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This paper proposes a tractable approach for analyzing the sources of TFP changes 
(i.e., technical change, changes in technical and allocative inefficiency, and the scale 
effect) in a multi-output setting, while retaining the single-equation nature of the 
econometric procedure used to estimate the parameters of the underlying technology.  
The proposed approach relies on Bauer’s cost function based decomposition of TFP 
changes and the duality between input distance and cost functions.  The empirical 
results are based on a sample of 121 UK livestock farms observed over the period 
1983-92 and a translog input distance function. It is found that improvements in 
technical efficiency appear to provide greater potential for enhancing farm returns 
than that which may be obtained from shifting the production frontier itself.  In 
addition, scale economies and allocative inefficiency are also important sources for 
TFP changes on UK livestock farms.   
 

Keywords: Cost function based decomposition of TFP, input distance function; UK 
livestock farms  

 
 

 

Introduction 
 
Several studies (i.e., Fan; Ahmad and Bravo-Ureta; Wu; Kalirajan, Obwona and 

Zhao; Kalirajan and Shand; Giannakas, Tran and Tzouvelekas; Giannakas, Schoney 

and Tzouvelekas) have attempted to explain and identify the sources of output growth 

in agriculture.  By using a parametric production frontier approach, they have 

attributed output growth to factor accumulation (input growth), technical change, and 

changes in technical inefficiency.1  Factor accumulation refers to movements along a 

path on or beneath the production frontier, technical change is associated with shifts 

in the production frontier, and changes in technical inefficiency are related to 

movements towards or away from the production frontier.  Implicit in this framework, 

initiated by Nishimizu and Page, are the assumptions of constant returns to scale and 

of allocative efficiency.2  Consequently, changes in total factor productivity (TFP) 

have been attributed to only two sources: technical change and changes in technical 

inefficiency. This however restricts unnecessarily the analysis of the potential sources 

of output growth.  

Despite this limitation of previous studies, the parametric production frontier 

approach has two other shortcomings.  First, it is unable to accommodate multi-output 
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technologies, which are quite common in agricultural production.  It is well known 

that inappropriate and unnecessary aggregation of outputs (and inputs) often results in 

misrepresentation of the structure of production, which may also affect the degree of 

technical efficiency.  Second, even if input prices data are available, the effects of 

scale economies and of allocative inefficiency on TFP changes cannot be separated 

from each other (Bauer; Lovell).3  Indeed, the scale effect can only be identified if 

input allocative efficiency is presumed, and in this case there is no need for input 

price data.  In contrast, the effect of input allocative inefficiency cannot be identified 

even if the assumption of constant returns to scale is maintained.  Thus, within the 

parametric production frontier approach, TFP changes may at most be attributed to 

changes in technical inefficiency, technical change, and the scale effect.4  However, 

under the assumption of expected profit maximization, the parametric production 

frontier approach has the advantage of single-equation estimation and of requiring 

only input and output quantity data.5  

On the other hand, cost frontiers can satisfactorily deal with decomposing TFP 

changes in the presence of multi-output technologies, input allocative inefficiency and 

non-constant returns to scale (Bauer).  As long as panel data are available, this can be 

achieved by estimating a system of equations consisting of the cost frontier and the 

derived demand (or cost share) equations, which allows firm-specific and time-varying 

technical and allocative inefficiencies to be separated from each other (Kumbhakar 

and Lovell, 2000, pp. 166-75).  Clearly, this is a more complicated econometric 

problem than single-equation estimation, and also requires firm specific data on input 

prices.  Notice however that the effects of technical and allocative inefficiency cannot 

be identified separately if the cost frontier is estimated with a single-equation 

procedure.   

 The objective of this paper is to propose a tractable approach for analyzing the 

sources of TFP changes (i.e., technical change, changes in technical and allocative 

inefficiency, and the scale effect) in a multi-output setting, while retaining the single-

equation nature of the econometric procedure used to estimate the parameters of the 

underlying technology.  The proposed approach relies on Bauer’s cost function based 

decomposition of TFP changes and the duality between input distance and cost 

functions.  Specifically, the cost function (i.e., dual representation) is used for the 

theoretical decomposition of TFP changes whereas all necessary information for 

quantifying the sources of TFP changes are recovered from an econometrically 
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estimated input distance function (i.e., primal representation).  Thus, instead of using 

a system-wise procedure to estimate a cost frontier, all necessary information for 

decomposing TFP changes within a cost function approach can be recovered from an 

input distance function, which also fully describes the production technology.  

In this context, the input distance function could be seen as an alternative that 

overcomes the shortcomings of production frontiers while retains the advantages of a 

single-equation estimation.  By definition, the input distance function can easily 

accommodate multi-output technologies and thus has an obvious advantage over 

production frontiers.  In addition, estimates of the input-oriented measure of technical 

inefficiency may be directly obtained from the estimated input distance function (Fare 

and Lovell).  On the other hand, by using the duality between input distance and cost 

functions (e.g., Fare and Primont), it can be shown that the effects of scale economies 

and of allocative inefficiency on TFP changes can be separated from each other.  The 

only assumption required to measure allocative efficiency from an input distance 

function is that one observed price equals the cost-minimizing price at the observed 

input mix (Fare and Grosskopf).  However there is an endogeneity problem with input 

quantities in the single-equation estimation if the assumption of cost minimization is 

maintained.  This problem may be solved by using an instrumental variable estimation 

procedure. 

The rest of this paper is organized as follows: the theoretical framework is 

presented in the next section.  The empirical model based on a translog input distance 

function and the estimation procedure utilizing an instrumental variable FGLS are 

described in the third section.  Data sources and variables definition are discussed in 

the fourth section.  The empirical results are analyzed in the fifth section.  Concluding 

remarks follow in the last section. 

 
Theoretical Framework 
 
The input-oriented measure of productive efficiency may be defined as =),,,( txwQE  

 (Bauer; Lovell), where CtwQC /),,( 10 ≤< )t,x,w,Q(E
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,  is a well-defined 

cost frontier function,  is the observed total cost,  is a vector of output quantities, 
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productive inefficiency is eliminated (Kopp).6  Using Farrell’s decomposition of 
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 By taking the logarithm of each side of   and totally 

differentiating it with respect to t  yields (Bauer): 

 

        ,                  (1) 

 
where a dot over a variable or function indicates its time rate of change,   

, 

),tw

, and  

 is the rate of cost diminution.  Alternatively, by taking the logarithm 

of , and totally differentiating it with respect to t , yields: 

=)t
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Substituting (2) into (1) results in: 

 

 (3) 

 
Then, using the conventional Divisia index measure of TFP changes, 
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where ,  refers to output price and TR is observed revenue; the time 

rate of change of , i.e.,  
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and by assuming marginal cost pricing 
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(3) may be rewritten as: 

 

         ++−







−+=

••

==

••

∑∑ ),,(),,(),,(1
11

txQTtwQCQtwQxsQ t
h

k

CQ
k

m

j
jj ε

        ,         (4) [ ] •

=

•

∑ −++ j

m

j
jj wtwQsstxwQA

1
),,(),,,(

 
which is an output growth representation of the decomposition relationship developed 

by Bauer. 

The first term in (4) captures the contribution of aggregate input growth on 

output changes over time (size effect).7  The more essential an input is in the 

production process, the higher is its contribution to the size effect.  The second term 

measures the relative contribution of scale economies to output growth (scale effect).  

This term vanishes under constant returns to scale as 1),,( =∑ twQCQ
kε , while it is 

positive (negative) under increasing (decreasing) returns to scale, as long as aggregate 

input increases, and vice versa.  The third term refers to the dual rate of technical 

change (cost diminution), which is positive (negative) under progressive (regressive) 

technical change.  

The fourth and the fifth terms in (4) are positive (negative) as technical and 

allocative efficiency increases (decreases) over time.  There is no a priori reason for 

both types of efficiency to increase or decrease simultaneously (Schmidt and Lovell) 

nor that their relative contribution should be of equal importance for output growth.  

More importantly, what really matters in output growth decomposition analysis is not 

the degree of efficiency itself, but its improvement over time.  That is, even at low 

levels of productive efficiency, output gains may be achieved by improving either 

technical or allocative efficiency, or both.  However, it seems difficult to achieve 

substantial output growth gains at very high levels of technical and/or allocative 

efficiency. 

The last term in (4) is the price adjustment effect.8  The existence of this term 

indicates that the aggregate measure of inputs is biased in the presence of allocative 
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efficiency (Bauer).  Under allocative efficiency, the price adjustment effect is equal to 

zero as .  Otherwise, its magnitude is inversely related to the degree of 

allocative efficiency.  The price adjustment effect is also equal to zero when input 

prices change at the same rate, since 

),,( twQss jj =

[ ]∑ =− 0),,( twQss jj . 

The next step concerns the recovery of all factors in (4) from an input distance 

function, through its duality with the cost function.  First, Fare, Grosskopf and Lovell 

have shown that  
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which provides the relationship for recovering the scale effect in (4) directly from the 

input distance function.  Second, Atkinson and Cornwell have shown that  
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which relates the dual (cost diminution) with the primal (based on the input distance 

function) rate of technical change and also provides to the latter a clear cost saving 

interpretation.9 
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where  denotes the vector of virtual input prices.  Virtual prices consist of 

that vector of input prices which makes the (observed) technically inefficient input 

mix allocativelly efficient; that is, virtual prices are interpreted as marginal products 

of inputs at the observed input mix (Grosskopf, Hayes and Hirschberg).  However, in 

the presence of allocative inefficiency, observed input prices ( ) do not necessarily 

coincide with the vector of cost minimizing input prices ( ) for the observed input 

mix.  Then, to compute C  from (7), it is required to assume that  for 

one input. 
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 Finally, the cost minimizing factor shares should be retrieved from the input 

distance function in order to compute the last term in (4).  According to Bosco, 
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Even though it can be shown that, after few manipulations,  (8a) and (8b) are equal to 

each other, the former is used for the purposes of the present study. 

 
Empirical Model and Estimation Procedure 
 
Quantitative results of the output growth decomposition analysis presented in (4) can 

be obtained by econometrically estimating an input distance function.  In order to 

keep the representation of production technology as flexible as possible within the 

parametric approach, the translog form is chosen to approximate the underlying input 

distance function (e.g., Grosskopf et al.; Coelli and Perelman, 1999, 2000): 
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where subscript i is used to index farms and  corresponds to Baltagi and Griffin’s 

general index of technical change defined as: 
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with  being time dummy for year t (t=1, …, T).tD 10  All tλ  (t=1, …, T) parameters 

are econometrically estimated by imposing the normalizing restrictions requiring that 

γ1=γ2=1 and λ1=0 (Baltagi and Griffin).  The regularity conditions associated with 
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input distance function require homogeneity of degree one in input quantities and 

symmetry, which imply the following restrictions on the parameters of (9): 
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The homogeneity restrictions may also be imposed by dividing the left-hand side and 

all input quantities in the right-hand side of (9) by the quantity of that input used as a 

numeraire. 

Based on (5), the scale elasticity for the translog input distance function is 

calculated as: 
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The hypothesis of constant returns to scale can be tested by imposing the necessary 

restrictions associated with the linear homogeneity of the input distance function on 

output quantities.  These restrictions are: 
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If this hypothesis cannot be rejected, the underlying technology exhibits constant 

returns to scale and the second term in (4) vanishes. 

On the other hand, by using (6) the dual and the primal rates of technical change 

are related to each other as follows: 
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where the latter can be decomposed into a pure component ( ) ( )[ ]1−− tAtA  and a non-

neutral component [ ]( ) ( ) ( )∑∑ +−− jkitk xQtAtA lnln1 θε jit  that is farm-specific.  

The hypothesis of zero technical change can be tested by imposing the restriction that 

λt=0  (t=2,…,T).t∀ 11  If the hypothesis of zero technical change cannot be rejected, 
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the third term in (4) becomes equal to zero, and technical change has no effect on TFP 

changes.   

 In the case of the translog input distance function, there is no need to calculate 

virtual prices for the computation of allocative inefficiency and of cost minimizing 

factor shares. Given (7) and ( ) ( ) ( )[ ] itit
I
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and  and  for all j are computed by using (14) and (8a) along 

with the observed cost share of the input for which has been assumed that its cost 

minimizing price equals its observed price. 

( )txwQAit ;,, ( twQs jit ;, )

Given linear homogeneity, (9) may be written as  to 

obtain an estimable form of the input distance function, where j is the numeraire input 

and 

I
itjit Dx ln)(ln −•=− ϕ

)(•ϕ  is the right-hand side of (9) after dividing all inputs with the numeraire 

input.  Since there are no observations for  and given that ln , then 

 (Grosskopf et al.; Coelli and Perelman, 1999, 2000), where u

I
itDln 0≤I

itD

ituDln I
it −= it is a one-

sided, non-negative error term representing the stochastic shortfall of the ith farm 

output from its production frontier due to the existence of technical inefficiency.  

Then, the stochastic input distance function model may be written as: 

 
                                                ititjit vux ++•=− )(ln ϕ                                              (15) 
 
where vit depicts a symmetric and normally distributed error term (i.e., statistical 

noise), representing a combination of those factors that cannot be controlled by 

farmers, omitted explanatory variables, and measurement errors in the dependent 

variable.  It is also assumed that vit and uit are distributed independently of each other. 

 In the context of the present paper, the temporal pattern of the one-sided error 

term is important as the changes in technical efficiency over time rather than the 

degree of technical efficiency per se matters in (4).  Cornwell, Schmidt and Sickles 

specification is adopted to model the temporal pattern of technical inefficiency 

through a quadratic function of time, i.e., 
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                                           u ,              (16) 2

210 tt iiiit ρρρ ++=
 
where iii 210 ,, ρρρ  (i = 1,...,n) are farm-specific parameters to be estimated.  Then, 

input-oriented technical efficiency is calculated as { }( )itiitit uu ˆmaxˆexpT −=  for ∀  

(t=1,…,T), where a hat over a variable indicates its fitted values (Cornwell, Schmidt 

and Sickles).

t

12  The above specification is very flexible as it allows first, for farm-

specific patterns of temporal variation; second, for testing the hypothesis of time 

invariant technical efficiency (i.e., 021 == ii ρρ  for i = 1,...,n), and third, for testing 

the existence of a common temporal pattern for all farms in the sample (i.e., 11 ρρ =i  

and 22 ρρ =i  for i = 1,...,n).  Farm-specific estimates of the change of technical 

efficiency over time are obtained as T  (Fecher and Pestieau).  ti2ii 1 2ρρ +=
•

  Specifications (16) and (10) enable the effects of technical change and of 

time-varying technical efficiency changes on TFP growth to be identified separately 

in the absence of any distributional assumptions regarding the one-sided error term 

(Karagiannis, Midmore and Tzouvelekas).  Since technical change and the temporal 

pattern of technical inefficiency are each captured through different variables, the 

identification problem mentioned by Kumbhakar, Heshmati and Hjalmarsson when 

(16) is accompanied with a single time trend representation of technical change is 

eliminated.13  As a result, all the parameters associated with the rate of technical 

change in (13) and the temporal pattern of technical inefficiency in (16) are identified 

separately within a single-stage estimation procedure, which does not need to be 

maximum likelihood.     

After substituting (9), (10) and (16) into (15) the resulting model is estimated 

by a single-equation estimation procedure using feasible generalized least squares 

(FGLS) as the variance of the error term is unknown.  However, as the resulting model 

is non-linear in parameters, the procedure described in Kumbhakar and Hjalmarson 

(1995) should be applied.14  Moreover, the random effect formulation is used to reduce 

the number of parameters to be estimated.  In this case, the variance of statistical noise 

is estimated as 22 )()1(1
iitv eeTN ∑∑ −−=σ  and the variance of the one-sided 

error term as ( )( )∑ ∑ −−=
22 )1(/1/1 σieNTT 2

νσ u , where eit are the residuals of the 
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non-linear OLS model and ∑= Tee iti / .  Then, FGLS estimates can be obtained by 

using non-linear OLS into a transformed model that arises by multiplying both sides of 

(15) by µ  and then subtracting their means, where ( )( ) 212221 uTσσσµ νν +−= .  

 Nevertheless, an endogeneity problem with input quantities is inherent in the 

single-equation estimation of an input distance function if the assumption of cost 

minimization is maintained.  The endogeneity issue can ultimately be resolved by 

applying an instrumental variable procedure and estimate the resulting model with a 

non-linear instrumental variable FGLS.  In order to be consistent with the theoretical 

framework of cost minimization, output quantities, input prices and the technology 

index are chosen as instruments.  This consists an alternative approach to corrected 

ordinary least squares (Grosskopf et al.; Coelli and Perelman, 1999, 2000) and 

maximum likelihood (Morrison Paul, Johnston and Frengley) single-equation 

procedures for estimating input distance functions.           

 
Data Description  
 
Financial data from mixed livestock farm accounts are drawn from the Farm Business 

Survey (FBS) for England, Scotland, Wales and Northern Ireland (MAFF, 1994).15  

The FBS is an annual survey covering around 3,900 full time farms, selected from a 

random sample of census data that is stratified according to region, economic size, 

and type of farming.16  The definition of the latter is based on standard gross margin 

(SGM) per hectare for crops and per head for livestock estimated for the period 1987 

to 1989 (MAFF, 1994).17  Farm classified as mixed livestock are those on which 

livestock products (beef, lamb and wool) account for more than two thirds of their 

total SGM.18  Based on this, a total of 121 mixed livestock farms, observed for 

varying numbers of years, were extracted to form an unbalanced panel.  The final 

panel data set consists of 1,069 observations, which in turn implies that on the average 

each farm is observed almost 9 times during the 1982-91 period.   

The outputs included in the translog input distance function in (9) are: (i) the 

total annual production of live weight beef in kgs; (ii) the total annual production of 

live weight lamb in kgs; (iii) the total annual production of wool in kgs.  The inputs 

included in the model are: (i) total agricultural land in hectares;  (ii) total labour, 

comprising hired (permanent and casual), family and contract labour, measured in 

working hours; (iii) number of beef cows; (iv) the total number of sheep; and (v) 
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purchased concentrated feed, coarse fodder and other livestock expenses (such as 

veterinary and medicine costs) measured in pounds sterling.  

Data on input price movements are derived from annual indices published by 

the UK Department of the Environment, Food and Rural Affairs (formerly MAFF: see 

DEFRA).  To the extent that these indices cover the entire UK, and are expressed as 

averages, some regional variation might cause bias, although since agricultural market 

integration and function are at a high level, this is not likely to be a significant source.  

 
Empirical Results 
 
The GLS parameter estimates of the translog input distance function are presented in 

Table 2.  According to the estimated parameters, the translog input distance function is 

found, at the point of approximation, to be non-increasing in outputs and non-

decreasing in inputs.  Also, at the point of approximation, the Hessian matrix of the 

first and second-order partial derivatives with respect to inputs is found to be negative 

definite and the corresponding Hessian matrix with respect to outputs to be positive 

definite.  These indicate respectively the concavity and convexity of the underlying 

input distance function with respect to inputs and outputs.  The value of the adjusted 

R-squared indicates a satisfactory fit of translog specification. 

The estimated variance of the one-side error term is found to be  and 

that of the statistical noise .  The presence of technical inefficiency is 

related to the statistical significance of .  If  then the least squares estimator 

is best linear unbiased and farm-effects are zero.  This hypothesis can be tested with 

the following LM-test statistic 
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asymptotically distributed as  with one degree of freedom (Breusch and Pagan).  

The null hypothesis that  is rejected at the 5% level of significance (see Table 

3) indicating that the technical inefficiency effects are in fact stochastic.  Thus, a 

significant part of output variability among livestock farms in explained by the 

existing differences in the degree of technical efficiency.  

2
uσ

The hypothesis that technical inefficiency is time-invariant is also rejected at the 

5% level of significance (see Table 3).  This means that output growth has been 

affected by changes in the degree of technical efficiency over time.  During the period 
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1983-92, technical efficiency tended to increase over time, as the most of the estimated 

ρ  parameters are positive.19  Specifically, mean input-oriented technical efficiency 

increased from 78.80% in 1983 to 84.73% in 1992 (see Table 4), implying that its 

contribution into output growth would positive.  During the period 1983-92, the 

average annual rate of increase in technical efficiency is estimated to be 0.66%.  The 

vast majority of livestock farms in the sample have consistently achieved scores of 

technical efficiency greater than 60% during the period 1983-92.  However, the 

portion of livestock farms with technical efficiency scores below 60% decreased over 

time.  This means that the portion of livestock farms facing significant technical 

inefficiency problems has been decreased.  The estimated mean technical efficiency 

was found to be 82.77% during the period 1983-1992.  Thus, on average, a 17.23% 

decrease in total cost could have been achieved during this period, without altering the 

total volume of outputs, production technology and input usage. 

Mean allocative efficiency is found to be 53.85% during the period 1983-92 

(see Table 4), implying that UK livestock farms in the sample have achieved a 

relatively poor allocation of existing resources.  As a result, a 46.15% decrease in cost 

should be feasible by means of a further re-allocation of inputs for any given level of 

outputs.  The great majority of farmers in the sample have consistently achieved 

scores of allocative efficiency less than 60%.  This portion tended however to remain 

rather stable over time.  Mean allocative efficiency is smaller than the corresponding 

point estimate of technical efficiency, indicating that livestock farms in UK did better 

in achieving the maximum attainable outputs for given inputs than in allocating 

existing resources.  Allocative efficiency increased slightly from 49.51% in 1983 to 

50.78% in 1992 (see Table 4).  In particular, allocative efficiency increased during the 

period 1983-92 with an average annual rate of 0.14%.  Thus, allocative efficiency also 

tended to contribute positively to both TFP and output growth.  However, the average 

rate of change of allocative efficiency is lower than that of technical efficiency and 

thus, its relative contribution to output growth is expected to be relatively smaller. 

Mean productive efficiency was found to be 44.35% (see Table 4).  This figure 

represents the ratio of minimum to actual cost of production and implies that 

significant cost savings (about 45.65%) may be achieved by improving both technical 

and allocative efficiency.  Only a very small portion of farms in the sample achieved a 

score greater than 80%.  Given the estimates of technical and allocative inefficiency, 
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productive inefficiency is mostly due allocative inefficiency.  Productive efficiency 

increased over time from 37.85% in 1983 to 42.83% in 1993.  Nevertheless, its annual 

rate of increase (0.55%) is greater than that of allocative efficiency as technical 

inefficiency tended to increase at a higher rate.  

The decomposition analysis results for UK livestock farms’ output growth 

during the period 1983-1992 are given in Table 5.  An average annual rate of 1.93% is 

observed for output growth.  This growth stems mainly from the corresponding 

increase in sheep meat (1.72%) and wool (0.46%), whereas cattle output exhibits a 

decrease during the same period of -0.26%.20   Our empirical findings suggest that 

most of output growth (59.5%) in livestock production is due to input increase. A 

smaller portion is attributed to productivity growth, which grew with an average 

annual rate of 0.96%.  Thus, substantial output increases may still be achieved ceteris 

paribus by improving TFP, and this has important policy implications as far as the 

sources of productivity growth are identified.   

Since the hypothesis of zero technical change is rejected at the 5% level of 

significance (see Table 3), the effect of technical change should be taken into account 

in (4).  Parameter estimates indicate technological progress, which on the average was 

0.20%.  However, in contrast to most previous studies, technical change has not been 

the main source of TFP growth, accounting for only 20.70% of TFP growth and 

10.40% of output growth (see Table 5).  Moreover, the hypothesis of Hicks neutral 

technical change is rejected at the 5% level of significance (see Table 3).  The non-

neutral component dominates the neutral component although the latter exhibits 

complex and erratic patterns of technical change consisting of bursts of rapid changes 

and periods of stagnation.  Specifically, the non-neutral component is on the average 

0.18% ranging between a maximum of 0.41% in 1988 and a minimum of 0.02% in 

1984, whereas the neutral component while is on the average only 0.02% it ranges 

from a maximum of 3.25% in 1989 and a minimum of -4.06% in 1987.  

On the other hand, the hypothesis of constant returns to scale is also rejected at 

the 5% level of significance (see Table 3).  Thus, the scale effect has contributed to 

TFP changes and output growth.  In particular, the scale effect is positive as livestock 

farms in UK exhibited increasing returns to scale and the aggregate output index 

increased over time.  On average, the degree of scale economies is estimated at 1.29 

during the period 1983-92.  As a result, economies of scale enhanced annual output 

growth by an average annual rate of 0.15% (see Table 5).  In relative terms, the scale 
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effect is the third larger factor influencing TFP and output growth, after technical 

efficiency and technological progress.  This rather significant figure would have been 

omitted if constant returns to scale were falsely assumed.  

Technical and allocative inefficiencies have affected TFP and output growth in 

the same manner.  The relative contribution of each depends on their rate of change 

over time, rather than their absolute magnitude.  As shown in Table 5, the relative 

contribution of the allocative efficiency effect on output growth is less than that of 

technical efficiency, since the average rate of increase of the former was found to be 

lower than that of the latter.  Moreover, changes in technical efficiency are found to 

be the main source of TFP and output change.  Overall, productive efficiency 

accounts for 83.3% of annual TFP growth and for 41.5% of average annual output 

growth among livestock farms in UK. 

The price adjustment effect was found to have a relatively significant impact on 

TFP and output growth.  On average, the price adjustment effect accounted for 19.6% 

of output slowdown.  However, given the existence of allocative inefficiency, its 

impact cannot be neglected in attempting to measure the TFP growth rate accurately.  

After accounting for all theoretically proposed sources of TFP growth and for the size 

effect, a -9.1% of observed output growth remained unexplained.  Nevertheless, the 

unexplained portion of output growth is smaller than the unexplained residual that 

would have been obtained by using a production approach (e.g., Ahmad and Bravo-

Ureta), which does not separate the scale and the allocative inefficiency effects.21 

 
Concluding Remarks 
 
The development of the distance function approach finally provides a more realistic 

framework for parametric decomposition of output growth appropriate to the multi-

input, multi-output context of the farm business. Separate identification of the effects 

for cattle, sheep and wool on British livestock farms will have substantial implications 

for the development of agricultural policy, since improvements in technical and 

allocative efficiency appear, on the evidence presented by this study, to provide 

greater potential for the improvement of farm returns than that which may be obtained 

from shifting the production frontier itself. This is especially important where 

technical changes are implicated in a decline in the environmental quality of the agro-

ecosystem, since a large (and growing) number of farms in the sample analysed could 

improve both technical and allocative efficiency. 
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Table 1. Summary Statistics of the Variables 
 
Variable Mean Min Max StDev 

Outputs     

Beef (animals) 71 2 724 58 

Lamb (kgs) 616 4 3.839 457 

Wool (kgs) 1.362 17 11.430 1.018 

Inputs     

Cattle (animals) 129 3 827 106 

Sheep (animals) 667 10 2.689 451 

Labour (working hours) 5.254 1.806 17.727 2.415 

Land (acres) 156 28 944 137 

Machinery (GB pounds) 9.034 612 59.999 6.808 

Materials (GB pounds) 13.723 428 108.219 12.476 

Other Cost (GB pounds) 15.150 664 113.559 14.098 
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Table 2. Parameter Estimates of the Translog Input Distance Function  
Parameter Estimate Std Error Parameter Estimate Std Error 

αΒ -0.173 (0.071)* βSF 0.106 (0.043)* 
αL -0.283 (0.079)* βSS -0.177 (0.047)* 
αW -0.446 (0.082)* βEA 0.280  
βC 0.066 (0.029)** βEM 0.017 (0.091) 
βS 0.322 (0.090)* βEF -0.082 (0.043)** 
βE 0.155 (0.078)** βEE 0.104 (0.048)* 
βA 0.054  βAM 0.082  
βM 0.224 (0.035)* βAF 0.009  
βF 0.178 (0.057)* βAA -0.335  
λ2 -0.015 (0.031) βMF 0.049 (0.059) 
λ3 -0.050 (0.021)* βMM 0.038 (0.042) 
λ4 -0.024 (0.035) βFF 0.114 (0.029)* 
λ5 -0.465 (0.135)* θCT 0.021 (0.008)* 
λ6 -0.276 (0.109)* θST 0.034 (0.009)* 
λ7 0.238 (0.121)** θET -0.015 (0.033) 
λ8 0.044 (0.041) θAT 0.011  
λ9 0.136 (0.065)** θMT -0.011 (0.006)** 
λ10 0.904 (0.201)* θFT -0.020 (0.045) 
αBL -0.008 (0.057) δCB 0.024 (0.045) 
αBW 0.256 (0.059)* δCL -0.117 (0.046)* 
αBB -0.073 (0.030)* δCW -0.058 (0.081) 
αLW -0.324 (0.055)* δSB -0.285 (0.070)* 
αLL 0.085 (0.037)* δSL 0.130 (0.054)* 
αWW 0.008 (0.025) δSW 0.238 (0.065)* 
εBT 0.034 (0.071) δEB -0.008 (0.087) 
εLT -0.039 (0.019)** δEL -0.329 (0.099)* 
εWT 0.061 (0.082) δEW 0.335 (0.097)* 
βCS 0.366 (0.086)* δAB 0.158  
βCE -0.267 (0.100)* δAL 0.033  
βCA 0.041  δAW 0.192  
βCM -0.033 (0.078) δMB 0.006 (0.006) 
βCF -0.196 (0.055)* δML 0.260 (0.077)* 
βCC 0.089 (0.026)* δMW -0.106 (0.062)** 
βSE -0.058 (0.105) δFB 0.105 (0.043)* 
βSA -0.083  δFL 0.017 (0.054) 
βSM -0.154 (0.065)* δFW -0.217 (0.052)* 

2R  0.878    
Notes: (1) B refers to beef live weight, L to lamb weight, W: to wool, C: to cattle, S: to sheep, E to  

labor, A to area, M to machinery, and F :to materials. 
           (2) *(**) indicates statistical significance at the 1(5)% level. 
          (3) Estimated parameters without standard errors are computed using the homogeneity property. 
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Table 3. Model Specification Tests 

Hypothesis Test 
Statistic 

Critical 
Value 

(α=0.05) 

Technical Efficiency ( ) 02 =uσ 18.51 3.84 

Time-Invariant Technical Inefficiency ( )i  0& 0 21 ∀== ii ρρ   295.3 2322
242 ≈χ  

Zero Technical Change ( )t  t ∀= 0λ  52.58 92.162
9 =χ  

Hicks-Neutral Technical Change ( )jk,  0&0 ∀== jk θε  34.71 92.162
9 =χ  

Constant Returns to Scale ( )∑ ∑ ∑ === 0,0,1 jkklk δαα  29.06 31.182
10 =χ  
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Table 4. Frequency Distribution of Technical, Allocative and Productive Efficiency.  

 

 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 
Technical Efficiency 
<20 0 0 0 0 0 0 0 0 0 0 

20-30 0 0 1 0 0 0 1 0 0 0 
30-40 4 4 4 4 1 3 1 0 2 1 
40-50 3 4 5 7 6 7 9 5 4 0 
50-60 11 7 6 6 9 7 9 7 3 2 
60-70 11 7 8 12 9 9 6 7 7 9 
70-80 14 10 16 9 17 10 8 11 13 8 
80-90 14 26 30 30 22 26 29 21 16 12 
>90 39 53 51 53 57 58 57 55 44 29 

Mean 78.80 83.00 82.18 82.27 82.83 82.61 82.37 85.38 83.48 84.73
Allocative Efficiency 
<20 0 1 1 1 1 2 2 0 1 1 

20-30 5 10 11 10 8 7 9 6 7 1 
30-40 27 18 21 22 22 16 19 21 12 13 
40-50 19 23 23 22 23 20 18 16 14 10 
50-60 6 12 11 16 13 15 21 15 12 5 
60-70 7 7 9 10 5 7 4 4 3 5 
70-80 2 2 6 8 10 6 3 5 1 1 
80-90 2 4 2 0 6 5 4 0 4 2 
>90 2 0 1 3 0 7 3 4 2 2 

Mean 49.51 53.64 52.61 55.74 53.06 55.68 54.17 57.63 55.68 50.78
Cost Efficiency 
<20 16 8 12 11 12 11 13 6 7 4 

20-30 22 17 16 17 15 13 16 12 9 6 
30-40 19 19 23 23 19 14 16 21 15 14 
40-50 9 20 20 21 24 20 22 15 15 5 
50-60 5 10 9 9 8 14 10 9 4 5 
60-70 0 1 2 4 3 6 2 3 1 2 
70-80 1 2 2 5 5 2 1 3 2 2 
80-90 2 2 0 1 3 0 3 1 3 3 
>90 1 0 2 3 1 5 2 2 2 0 

Mean 37.85 44.06 42.78 46.46 44.06 45.24 44.37 49.16 46.67 42.83
 

 

 19



Table 5. Decomposition of Output Growth (average values for the 1983-92 period) 
 

Average Annual 
Rate of Change 

Percentage 

Aggregate Output Growth 1.93 100 

of which:     

Cattle -0.26 -13.4 

Sheep 1.72 89.3 

Wool 0.46 24.1 

   

Aggregate Input Growth 1.15 59.5 

of which:   

Cattle herd -0.19 -16.9 

Sheep herd 0.25 21.9 

Labour -0.04 -3.9 

Area -0.25 -21.7 

Machinery 0.56 49.0 

Materials 0.82 71.6 

   

Total Factor Productivity Growth 0.96 49.7 

of which:   

Rate of Technical Change 0.20 20.7 

Scale Effect 0.15 15.3 

Change in Technical Efficiency 0.66 69.0 

Change in Allocative Efficiency 0.14 14.6 

Price Adjustment Effect -0.19 -19.6 

   

Unexplained Residual -0.18 -9.1 
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Endnotes 
                                                           

( )2tA

1 A notable exception is a recent paper by Karagiannis and Tzouvelekas (2001) that 

also takes into account the effects of scale economies and allocative inefficiency, but 

in the cost of using self-dual (i.e., Cobb-Douglas) production frontiers.   
2 The former however is not always evident from the empirical results reported on the 

aforementioned studies.  For example, Fan, Ahmad and Bravo-Ureta, and Giannakas, 

Schoney and Tzouvelekas found increasing returns to scale while Wu and Giannakas, 

Tran and Tzouvelekas reported decreasing returns to scale. 
3 When input price data are available, Kumbhakar (2000) has been able to incorporate 

a price effect into decomposition of TFP changes, which captures either deviations of 

input prices form the value of their marginal products or departures of marginal rate 

of technical substitution from the ratio of input prices.  
4 The non-parametric approach can provide a similar decomposition in a multi-output 

setting based on the Malmquist TFP index, which however cannot account for the 

extent of allocative inefficiency since it is a primal concept (Tauer, 1998). 
5 A single-equation estimation of a production frontier function is in general incapable 

of providing estimates of allocative inefficiency.  This is not true only in the limited 

case of self-dual functions (Bravo-Ureta and Rieger).  
6 That is, scaling all factor prices equally or each factor price individually will have no 

effect on the input-oriented measure of inefficiency.  This property of input-oriented 

measures is due to their radial nature and it will be proved important in panel data 

studies where there are no price data for individual producers.  Apparently, it allows 

the use of regional, or even national, price data to be used in estimating efficiency 

measures, without altering the final outcome.   
7 Aggregate input growth is measured as a Divisia index; this follows directly from the 

definition of TFP in terms of Divisia index.  The fact that actual (observed) factor cost 

shares are used as weights of individual input growth gives rise to the sixth term in (4). 
8 The existence of the price adjustment effect is closely related to the definition of 

TFP, which is based on observed input and output quantities. 
9 Notice that both scale elasticity and rate of technical change should be evaluated at 

the frontier (Forsund; Atkinson and Cornwell). 
10 Since  is equal to A(t), (9) does not contain a square term for technical change. 
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itu

11  The non-neutral component is different than zero only if the neutral component is 

different than zero (Baltagi and Griffin).  Consequently, if A(t) is unchanged, changes 

in input or output quantities have no effect on the rate of technical change. 
12  This normalization is necessary to ensure the non-negativity of , which in turn   

indicates that every year there is at least one farm that lies on the production frontier.  
13 Following Kumbhakar, Heshmati and Hjalmarsson argument the decomposition 

results of Ahmad and Bravo-Ureta, Wu and Giannakas, Tran and Tzouvelekas should 

be seen with caution as both technical change and time-varying technical efficiency 

are modelled via a single time trend.  
14 It can be seen that the resulting model is linear in estimated parameters by assuming 

Hicks-neutral technical change. 
15 Grateful acknowledgement is made to MAFF, for permission to use data from the 

Farm Business Survey, provided through the ESRC Data Archive at the University of 

Essex. 
16 The FBS is similar, but apparently not the same, with the EU’s Farm Accounting 

Data Network (FADN), with the main difference being on the classification of farms 

according to the type of farming.  More details can be found on MAFF (1994).   
17 The SGM is a financial measure based on the concept of the gross margin for 

farming enterprises.  Because information on gross margin is not available for each 

farm, standards or norms have been calculated for all of the major crop and livestock 

enterprises (MAFF, 1994).  
18 The total SGM for each farm is calculated by multiplying its crop area and 

livestock numbers by the appropriate SGM coefficients and then summing the result 

for all enterprises on the farm (MAFF, 1994). 
19 To conserve space estimates of the ρ  parameters are not reported herein, but are 

available from the authors upon request.  
20 Note that although this was prior to the Parliamentary announcement of a possible 

link between BSE and vCJD in humans, consumer resistance was already developing 

to beef products at this stage. 
21  A similar comparison with Fan or Kalirajan, Obwona and Zhao, and Kalirajan and 

Shand is not possible as technical change and the size effect are respectively 

calculated in a residual manner. 
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