCH 0.3923 0.2765 0.5440 
Normality 0.0002 0.0000 0.0000 
RESET 0.3558   
Parameter Constancy: 
All coefficients 
Intercept 

 
0.4257 
0.5386 

 
0.5146 
0.4744 

 
0.6941 
0.7328 

Notes: See Table 1.  
 
 
 

 28



 
Table 4: Linearity Tests for Lagged S&P Models 

 
Potential 
Transition Variable 

Linear Model Single Transition 
Model 

Two Transitions 
Model 

Time 0.5952 0.3220 0.4897 
∆FTt-1 0.1424 0.6991 0.2663 
∆S&Pt-1 0.0266* 0.0840 0.2406 
∆ERt  0.1338 0.3011 0.8426 
∆OILt  0.0183* 0.0772 0.1944 
∆SRt 0.1387 0.4164 0.5481 
∆LRt 0.0298* 0.1185 0.3251 
∆M0t-1 0.1227 0.0465* 0.2576 
∆RSt-1 0.5359 0.0737 0.0706 
∆IOPt-2 0.3849 0.4324 0.7688 
∆DYt-1 1.3720e-05* 0.2487 0.3208 
Notes: See Table 2.  
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Table 5. Post-Sample Model Comparisons 
 

 Contemporaneous S&P Models Lagged S&P Models 
 Linear One Transition Two Transitions Linear One Transition Two Transitions 

Predictive stability test (p-value) 
Jan 2000 – Mar 2001 0.9614 0.8586 0.9183 0.1542 0.0399 0.0469 
Apr 2001 – Jun 2002 0.8452 0.4315 0.0341 0.0616 0.0032 0.0002 
Predictive accuracy comparisons Jan 2000 – Mar 2001 
Mean square error (MSE) 
MSE/s2 

4.813 
0.457 

5.635 
0.623 

4.497 
0.542 

21.5975 
1.365 

22.1490 
1.722 

19.9863 
1.682 

Diebold-Mariano statistic*  -0.2964 0.0640  -0.1538 0.2556 
Direction of change: 
∆FT > 0 
∆FT < 0 

 
7/9 
6/6 

 
7/9 
6/6 

 
8/9 
6/6 

 
9/9 
0/6 

 
9/9 
1/6 

 
9/9 
2/6 

Pesaran-Timmermann statistic* 3.0619 3.0619 3.4993 N/A 1.3122 1.9258 
Predictive accuracy comparisons Apr 2001 – Jun 2002 
Mean square error (MSE) 
MSE/s2 

6.7240 
0.639 

9.2096 
1.019 

14.5923 
1.760 

25.5313 
1.614 

29.2858 
2.277 

33.2879 
2.802 

Diebold-Mariano statistic*  -0.3717 -0.4951  -0.3337 -0.5799 
Direction of change: 
∆FT > 0 
∆FT < 0 

 
4/5 
9/10 

 
3/5 
9/10 

 
4/5 
5/10 

 
3/5 
4/10 

 
3/5 
3/10 

 
3/5 
5/10 

Pesaran-Timmermann statistic* 2.8062 2.1368 1.1573 0 -0.4009 0.3788 

  

Note: The predictive stability test is a p-value obtained on the assumption of a normal distribution; see text.  The value of s2 is the sample residual variance, shown 
in Tables 1 or 3 as appropriate.  The Diebold-Mariano test statistics relate to a MSE comparison of the single or two transition model to the corresponding linear 
specification. The direction of change statistics for ∆FT > 0 show the number of months when an increase is correctly predicted, compared with the actual number 
of months where ∆FT is positive. The statistic for ∆FT < 0 show the number of months when a decrease is correctly predicted, compared with the actual number of 
months where ∆FT is negative.  *These statistics are asymptotically standard normal and the asymptotic 5% critical value is ± 1.96. 
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Figure 1: Dividend yield transition function for single transition functions model with contemporaneous S&P 
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Figure 2: Dividend yield transition function for the two transition model with contemporaneous S&P 
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Figure 3: S&P transition function for the two transition model with contemporaneous S&P 
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Figure 4: Dividend yield transition function for the two transition model using lagged S&P 
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Figure 5: Real exchange rate transition function for the two transition model using lagged S&P 
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Figure 6: Post-sample predictions from linear, single and two transition models using contemporaneous S&P  
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Figure 7: Post-sample predictions from linear, single and two transition models using lagged S&P  
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Appendix 1:  
Data 

 
 

Table A.1: Variable Descriptions and Sources 
 
Name Variable Description Source Code 
FT Financial Times all share index (EP), NSA Datastream UKFTALL. 
DY F.T. Actuaries all share index: dividend yield-

monthly average, NSA 
ONS AJMD 

S&P Standard and Poors' composite index (EP), 
NSA 

Datastream USS&PCOM 

ER US $ TO £1, NSA Datastream UKXUS$.. 
OIL Oil Price: Domestic West TX. Intermediate 

[Prior'82=Posted Price]($/Bbl), NSA 
FRED OILPRICE 

SR Bank bill rate - discount, 3 month, SA Datastream UK3MTHINE 
LR Average monthly gross flat yield on 2.5% 

Consols, NSA 
Datastream UKCNSYLD 

M0 M0 wide monetary base (EP): level £M, SA ONS AVAE 
RS Retail sales volume index, SA Datastream UKRETTOTG 
IOP Industrial production volume index, SA ONS CKYW 
RPI Retail price index, NSA Datastream UKCONPRCF 
Notes: EP – end of period; SA – seasonally adjusted; NSA – not seasonally adjusted; 
ONS – Office for National Statistics; FRED – Federal Reserve Economic Data 
(http://research.stlouisfed.org/fred/). 
 
 
 

Table A.2: Outliers Removed 
 

 UK US 
Stock Market Prices 1987m10 1987m10 
Industrial Production 1978m4; 1979m1 N/A 

M0 1999m10-11 N/A 
Retail Sales 1979m6 N/A 
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Appendix 2: 
Grid Search Results 

 
 

Table A.3: Grid Search Results for One Transition  
Contemporaneous S&P Model 

Transition 
Variable 

γ c RSS 

∆DYt-1 3.000 0.2465 2233 
∆S&Pt 150.0 -2.518 2309 
∆ERt 130.0 2.865 2358 
∆OILt 23.00 0.5180 2388 
∆M0t-1 150.0 -0.2866 2417 
∆IOPt-2 150.0 -0.4953 2424 
∆FTt-1 5.000 -6.283 2425 
∆RSt-1 90.00 -0.3680 2431 
Time 150.0 109.2 2454 
∆SRt 6.000 0.1925 2461 
∆LRt 150.0 -0.2240 2466 

Notes: RSS is the minimum residual sum of squares from the grid search  
when the named variable is used as the transition variable, with γ and c  
being the values yielding this RSS. All variables are included in the model.  

 
 

Table A.4: Grid Search Results for Two Transitions Contemporaneous S&P 
Model (First Transition Variable ∆DYt-1) 

 
γ1 c1 Second 

Transition 
Variable 

γ2 c2 RSS 

5 0.206 ∆S&Pt 15 -1.606 1938.26 
3 0.206 Time 50 109.2 1989.10 
4 0.206 ∆OILt 5 0.518 2038.71 
4 0.206 ∆M0t-1 33 -0.287 2042.94 
3 0.206 ∆RSt-1 6 -0.697 2046.81 
3 0.206 ∆ERt 15 -0.195 2052.85 
3 0.206 ∆SRt 5 0.050 2089.69 
3 0.206 ∆LRt 50 -0.224 2091.22 
3 0.206 ∆FTt-1 50 2.011 2107.99 
3 0.206 ∆IOPt-2 13 -0.661 2117.09 

Note: See Notes for Table A.3. 
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Table A.5: Grid Search Results for One Transition Lagged S&P Model 
 

Transition 
Variable 

γ c RSS 

∆DYt-1 3.000 0.2465 3197 
∆OILt 128.0 -2.179 3466 
∆S&Pt-1 5.000 -2.822 3526 
∆LRt 150.0 0.2130 3561 
∆ERt 150.0 3.477 3589 
∆FTt-1 3.000 -6.283 3609 
∆SRt 150.0 0.4300 3627 

∆IOPt-2 43.00 -0.5784 3644 
∆M0t-1 150.0 -0.1723 3664 
Time 71.00 243.2 3724 
∆RSt-1 108.0 -1.108 3726 

 Notes: See Table A.3. 
 
 
 

Table A.6: Grid Search Results for Two Transitions Lagged S&P Model  
(First Transition Variable ∆DYt-1) 

 
γ1 c1 Second 

Transition 
Variable 

γ2  c2 RSS 

5 0.206 Time 50 62.6 2852.23 
3 0.206 ∆ERt 14 -0.195 2861.62 
4 0.206 ∆OILt 4 0.518 2864.77 
5 0.206 ∆LRt 47 0.236 2873.53 
4 0.206 ∆S&Pt-1 10 0.825 2908.60 
4 0.206 ∆M0t-1 3 -0.287 2950.46 
4 0.206 ∆FTt-1 50 2.011 2954.63 
4 0.206 ∆SRt 50 0.430 3009.55 
4 0.206 ∆RSt-1 27 -1.354 3044.47 
4 0.206 ∆IOPt-2 50 -1.659 3064.74 

Notes: See Table A.3.  
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