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Abstract 

Cost minimization and profit maximization behavioral assumptions are most widely used in 
microeconomic theory to analyze firm behavior. However, in practice researchers do not know 
whether every firm in the sample maximizes profit or minimizes cost. In this paper we address 
this problem via a latent class modeling approach in which we first consider the cost 
minimization problem (first class) and then the profit maximization problem (second class). The 
two problems are then mixed and the probabilities of class membership are made functions of 
covariates. This approach does not require researchers to know which firms maximize profit and 
which ones minimize cost. On the contrary, it helps us to determine not only which firms behave 
like profit maximizers but also why and what differentiates them from firms that failed to 
maximize profit. The new technique is illustrated using a panel data for the US airlines. The 
empirical findings suggest that very few airlines maximize profit consistently (if at all) and that 
deregulation had a positive impact on the chances of behaving like profit maximizers, although 
very few airlines continue to maximize profit even after the deregulation. 
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1. Introduction 

Estimation of the production technology using dual cost and profit functions (McFadden, 

1978; Chambers, 1988) is not new. The dual cost and profit function formulations explicitly 

assume that producers either minimize cost or maximize profit. In doing so these dual models 

clearly state which variables (that is, whether only inputs or both inputs and outputs) are 

endogenous (choice) and which are exogenous to the producers. This is in contrast to the primal 

approach (production/distance function) in which the model doesn’t take the input (output) 

choice decisions explicitly into account.  

 

In practice, researchers using a dual approach have to decide whether the cost or the profit 

function should be used. Most often the decision is in favor of a cost function without much 

justification from either theoretical or empirical viewpoints.1 The main difference between the 

cost and profit function is that output is treated as exogenous in the cost function while in the 

profit function an additional condition for optimal output choice is included. Thus, instead of 

using a profit function explicitly one can use a cost function along with the optimal output 

decision rule as an additional equation. The advantage of doing this is that one can test 

econometrically whether the data support cost minimization or profit maximization behavior 

(Schankerman and Nadiri, 1986; Kulatilaka, 1985). In spite of this, applied researchers arbitrarily 

decide using either a cost or a profit function to estimate the underlying production technology. 

 

Following the methodology developed by Schankerman and Nadiri (1986) in the context 

of testing whether firms are in long-run equilibrium, one may formally test whether the 

producers in the given sample are cost minimizers or profit maximizers. Based on the test results, 

for example, one will be using either a cost or a profit function formulation. This implictly 

assumes that all producers in the sample behave in the same way. In reality, firms in a particular 

industry, although using the same technology, may differ in terms of their behavior. For 

example, some producers might minimize cost because of high adjustment cost (i.e., it may not 

be optimal for such producers to adjust their outputs to the profit maximizing level), while for 

others it might be optimal to maximize profit. Again a producer might be minimizing cost for 

                                                           
1 For example, in banking applications, Mester (1993) and Grifell and Lovell (1997) grouped banks into private and savings banks; Kolari and 
Zardkoohi (1995) estimated separate costs functions for banks grouped in terms of their output mix. 

 1



some time periods and then switch to profit maximizing behavior and vice versa, depending on 

adjustment cost associated with outputs. In such a case estimating a single cost (profit) function 

assuming that all the producers behave in the same manner  will not be appropriate. That is, by 

imposing cost minimization behavior on producers who are profit maxizers and vice versa, the 

estimate of the underlying  technology may be biased. Consequently, features of the technology 

such as returns to scale, elasticities, technical change, etc., estimated using the wrong technology  

will be wrong. 

 

If one knows which producers are cost minimizers and which are maximizing profit, then 

one can split the sample into two classes. A cost function is estimated using the sample 

observations in the first class, and a profit function approach is used for the producers in the 

second class. This procedure is not efficient because the above approach doesn’t take into 

account the fact that the underlying technology is exactly the same for all producers. The other 

practical problem is that no one knows before hand which producers are cost minimizers and 

which are profit maximizers. Consequently, this approach cannot be used in practice. 

 

To exploit the information in the data more efficiently and avoid biases resulting from 

misspecifying behavioral objectives of firms in the absence of any a priori classification rule, we 

propose using a Latent Class Model2 (hereafter LCM). In this model both the technology and the 

probability of a particular class membership (cost minimization, profit maximization, etc.) are 

estimated simultaneously. By doing so we assume that every producer has a probability of being 

in either group. Thus all the observations in the sample are used to estimate the underlying 

technology (that is the same for all) and the probability of their class membership. The advantage 

of the LCM is that it is not necessary to impose a priori criterion to identify which producers are 

in what class. Furthermore, the LCM approach is flexible enough to accommodate switching 

behavior on the part of a producer when panel data is available. Moreover, we can formally 

examine whether some exogenous factors are responsible for the presence or absence of profit 

maximizing (cost minimizing) behavior by making the probabilities functions of exogenous 

variables. When panel data is available, we do not need to assume that producers behave like 

                                                           
2 See Greene (2002) for a survey of latent class models. 
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profit maximizers all the time, so we can accommodate switching behavior, and determine when 

they behaved like profit maximizers and when they acted as cost minimizers. 

 

The rest of the paper is organized as follows. In Section 2 we introduce the cost and profit 

systems, the Hausman type (viz., the Shankerman-Nadiri) test for cost minimization and profit 

maximization behavior, and the LCM/mixture model. Data and results are discussed in Section 3. 

The final section summarizes the major findings of the paper. 

 

2. The model 

 

2.1  The model with cost minimizing behavior 

 

Here we consider the standard cost function approach3 that is based on the assumption 

that producers minimize cost, given output and input prices. In this approach one specifies a cost 

function and derives the cost share equations (input demand functions) using Shephard’s lemma. 

Usually a translog cost function is chosen to represent the underlying production technology. The 

corresponding cost system (Christensen and Greene, 1976) is then written as  

 

iiii vypCC 1)ln,(lnlnln +=  

iiii vypSS 211 )ln,(ln +=                                              (1) 

M  

MiiiMiM vypSS += −− )ln,(ln1,1  

 

where  is the log of expenditure,  denote the iCln iMi SS ,11 ,..., − 1−M  cost shares4, pi  is the 1×M  

vector of input prices, yi is the  vector of outputs, and 1×Q ],..., ′[ 1= Mivii vv  represents the error 

terms. The subscript i ( i ) indicates producers/firms. The above cost system can be 

estimated using either the seemingly unrelated regression (SUR) technique or the maximum 

N,...,1=

                                                           
3 Beard, Caudill and Gropper (1991, 1997) considered mixing cost functions to study differences in technology across regimes. They assumed 
cost minimizing behavior for all observations but allowed the technology to differ across regimes. See also, Caudill (2003), Orea and Kumbhakar 
(2002) for a stochastic cost frontier application. 
4 One cost share is dropped to avoid the singularity problem. 
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likelihood (ML) method for which the error vector is assumed to be multivariate normal. That is, 

 where  is the ),0(~ ΩMMi INv Ω MM ×  covariance matrix. The joint density of the cost system 

in (1) can then be written as 

( ) (exp 2
1 v−
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( ) ));();(det 12/112/ θθ iiii ZvZ −− Ω′                      (2) 

 

where , and  ],..., ,11 ′iiS

[ ]′− −− )ln,(ln...,),ln,(ln),ln,(lnln 1,1 iiMiMiii ypSSypyC . 

The maximization with respect to  can be performed analytically, and substituting its value 

into (2) yields the following concentrated log-likelihood function  

)]);();(ln[det(
1
∑
=

′
N

i
iiii ZvZv θθ      (3) 

which can be maximized to obtain ML estimates of the parameters in the cost system. 

 

2.2 The model with profit maximizing behavior 

 

In the previous section we assumed that producers face exogenously given output and 

input prices in allocating their inputs to minimize cost. While such an objective is appropriate in 

some environments, it might be argued that for many producers the ultimate goal is to maximize 

profit. In such a situation the producers face exogenously given input and output prices 

(especially when input and output markets are competitive) in their pursuit of allocating inputs 

and outputs so as to maximize profit. Thus, there is an additional issue of choosing outputs after 

cost minimizing inputs are chosen. The problem is to find the profit maximizing output 

quantities. The optimization problem now adds  additional choice variables – the optimum 

values of which are to be derived from the following Q  additional conditions, viz., q

Q

jj yC ∂∂= /  

( ) where qQj ,...,1= j is the price of output yj. These conditions (first-order conditions for profit 

maximization) state that output allocation is optimal when output price equals marginal cost. 

These equations can be rewritten, in stochastic form, as  
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( ) ijMiijijiiji vypeyqCy ,)ln,(lnlnlnlnln +++−= , Qj ,...,1= , Ni ,...,1=          (4) 

 

where 
ji

ii
iiji y

ypCypey
ln

)ln,(lnln)ln,(ln
∂

∂
=  is the output elasticity. Under the behavioral 

assumption of profit maximization, these additional conditions in (4) are to be appended to the 

cost system in (1) so that we have a complete system of QM +  equations for M Q+  

endogenous (choice) variables ( M  inputs5 and Q  outputs).  Another difference with the cost 

system in (1) is that the present system for a profit maximizing model consisting of (1) and (4) 

can no longer be estimated using the SUR technique. This is because the endogenous variables 

(especially outputs) appear on both sides of the equations in (1) and (4). The endogenous 

variables of the profit system in vector form is  

 

],,[ln ′′′=Ξ iiii ySC  

 

where , and ],...,[ ,11 ′= − iMii SSS ],...,[ 1 ′= Qiii yyy  so we have QM +  endogenous variables. Let 

( )Σ,Q′ ++ ~],..., ,1 MiQMi INv= +0[ MQi vv  where Σ  is an )( QM () MQ +×+  covariance matrix. 

Under the assumption of profit maximization, we have a nonlinear simultaneous equation model 

that can be written in the form 

 

iii vf =ΨΞ );,( θ ,  Ni ,...,1=

 

where  represents the vector of predetermined variables (prices, and possibly other quasi-fixed 

factors or shift variables) and  is the parameter vector. The above notation is 

appropriate for an implicit nonlinear system although in our case we can solve explicitly with 

respect to . 

iΨ

kR⊆Θ∈θ

iΞ

 

The joint density function of endogenous variables is  

 

                                                           
5 The cost system in (1) treats the cost and (J-1) cost shares as endogenous variables. This is equivalent to treating the inputs as endogenous.  
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If the cost function is represented by a single output translog form, namely, 
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Similar expressions can be derived when there are multiple outputs. 

 

The joint density of endogenous variables is given by  
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Maximizing the above log-likelihood function with respect to θ  and Σ  provides the full 

information maximum likelihood (FIML) parameter estimates. The maximization with respect to 

 can be performed analytically, and substituting its value into (5) yields the following 

concentrated log-likelihood function 

1−

1−Σ
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except for the constant term. This function can be maximized using standard numerical 

techniques.  

 

2.3. Cost minimization or profit maximization? 

 

The models presented in the preceding sections are based on the assumption that 

producers either minimize cost or maximize profit. The appropriate model can be chosen once 
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the objective of the producers is known. The question is: Do researchers know whether the data 

at hand comes from producers that are cost minimizers or profit maximizers? This issue can be 

handled in two ways. First, a formal statistical test might determine whether producers minimize 

cost or maximize profit. There are different ways to test this hypothesis. Here we follow the test 

developed by Schankerman and Nadiri (hereafter SN, 1986). Since the cost system in (1) is not 

nested in the profit system (defined in (1) and (4)) one cannot use a nested test (such as the 

likelihood ratio test) to find out which model is appropriate for the data. The idea behind the SN 

test is that under the null hypothesis that producers maximize profit the appropriate model 

consists of the cost function, the cost share equations (given in (1)) and the first-order conditions 

of profit maximization (in (4)) which imply y = y* where y* is the profit maximizing level of 

output. Let the parameters in these equations be partitioned as follows  

 

 iiii vypCC 10 );ln,(lnlnln += β      (6a) 

 iiii vypSS 21);ln,(ln += β              (6b)                                 

 ( iii vyp 32 );ln,(ln )iiii eyqCy lnlnlnln ++−= β       (6c) 

 

Further partition the elements of β0 as β0 =(β0
0, β2

0), where the elements of β2
0 appear in (6a) and 

(6c). Under H0 the restriction β2 =β2
0 is in effect. Let  be the asymptotically efficient, 

constrained estimator of β from (6a-6c) under the restrictions β

β̂

2 =β2
0, and β~  the unconstrained 

estimator from (6a-6b) which is consistent under both the null (profit maximization) and 

alternative hypothesis (cost minimization, i.e., H1: y ≠ y* meaning that the observed output y is 

different from the profit maximizing output level, y*). In order to construct a valid test,  must 

be a consistent estimator of β under H

β̂

0 but inconsistent under H1, while β~  must be consistent 

under both H0 and H1.  An instrumental variable (IV) estimator is required since y is endogenous 

under H0, and appears as regressors in (4). The SN test statistic for H0 is 

( ) ( ) 21 ~ˆ~ˆˆ~
q

A
VNR χββββ −
′

−= − , where q is the number of restrictions in β2 = β2
0, and V  is a 

consistent estimator of V.6 It should be noted that this test is equivalent to the Hausman test for 

ˆ

                                                           
6 It is shown in Schankerman and Nadiri (1986) that  ( ) ).,0(~ˆ~

VN
A

N ββ −  
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specification error in a system of simultaneous equations. Based on the results of this test, one 

can decide the appropriate model for the data. 

 

 

2.4 The latent class model 

 

The main drawback of the test in the previous section is that it does not allow certain 

producers to be profit maximizers and other producers to be cost minimizers. Consequently, it 

leads to an overall decision that applies to all producers. Kulatilaka (1985) has developed t-tests 

that can be used to test the static equilibrium specification by testing for statistical significance of 

departures between the actual and the optimal long-run levels of quasi-fixed factors. Such tests 

could be used to test for profit maximization by testing the significance of departures from the 

first order condition that price equals marginal cost. Here, we explicitly allow for such 

"departures" as part of the sampling process, and in that way we can also explain why such 

departures, if any, are observed.  

 

The alternative approach that we adopt here is to assume that every producer is 

potentially a profit maximizer as well as cost minimizer (with some probability). The probability 

of being a cost minimizer (profit maximizer) is specified by a logistic function that depends on 

some exogenous variables. This gives us a finite mixture model where the density of endogenous 

variables is given by 

 

);()1();();( θπθπθ iZiiii Zpff
ii

−+Ξ=Ξ Ξ , Ni ,...,1=                        (7) 

 

where iπ  is the probability that the th firm behaves as if it were profit maximizing. Given a set 

of predetermined variables, W , we parameterize the log-odds ratio in favor of profit 

maximization as follows: 

i

i
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where  is a vector of parameters. Therefore, we have hR⊆∆∈δ

 

( )
( )δ
δπ

i

i
i W

W
′+

′
=

exp1
exp , . Ni ,...,1=

 

This parameterization guarantees that iπ  is between zero and one, and provides direct 

interpretation of δ . Finite mixture or latent class models are well established in statistics and 

econometrics and have been used widely in applications, see for example the comprehensive 

monograph by Titterington, Smith, and Makov (1985), and Greene (2002) for some recent 

applications. 

 

Based on (7) we can formulate the log-likelihood function 

 

[ ]∑
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Ξ
−− −+Ξ=ΨΞΩΣ

N

i
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1

11 );()1();(ln),,;,,,(ln θπθπδθ  

 

We can maximize this function to obtain FIML estimates of all parameters. Straightforward 

application of Bayes' theorem yields an estimate of the posterior probability that the i th firm 

maximizes profit: 
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where the FIML estimates were substituted for θ  and δ , and ( ) ( )
( )δ
δδπ ~exp1

~exp~

i

i
i W

W
′+

′
≡ , Ni ,...,1= . 

These posterior probabilities are firm-specific even when iπ  is a parameter. Clearly, the 

estimated posterior probabilities summarize all the evidence for or against profit maximization. 

Ideally, we would like to have Q  equal to either zero or one (or nearly so) so that the choice in 

favor or against profit maximization is more or less clear. Empirically, we cannot always expect 

i
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that, and Q  could be anywhere between these limits. In such cases, one could say that a firm is 

likely to be profit maximizing provided 

i

2
1~

>iQ .  

K

2
1

 

3. Data and results 

 

To illustrate the technique proposed in the preceding sections, we use an unbalanced 

panel data set7 consisting of annual observations on the domestic operations of 23 US airlines 

over the period 1971-1986. A total of 268 observations are used here. Variable inputs are labor 

( ), materials (L M ) and fuel ( ). Capital (F ) it treated as a quasi-fixed factor. To control for 

firm-heterogeneity, we also include 22 airline dummies in the cost function.  

 

Maximizing the likelihood function given by the mixture model is an involved procedure 

primarily because it is not possible to concentrate with respect to 1−Σ  and . These matrices 

contribute 

1−Ω

[ )1)(()1( +++++ QMQMMM  parameters. When 3=M  and Q  we have 16 

nuisance parameters. To guarantee that 

1=

Σ  and Ω  represent positive definite covariance 

matrices we use a Cholesky decomposition, namely, AA′=Σ−1  and  where  and  

are, respectively, 

C′C=Ω−1 A C

MM × ()( MQM and )Q+×+  upper triangular matrices. We treat the 

elements of  and  (on and above the diagonal) as parameters.  

 

A C

]

We report the SN test results for overall profit maximization in Table 2. We performed 

several such tests depending on instruments used and whether heterogeneity in the cost function 

(by including airline dummies in the cost function) is taken into account or not. To implement 

the SN test, we use the 3SLS estimators from two systems. The first one is obtained from the 

standard cost system, and the second one is from the profit system (consisting of the cost system 

plus the additional equation derived from the profit maximizing behavior, viz., p = MC). The 

results of the SN tests do not support overall profit maximization behavior. Unfortunately, this is 

an overall test that does not provide further information regarding which airlines are maximizing 

profit and which are not.  

                                                           
7 For details regarding the data, see Appendix A of Baltagi, Griffin and Vadali (1998).  
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Next, we turn our attention to results obtained from the cost minimizing model (CMM), 

the profit maximizing model (PMM), and the LCM. Parameter estimates from these models, 

along with their asymptotic t-statistics8, are reported in Table 1. To estimate the CMM we 

maximize the likelihood function using the OLS estimates of the cost function as the starting 

values. To estimate the PMM we use the FIML method starting from the cost system (non-linear 

SUR) estimates. Finally, to estimate the LCM we use FIML technique in which the simple 

average of estimates obtained from the cost minimizing and profit maximizing models are used 

as the starting values.  

 

We used 24 variables, viz., a constant term, a deregulation dummy (that separates 

observations before and after airlines deregulation in 1978) and 22 airline dummy variables to 

capture heterogeneity in profit maximizing behavior. From the estimated coefficients in the log-

odds equation (reported in Table 2), we can see that (i) all the coefficients are statistically 

significant, (ii) deregulation has a statistically significant and positive impact upon the odds in 

favor of profit maximization, and (iii) airlines seem to differ substantially in their individual log-

odds in favor of profit maximization. Only one airline (North West) seems to stand out in terms 

of having positive coefficients associated with its dummy variable (indicating substantially 

higher log-odds relative to the rest).  

 

In Table 3.1, we report sample averages and sample standard deviations of scale 

economies and technical change. Mean values of scale economies are 0.56, 1.037 and 0.552 for 

the CMM, the PMM and the LCM, respectively, with standard deviations 0.06, 0.301, and 0.130. 

Therefore, the models (especially the PMM) have very different implications in terms of scale 

economies. Since the SN test rejects the overall profit maximizing behavior, results from the 

PMM that impose profit maximizing behavior might be misleading. This is especially the case if 

one looks at the correlation coefficient of scale economies obtained from the PMM and the 

CMM (LCM). The correlations (reported in Table 3.2) are quite high. The mean technical 

change corresponding to the CMM, PMM and LCM are -0.029, -0.036, and -0.028, respectively, 

with standard deviations 0.005, 0.003, and 0.001. Thus, on average technical progress at the rate 

                                                           
8  Standard errors are obtained from the inverse Hessian of the log-likelihood function. 
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of 2.8% to 3.6% per annum is predicted by these models. Although the mean technical change 

from the PMM is not very different from the other two models, the correlation coefficients of 

technical change obtained from the PMM and the CMM (as well as the LCM) is found be 

negative (Table 3.3). To focus more on these differences, kernel density estimates of airline-

specific measures of scale economies and technical change are reported in Figures 1 - 4, before 

and after deregulation. Deregulation is not found to have a large impact upon these measures but 

differences across models seem to be substantial. We believe that the LCM gives the most 

reliable estimates of scale economies and technical change. This is because the LCM allows us to 

estimate the same technology irrespective of whether an airline maximizes profit or minimizes 

cost. In other words, the LCM can impose the constraint of common technology irrespective of 

behavioral assumptions.  

 

From estimated posterior probabilities only the following observations seem to favor 

profit maximization behavioral assumption: BR (1981), CN (1984-1986), ML (1982-1986), NW 

(1972-1986), PA (1986), PO (1986), and WN. Clearly, only NW and WN consistently behaved 

like profit maximizers. In Figure 5, we report histograms of the prior probability of profit 

maximization (upper left panel), the posterior probability (upper right panel), and posterior 

probability before and after deregulation (lower panels). The prior probability average is 0.12 

with the sample standard deviation of 0.30. The median is very close to zero (0.0005) and the 

75% and 90% quantiles are 0.0011 and 0.423, respectively. The posterior probabilities leave 

little doubt that airlines are not profit maximizers. The posterior probabilities are, fortunately, 

very sharp (either very close to zero or unity), and are close to unity for about 10% of airlines. 

Clearly, the posterior probability in favor of profit maximizing behavior increases somewhat 

(from about 8% to 15%) after the deregulation but the bulk of airlines remains to be cost 

minimizers. Thus, we don’t have clear evidence that deregulation changed economic behavior of 

the airlines, viz., from cost minimization to profit maximization. 

 

4. Conclusions 

 

In this paper we proposed a latent class model (LCM) to determine whether firms behave 

like profit maximizers or cost minimizers when there is no additional sample separation 

 13



information. Existing econometric tests (e.g., Schankerman and Nadiri, 1989) allowed us to test 

for profit maximization. These tests, however, give an overall conclusion either in favor or 

against profit maximization for all firms in the sample. In practice some firms might be 

maximizing profit while others might minimize cost. The researchers may not have any 

information on which firms maximize profit. In such a situation the LCM is quite useful. 

Estimation of the LCM amounts to mixing a seemingly unrelated regression model (resulting 

from cost minimization) with a simultaneous equation model (the cost minimizing system plus 

the equality of marginal costs and output prices) with cross-equation and cross-model restrictions 

in such a way that the technology is the same for all firms irrespective of their behavioral 

assumptions. The log-odds ratio in favor of profit maximization is parameterized in terms of 

predetermined variables. Estimates of this function are used to predict the posterior probability of 

firms maximizing profit or minimizing cost. The LCM is estimated using panel data on a sample 

of U.S. airlines. We find that deregulation helped somewhat but only about 15% of the airlines 

are found to be consistent with profit maximizing behavior. In other words, we don’t find 

evidence that all airlines were maximixing profit, especially after deregulation in 1978.  
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Table 1: Parameter estimates from alternative models 

Model     Cost Min.   Profit Max.     Mixing 
  
Parameter     Est     Std err Est    Std err              Est    Std err    
Const. 7.494 0.215 7.366 0.210 6.929 0.134 
ln(p1) 0.735 0.056 0.695 0.056 0.540 0.042 
ln(p2) -0.611 0.070 -0.607 0.068 -0.409 0.045 
ln(k) 0.311 0.124 -0.585 0.134 -0.028 0.008 
ln(y) 0.691 0.108 1.529 0.125 0.901 0.062 
t -0.061 0.006 -0.061 0.007 -0.047 0.005 
ln(p1).ln(p1) 0.139 0.011 0.131 0.011 0.056 0.072 
ln(p1).ln(p2) -0.046 0.010 -0.046 0.010 0.093 0.009 
ln(p2).ln(p2) 0.138 0.012 0.137 0.012 -0.009 0.008 
ln(k).ln(k) -0.369 0.209 -2.082 0.095 0.102 0.008 
ln(y).ln(y) -0.166 0.176 -1.508 0.065 -0.982 0.087 
t.t 0.001 0.001 -0.001 0.001 -0.625 0.073 
ln(p1).ln(k) 0.083 0.013 -0.080 0.026 0.000 0.000 
ln(p2).ln(k) -0.027 0.009 -0.042 0.021 0.089 0.009 
ln(p1).ln(y) -0.070 0.011 0.088 0.024 -0.077 0.008 
ln(p2).ln(y) 0.012 0.008 0.028 0.020 0.015 0.007 
ln(p1).t -0.003 0.001 -0.005 0.001 -0.001 0.001 
ln(p2).t 0.004 0.001 0.004 0.001 0.003 0.001 
ln(k).ln(y) 0.241 0.187 1.770 0.074 0.765 0.075 
ln(k).t 0.006 0.006 -0.018 0.004 0.002 0.004 
ln(y).t -0.006 0.005 0.016 0.004 -0.002 0.004 
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Table 2: Parameter estimates of the log-odds function 

 
Parameter             Estimate               Std err

 
 
       

 
Constant -23.571 0.181
Deregulation 26.445 0.181
D1 -10.014 0.193
D2 -10.563 0.193
D3 -3.627 0.191
D4 -3.185 0.188
D5 -10.542 0.193
D6 -10.475 0.193
D7 -9.913 0.193
D8 6.058 0.193
D9 -7.291 0.193
D10 -4.915 0.193
D11 59.564 0.193
D12 -9.681 0.193
D13 -4.197 0.189
D14 -4.787 0.190
D15 -9.623 0.193
D16 -10.269 0.193
D17 -7.370 0.193
D18 -3.925 0.193
D19 -8.605 0.193
D20 -10.563 0.193
D21 -10.544 0.193
D22 -10.242 0.193
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Table 3. 1.  Scale economies and technical progress across models 
 

 CMM PMM LCM 
Scale economies 0.56 (0.06) 1.037 (0.301) 0.552 (0.130) 
Technical change -0.029 (0.005) -0.036 (0.003) -0.028 (0.001) 
 
Notes: Sample means are reported. Sample standard deviations appear in parentheses. 
 
 
Table 3. 2.  Correlation coefficients of scale economies across models 
 

 Cost min. Profit max. Mixing 
Cost min. 1 0.633 0.823 

Profit max.  1 0.945 
Mixing   1 

 
Table 3. 3.  Correlation coefficients of technical change across models 
 

 Cost min. Profit max. Mixing 
Cost min. 1 -0.293 0.847 

Profit max.  1 -0.363 
Mixing   1 

 
 
Table 4.  The Schankerman-Nadiri test results 
 

 Specification Test p-value 
 Dummies in 

cost function? 
Dummies as 
instruments? 

Deregulation 
and intera-
ctions as 

instruments? 

  

1 yes yes no 67.659 0.000 
2 no yes no 144.43 0.000 
3 no no no 19.798 0.0014 
4 yes yes yes 71.052 0.000 
5 no yes yes 191.792 0.000 
6 no no yes 59.629 0.000 

 
Notes: The Schankerman-Nadiri tests were computed as follows. Under the null of profit maximization, the 3SLS 
estimator of cost-share system plus the profit maximization condition is efficient. The 3SLS estimator of the cost-
share system is consistent under the null as well as under the alternative that profit maximization does not hold. So 
the test is a Hausman specification test. The lists of instruments vary across the different cases we consider. The 
basic set is log prices, log capital stock, the time trend, their squares, and their cross-products. There are 22 airline-
specific dummy variables. Interactions of the deregulation dummy were taken with the variables in the basic 
instrument set. 
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