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to ecologically/biologically oriented biodiversity metrics (species rich-
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Valuing Biodiversity from an Economic Perspective: A
Unified Economic, Ecological and Genetic Approach

Abstract

We develop a conceptual framework for valuing biodiversity from an eco-
nomic perspective. We consider biodiversity important because of a number
of characteristics or services that it provides or enhances. We attribute
biodiversity loss to economic activities related to decisions of private opti-
mizing agents that ignore useful characteristics or services associated with
diverse ecosystems. Using a unified model of economic management of an
ecosystem under ecological and genetic constraints, we compare the optimal
value of the social optimization problem where positive externalities asso-
ciated with biodiversity are internalized, to that of a private optimization
problem. We obtain an endogenous measure of the biodiversity value and
relate this measure to ecologically/biologically oriented biodiversity metrics
(species richness, Shannon or Simpson indices) that correspond to the equi-
librium diversities of the social and private optimization problems.

1 Introduction

In recent years there has been a dramatic increase in the use of the term
“biodiversity” in fora such as governmental and intergovernmental groups,
the popular press and the scientific community.! Biodiversity can be re-
garded as being synonymous to biological diversity, which contains three
levels: genetic diversity (within species), species diversity (species numbers)
and ecological diversity (richness of processes to which species contribute).?
In dealing with the concept of biodiversity, important questions arise. First
it seems necessary to examine whether biodiversity is measurable and what
the appropriate metric is. Second it is important to know whether biodiver-
sity promotes useful properties, or equivalently provides or enhances useful
services, such as ecosystem stability, productivity or sustainability.
Measuring biodiversity is a very complicated task given the various as-
pects and characteristics that the biodiversity metric should cover.? Diver-
sity measures that have been extensively employed in biological and ecologi-
cal applications are influenced by two components: (i) richness, which refers
to the number of species present; and (ii) evenness, which refers to the dis-
tribution of species. The most commonly used diversity metrics range from

!See for example Harper and Hawksworth (1994).
?See Norse et al. (1986).
3See Harper and Hawksworth (1994).



richness (R), which is simply the number of species in a landscape, to the
Shannon (H) or Simpson (D) diversity indices and their modifications.?

In the environmental and resource economics literature, the measuring
and valuing of biodiversity has been approached through the diversity func-
tion (Weitzman 1992, 1993; Solow et al. 1993),% which is defined in terms
of pairwise distances among species, with distance being a measure of dis-
similarity among species. In biological application this distance is based on
the DNA-DNA hybridization. As shown by Weitzman (1992) for ecological
applications, this diversity function is 50% of the Shannon index. Once the
diversity function is defined, then its value can be used to rank conserva-
tion alternatives, with the most desirable alternative being the one showing
the relatively highest value for the ecological diversity function. Although
this approach can be used to rank alternative conservation plans and to de-
rive benefit-cost ratios, it is based on the implicit assumption that diversity
measured in terms of genetic distances is desirable.® It does not make clear,
however, why it is desirable, or establish a mechanism linking the size of
genetic distances and some well defined concept of usefulness or desirability.

The so-called “Noah’s ark problem”can be regarded as an extension of
this approach (Weitzman 1998, Metrick and Weitzman 1998). In this prob-
lem species are valued according to both the genetic distances and direct
utility associated with the species which is taken to reflect aesthetic or exis-
tence values. The direct utility is however exogenously determined and not
linked to the diversity metric. Li, Lofgren and Weitzman (2001) examine
the implication for optimal harvesting policies in a fishery by introducing an
exogenously determined willingness to pay function for species preservation.

In their approach to pricing biodiversity, Montgomery et al. (1999) use
an exogenous range of biodiversity values ranging from $0 to $200 million
per diversity index point, where the index computes diversity weights based
on the taxonomic tree. An approach that attempts to link diversity with a
measure of economic value is associated to “biodiversity prospecting” (Simp-
son et al. 1996, Craft and Simpson 2001), which values biodiversity on the
basis of the marginal species’ incremental contribution to the probability of
making a commercial discovery.

In our approach we feel that the basic principle for valuing biodiversity
should be the association of diversity with some useful characteristics that
it possesses or useful services that it provides or enhances, since if biodi-
versity is desirable it should be desirable because of these characteristics

‘H=-" (PilnP), D=1-3" P? where P; is the proportion of individuals
or biomass of species i in the landscape.

’See also Nehring and Puppe (2000) for valuation based on evolutionary information
through the phylogenetic tree model.

b As stated in Weitzman (1992, p. 401), “The most valuable species is the farthest
distant from the others - by any reckoning”.



or services.” This approach is directly related to Heal’s idea (Heal 2000)
of regarding biodiversity as a commodity. Heal suggests that biodiversity
is important from an economic perspective because it provides or enhances
ecosystem productivity,® insurance,” knowledge!? and ecosystem services.'!
Ecosystem characteristics or services could range from the more tangible or
measurable - such as productivity or stability (resilience) - to the less tan-
gible - such as aesthetic satisfaction, existence values or bequest motives.
If we accept for example that the stability of an ecosystem is a desirable
state, that more productive ecosystems in terms of useful biomass are more
desirable than less productive ecosystems, or that a more diverse system can
provide valuable watershed or ecotourism services, then a relationship can be
established between a biodiversity metric and the value of these useful char-
acteristics or services. Once this relationship is established, then changes
in the stability properties, the productivity, or the value of services of an
ecosystem, can be associated with changes in biodiversity metrics. It is clear
that this association can be used to value biodiversity not in terms of genetic
distances but in terms of the value of characteristics or services that it pro-
vides or enhances. In a sense this approach can be regarded as connecting
ecologically /biologically oriented biodiversity metrics, such as species rich-
ness, the Shannon or the Simpson indices, or the diversity function, with a
measure of economic value of biodiversity.

The purpose of this paper is, therefore, to approach the problem of valu-
ing biodiversity from an economic perspective. In order, however, to have
a meaningful valuation framework, a link should be established between a
biodiversity metric and the services or properties that will be used as a basis
for the valuation. We need therefore to establish the mechanism through
which biodiversity affects productivity, stability, insurance, knowledge, or
the flow of services from an ecosystem. Establishing however a link between
a biodiversity metric and a wide range of properties or services implies the
development of a complex mechanism that relates processes which are not
even properly understood yet. In this paper we take a modest step in this

"See also Daily et al. (1997).

8This is associated with the fact that more diverse plant systems are more productive
than less diverse ones.

% Insurance is associated with the possibility of finding genes in non-commercially used
species that can be used to build resistance against lethal diseases affecting other species.
Thus genetic diversity can be used as insurance against catastrophic events or infections.
See also Weitzman (2000).

10Bjodiversity can be used as a source of knowledge with which to develop new prod-
ucts in biotechnology industry or pharmaceuticals. Rausser and Small (2001) stress the
complementarity between genetic resources and knowledge resources and the incentives
for data collection and resource conservation.

" Bjodiversity is essential for the proper functioning of an ecosystem so that its ability
to provide economically important services, such as watershed benefits (Chichilnisky and
Heal 1998), ecotourism, carbon sequestration services of forests, production of “non-timber
forest products”, is maintained. (See also Daily and Dasgupta (2000)).



direction by trying to establish a link between biodiversity and productiv-
ity /stability of an ecosystem using, for the first time to our knowledge, a
unified framework based on ecological and genetic mechanisms.

The question regarding the biodiversity-productivity relationship has
been studied extensively. Although there is a high degree of uncertainty
associated with species diversity, the rate at which diversity is lost and the
implications of such loss, there is evidence that declining species diversity
may affect the performance of terrestrial ecosystems in such a way that
species-poor assemblages are less productive.!? If changes in a biodiversity
metric, such as richness, result in changes in the ecosystem’s biomass, then
these changes valued at market or social prices can be used to value biodi-
versity changes. It is also well known that biodiversity has been regarded
as promoting the resilience of the ecosystem with resilience characterizing
the system’s ability to withstand perturbations and move back towards its
equilibrium state.' Thus, for example, if a change in the biodiversity met-
ric results in the loss of an ecosystem’s stability, or in a considerable change
in the size of the basin of attraction of the ecosystem, then the change in
biodiversity can be “valued” in terms of stability characteristics.

It is well documented (e.g. Wilson and Peter 1988) that activities associ-
ated with human expansion are a major factor in biodiversity loss.'* Given
therefore the relationship between human activities, loss of biotic diversity
and loss of ecosystems’ productivity or resilience, the valuation structure we
develop contains, as it should, an economic module indicating that species
exploitation results in economic benefits, and an ecological /genetic module
representing the mechanism through which the management rules of benefit
maximizing economic agents are transmitted to the natural system and af-
fect the equilibrium biodiversity. In our model different stability properties,
biomass values, and equilibrium biodiversity metrics emerge as a result of
different optimizing management rules. In this way we obtain an endoge-
nous valuation of biodiversity in terms of resilience and productivity. This
valuation framework is consistent with both the genetic and species diversity
concepts, but it is also consistent with the ecological diversity concept, since
it uses the value of services accruing from the processes to which species

12There are a number of empirical studies relating the number of species in ecosystems
to plant productivity (Naeem et al. 1995, 1996; Tilman et al. 1996, Tilman and Lehman
1997; Hooper and Vitousek 1997) which have found that functional diversity is a principal
factor explaining plant productivity. Vandermeer (1989), in a similar type of problem,
seeks to allocate a given area to different plants so as to minimize the variance of the sum
of crops from all plants.

3There is an extensive discussion in the ecological literature regarding the question of
whether biodiversity promotes stability. An ecological tenet justifying the conservation
of biodiversity, is that biodiversity begets stability. Recent field studies (Tilman and
Downing 1994, Tilman et al. 1996) provide support for the diversity-stability hypothesis.

147t has been estimated that as much as 50% of biotic diversity will be lost in the next
century as a result of human expansion (Soule 1991).



contribute.

In developing our model we consider a system of two varieties of species,
i = 1,2, which are similar from a functionalist viewpoint. The species are
harvested on a fixed area and the harvest has a market value. On the
ecological side, the species compete for a limiting resource in the context
of a Pacala-Tilman mechanistic resource-based model (Tilman 1982, 1988;
Pacala and Tilman 1994). The system also contains more than one type
of pest, with the mortality rate of the species depending on the relative
abundance of a certain type of pest. We model the evolution of the pest
population by Hardy-Weinberg mating and one locus two alleles genetics.
One of the two varieties, ¢ = 1, is immune to some types of pests; as a matter
of fact this variety is lethal to these types of pests, but is not immune to
the other types of pests. The second variety, ¢ = 2, is not immune to any
type of pest. As long as the population of pests includes the type to which
variety 1 is lethal, then this variety has a lower death rate and therefore a
productivity advantage over variety 2. Management decisions refer to the
distribution of land between the two varieties so that total harvest bene-
fits are maximized subject to the constraints imposed by the ecological and
genetic mechanisms. If the land is divided between the two varieties, then
the richness biodiversity metric is R? = 2 for the subsystem of the plants,
while the Shannon or Simpson indices depend on the relative amount of
land devoted to each variety. If the management decisions lead to a mono-
culture then R® = 1, while H = D = 0. Thus this framework can be used
to determine land distribution and the implied diversity corresponding to
certain optimizing behavior. Associating the optimal value of the manage-
ment problem, expressed in terms of equilibrium biomass value, with the
corresponding biodiversity metric, we can define an endogenous value for
biodiversity based on the economic, ecological, and genetic characteristics
of the problem, since economic decisions result in some equilibrium diversity
through the ecological /genetic mechanism.

This set-up is motivated by genetic engineering literature on Bt-crops
and Bt-corn in particular, where a protein that is found in the soil bacterium
Bacillus thuringiensis,'® and is engineered into the corn tissues, is lethal to
the European corn borer when ingested. The advantages of using Bt-corn
hybrids include improved standability and plant health, higher yields, and
fewer insecticide applications.!® Given these advantages of Bt-corn, it seems
most likely that profit-maximizing farmers will be willing to plant only Bt-
corn in a given area. This however might create an externality due to the
operation of natural selection mechanisms. When the whole area is planted
with Bt-corn, borers remaining from the first generation will be those which

5More than 30 crop species have been genetically engineered to express Bacillus
thuringiensis endotoxin (Ives 1996).

16 Trial tests reportedly indicate that Bt-corn has an advantage of 8.5 bushels per acre
yield over non Bt-corn hybrids (Hurley et al. 1999).



are resistant to the protein. These borers will produce a predominantly
resistant second generation of borers and the advantage of the Bt-corn will
disappear. Thus if farmers act myopically by not taking into account the
development of resistance through natural selection mechanisms, and in the
process turn the area into a Bt-corn monoculture, the externality generated
will eliminate all the advantage of the new technology and will eventually
reduce productivity.

In the Bt-corn metaphor, the creation of a monoculture generates a neg-
ative externality, since it eventually causes the reduction of pest resistance
and the elimination of the productivity advantage of Bt-corn.!” In ecosys-
tem management models, when constraints imposed by ecological /genetic
factors are not taken into account in a private optimization management
model (POMP), then the system is likely to turn into a specialized mono-
culture. When these constraints are taken into account in a social optimiza-
tion management model (SOMP), then equilibrium biodiversity in general
is different from that of POMP.'® Then by comparing the value of biomass
corresponding to the POMP/SOMP equilibrium diversities, we obtain our
endogenous measure of the value of biodiversity.

The rest of the paper is organized as follows. Section 2 presents some
elements of population dynamics which we consider necessary for the under-
standing of the influence of the natural selection mechanism on our model.
Section 3 develops the unified economic/ecological /genetic model. In section
4 we describe how population dynamics affect equilibrium biodiversity. In
section 5 the unified model is solved for the POMP and the SOMP. Given the
highly nonlinear nature of the solution we perform numerical simulations and
we determine the loss in biomass value between a monoculture correspond-
ing to the POMP solution, and a polyculture of two species corresponding
to the SOMP solution. This comparison provides the endogenous biodiver-
sity valuation. The last section concludes and discusses further extensions
of this approach.

2 Elements of Population Genetics'”

In a genetic model a chromosome is a string which is the carrier of genes
which are considered to be the elementary unit of inheritance. Every chro-

'"Externalities generated by monocultures that eventually have an adverse effect on the
state of an ecosystem is a more general issue indicating that biodiversity generates services
which should be taken into account in ecosystems management. See for example Scott
(1998) or Soule and Piper (1992).

"®Brock and Xepapadeas (2001) analyze conditions under which the POMP results in
a monoculture. They show that the SOMP and POMP equilibria in an ecosystem un-
der mechanistic resource-based competition, are in general different from the equilibrium
produced by Nature.

YThe material in this section relies mainly on Feldman (1989), Roughgarden (1998)
and Lyubich (1992).



mosome belongs to a class of homologous chromosomes. The locus of a gene
is the spot or the position on a chromosome that is occupied by this gene. In
homologous chromosomes there is a one-to-one correspondence between the
loci. The genes occupying identical places in homologous chromosomes are
called alleles or allelic. We consider corresponding loci as identical and we
say that allelic genes are alleles of this locus. Thus each locus contains no
less than two alleles. For example two alleles at the A-locus are {A;, As}.
Organisms in which the chromosomes form pairs are called diploids, with
one chromosome contributed by the father and the matching chromosome
contributed by the mother. The simplest possible genetic system can be
represented by one locus with two alleles {A;, A2} . The three possible pairs
of alleles in the locus are A1 Ay, A1 Ay = Az Ay, Az As. These pairs are the
genotype of the locus. When both alleles are the same, the organism is called
homozygote, whereas when they are different it is called heterozygote. The
phenotype of the organism is the manifestation of the gene product.

Consider an infinite population of diploid organisms with one locus, two
alleles and three genotypes A1 Ay, A1As = As Ay, AsAs. The gene pool is
the collection of all genes. Let p be the fraction of A; alleles in the gene
pool and ¢ = 1 — p the fraction of A, alleles. Under random mating, the
Hardy-Weinberg law states that the fraction of each genotype in the total
population is:

AyAy = p?, A1As = AsAy = 2pq, AsAy = ¢

Natural selection takes place when “the different genotypes present in
the population in a given generation contribute differently to the next gen-
eration” (Feldman, 1989, p. 505). The reasons for natural selection are
differences in wiability (mortality) and differences in fertility among geno-
types.

Denote by W;; (i,j = 1,2) the viability fitness of each genotype. The
proportion of A; alleles in the gene-pool for a non-overlapping generation
population evolves, in discrete time, from generation to generation according
to the fundamental equation of evolutionary biology:

Wi1p? + Wiapeqs
Wh1p? + 2Wiapiqr + Waag?

(1)

Pt+1 =

There are three possible equilibria for the above difference equation de-
scribing the two allelic system:

pl =1 ’ ﬁ2 = 07
5y = Wiz — Wao _ 1
2Who — Wiy — Way  W2=Wu 4 g

Wi2—Wao

The p1 and p» equilibria are called monomorphisms while ps is called a
polymorphism. Admissible values for the polymorphism are p3 € (0,1).



This is possible if: (i) Wia > max {Wi1, Was}, that is the heterozygote has
higher fitness than both homozygotes, or (ii) Wiz < min {Wj1, Waa}, that
is the heterozygote has lower fitness than both homozygotes. The stability
properties of the three equilibria can be characterized as follows:

1. W1 > Wig > Wae There are only two equilibria, p; and po. p; is
stable while ps is unstable. There is directional selection for A;.

2. Wag > Wio > W1, There is directional selection for As. ps is stable
while p; is unstable.

3. Wia > Way and Wig > maX{Wn, W22} . The monomorphisms p; and
P2 are unstable, while the polymorphism p3 is stable. The heterozy-
gotic fitness advantage produces a stable polymorphism.

4. Wia < Wag and Wiz < min {Wi1, Wag}. The monomorphisms p; and
pa2 are stable, while the polymorphism p3 is unstable. The directional
selection could be A; or Ag, depending on the initial conditions.

3 Economic Management of Ecosystems and Nat-
ural Selection

In order to develop an integrated model of management of an ecosystem
when natural selection occurs, we consider an ecosystem with plant - pest
interactions. To put the problem in the context described in the Introduc-
tion, we assume that the plant comes in two varieties, i = 1,2,%° while the
pest comes in three genotypes, A1 A1, A1As = Az Aq, and AsAs. Assuming
that the three genotypes correspond to three phenotypes for the pest, in the
rest of the paper we will identify each genotype with a different type of pest.
Plant variety 1 is immune, or to put it in another way, it kills genotypes
(pest types) A1 A; and Aj Ay but not genotype (pest type) Az As.

Let the biomass of corn B;, i = 1,2, in a given area with size normalized
to unity evolve according to Tilman’s mechanistic resource-based model of
species competition (Tilman 1982, 1988; Pacala and Tilman 1994). Thus
the equations of the species competition can be written as:

B; = BilgR—d;(p)] — Hi, i=1,2, B;(0) = B (2)

R = S—aR-gw ) B;,R(0)=R’ (3)

i=1,2

Equation (2) describes the growth of the varieties’ biomass where: g is
the coefficient of the biomass growth function, assumed the same for the

20Tn the context of the genetically engineered corn, variety 1 = Bt-corn and variety 2 =
non-Bt-corn. The pest is the European corn borer.



two types of plants; d; (p) is the death rate; and H; is the harvesting of the
variety per unit time. The death rate depends on p, which is the proportion
of A; alleles in the genetic pool of the pest population. It is assumed that:

do (p) = dy , dy (p) = pd1 + (1 — p) do with di < dy (4)

Thus if p = 1, only the A1 Ay genotype exists in the pest gene pool. Variety
1 kills all A;A; genotypes and has a growth advantage over variety 2, since
dy (1) = di < dy. On the other hand, if p = 0, only the As A3 genotype exists
in the pest gene pool which is resistant to variety 1 (as well as 2). Then
dy (0) = dy and the growth advantage of variety 1 is eliminated. Then, the
two varieties are identical.

Equation (3) describes the resource dynamics where S — aR is the net
amount of the resource supplied at time ¢, with S being exogenous natural
supply, and aR reflects natural resource removal, where a can be interpreted
as an erosion or a leaching rate. Thus S —aR can be regarded as the net flow
of nutrients.?! The term wg Zi:m B; is the consumption of the resource
by the two varieties, with w being a constant reflecting the concentration of
the resource in the tissues of corn (Pacala and Tilman 1994).

Let x be the proportion of the area planted with variety 1. Then the pro-
portion p = p (t) of A; alleles in the pest gene-pool evolves, from generation
to generation, according to the fundamental equation (1) of evolutionary
biology, which in continuous time is written as:

p = plGp,x)—1],p(0)=p (5)
5 = Wiy () p+ Wia (z) (1 — p)
¢ ) Wit (2) p2 + 2Wig (2) p (1 — p) + Wag () (1 — p)? (6)
Wi @) = awy () +(1—2)wy (2) , i = 1,2 @

where w;; (1) , w;; (2) are the viability fitnesses of the ij pest (type) genotype
for plant variety 1 or 2 respectively. If we assume that plant variety 1 kills
the A1 A; and A;As genotypes but not the A3 Ay, we have that wi (1) =
w12 (1) =0, while wag (1) > 0. On the other hand Wij (2) >0,1=1,2.
Equations (2) - (7) describe the evolution of the natural system. The
evolution of this system, however, depends on parameters which can be
regarded as choice variables in a management problem. These are the har-
vesting per unit time H;, and the proportion of the area x which is planted
with variety 1. So formally the management problem, assuming that both
varieties sell at the same competitive market price which is normalized to

2IResource supply could be modelled more realistically by introducing the possibility
of augmenting it through fertilization. In this case the net flow of nutrients would be
S+h (F)—aR, where h (F) is additional resource supply through fertilization F. Although
it is relatively straightforward to introduce fertilization, we choose not to, in the interests
of simplicity. Our basic results do not depend on the presence of fertilization.
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one, can be defined in terms of choosing time paths for harvesting H; (t),
i = 1,2, and the proportion of the area planted with variety 1, x (¢) to solve:

max / et (Hy + Hy) dt (8)
0
subject to ,(2) - (7) and
0 < z<1,0<H; < K™ (9)

where 7 > 0 is the discount rate.?? Problem (8) provides, for the first time
to our knowledge, an integration of optimal management theory using a
Pacala-Tilman resource-based model of species competition, with explicit
population genetics to model evolution of resistance.

4 Evolution of Resistance and Biodiversity

In the optimization problem (8), the choice of  will determine the relative
sizes of the areas planted with variety 1 which s resistant to the pest and
variety 2 which is not resistant to the pest.?? This allocation of land will
affect the evolution of resistance in the gene pool through the subsystem
(4)-(7). The value of p determined through this subsystem, affects in turn
the evolution of the biomasses for each variety through the growth equations
(2) and eventually the equilibrium biodiversity.

At a first stage of analysis we can obtain, by analyzing a simplified
submodel, some useful insight regarding allocation strategies and examine
the case where it is not optimal to run down the resistance of the higher-
valued species to zero.

Assume that there is a fixed flow of nutrients to support a fixed flow of
new plant biomass available for harvesting in each period, before death rates
d; (p) occur. Death rates depend, however, on the distribution of genotypes
in the gene pool. If for example p = 1, then do — d; = o > 0 and variety
1 has a productivity advantage over variety 2 in terms of net, after death,
harvesting flow. Under these assumptions, alternative allocation strategies
can be analyzed by considering only the subsystem (4)-(7), for given steady-
state resource level R, which for the fixed nutrient flow supports a given
steady state B of total gross (before death) harvest flow.

In the system (4)-(7) the proportion of A; alleles depends on the choice
of the allocation strategy x. Then using (5) the equilibrium p will depend
on the choice of x. The concept of an allocation strategy implies that the

22The constraint 0 < H; < K™ is required so that the problem is well posed given its
linearity in H. Furthermore, if we had allowed for fertilization and ¢ (F') were the cost of
augmenting the resource through fertilization, ¢ (F’) should have been deducted from the
flow of harvesting revenues.

23In terms of Bt-corn analysis this constitutes a refuge strategy.
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equilibrium for (5) is defined as:
pr:G(pLr)—1=0,p"#0 (10)
In a polymorphic equilibrium the polymorphism is defined as:

o W12 (ZL‘) — W22 (l‘)
= W (1) — Wit (2) — Wi () (11)

p3 (2)

As discussed in section 2, if there is a heterozygotic fitness advantage, or:
Wis (.I') > Waoo (.I') and Wio (l‘) > max {Wll (l‘) , Wag (l‘)} (12)

this polymorphic equilibrium is stable, while the monomorphic equilibria
are not stable.

A polymorphic equilibrium for the pest part of the model can be asso-
ciated with a biodiversity richness metric R? > 2, with R = 3 being the
maximum richness,?* while a monomorphic equilibrium is associated with a
biodiversity richness metric R® = 1.

It can easily be seen by combining (6) and (11) that, since Wia (z) >
Was (z) cannot hold for all x € [0, 1], the polymorphic stability condition
will be satisfied for small x but it will be violated for x close to 1. In
the limiting case of x = 1, that is the entire area is planted with vari-
ety 1 which kills A;A; and A; Ay alleles, we have Wia (1) = Wiy (1) = 0,
while Was (1) = waa (¢ = 1) > 0. This implies that for x sufficiently close
to 1 the stability condition is most likely to be violated and for Wag (zc) >
Wia (ze) > Wiy (ze), with 2z = 1 — e, € > 0, there is a stable monomor-
phic equilibrium pg (z:) = 0. With x = 1 and Wi (1) = Wi (1) = 0,
and Wayo > Wio > Wiy, there is directional selection for As, with po being
the stable monomorphism. In this case the differential equation (5) can be
written as:

p = 0—p,or
p(tle=1) = poe’

Thus when x = 1 the resistance of the system is reduced at the most rapid
rate. This means that by planting the area with only variety 1 the system
generates directional selection toward the As Ay allele. Therefore the natural
selection results in a stable monomorphic equilibrium which eliminates the
productivity advantage of variety 1, with ps being the stable monomorhism.
In essense variety 1 is now identical to variety 2, and the biodiversity richness
metric on the plant side is R = 1.

24In the rest of the paper we assume, to simplify things, that as long as 0 < p < 1, then
all three types, A1 A1, A1 As, AsAs, exist and thus R® = 3 for the pest subsystem.
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Assume now that x = 0, that is the entire area is planted with variety
2. Then the discussion in section 2 suggests that if there is heterozygotic
advantage in the sense that
Wia (O) > Woo (0) and Wis (O) > maX{WH (0) , Wag (O)}
where I/Vij (O) = Wiy (2)

then the polymorphism (11) is stable with

B Wiz (0) — Was (0)
© 2Wh2 (0) — Wiz (0) — Was (0)

p3(0) €(0,1) (11a)
and the monomorphisms p; (0) = 1 and ps (0) = 0 are unstable.

These ideas can be easily demonstrated using the following table of fit-
ness values.

Table 1: Possible Fitness Values
z=0 r=1
W11 w 0
Wi | w (1 + 8) ,8201(0
Was | w w

For x = 0 and s > 0 we have that Wia > Was and Wia > max {Wi1, Waa}
and the polymorphism is a stable equilibrium. That is, the heterozygotic
fitness advantage produces a stable polymorphism. For x = 0 and s < 0,
Wia < Wae and Wig < min {Wi1, Was}. The monomorphisms p; and po
are stable, while the polymorphism ps is unstable. The directional selection
could be A; or As, depending on the initial conditions. With x = 1 and
Wia (1) = Wiy (1) = 0, we have that Wag > Wia > Wiy, There is directional
selection for Ao, and Po is stable while Py is unstable

This discussion suggests that the choices of the allocation strategy can be
regarded as bifurcation parameters. For x = 0 and heterozygotic advantage
we have polymorphic stability. As x increases towards one there will be a
critical value Z such that for x > Z the polymorphic stability is replaced by
monomorphic stability with directional selection towards Ay and elimination
of the productivity advantage of variety 1. Let

X = { x W12 (33) > W22 (33) and W12 (.I') > max{W11 (.I') ,ng (.I')} }
and p3 (z) € (0,1)

For allocation strategies in this set there is a stable polymorphic equilibrium
with the equilibrium proportion of the A; alleles in the gene pool ps (z)
defined by (11).

Denote the fitness of pest type ij when the total area is planted with va-
riety 2 by W;; (0) = w;; (2). Then under heterozygotic advantage, Wia (0) =
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w12 (2) > Wag (0) = waz (2) . Let & solve p3 (&) = 0, or®®
Z: Wi (x) — Waa (x) = 0, with
Wiz (0) — Waz (0)

T = <1 (11b)
Conditions (11b) imply that the stable polymorphism vanishes before the
whole area is planted with variety 1.

The description of the possible equilibria of the subsystem describing the
evolution of the gene pool indicates, therefore, two basic results:

1. Planting the whole area with variety 1, the x = 1 strategy, eliminates
the productivity advantage of variety 1 at the fastest possible rate.
This strategy produces a monoculture with richness metric for plants
RY = 1, and the richness R? = 1 for pests since only the Ay Ay pest
survives. The polymorphism with plant richness R’ = 2 becomes
unstable as x approaches 1, while for x = 1 the monoculture with
the productivity advantage is unstable. The stable state is the one in
which the productivity advantage has been eliminated.

2. There is a strategy = € [0,Z), 2 < 1, which results in a stable polymor-
phism. This strategy produces a stable equilibrium biodiversity with
richness metric for plants R? = 2, and the richness R? = 3 for pests.

With heterozygotic disadvantage (s < 0) we have monomorphic stability
towards Ay or Ao, depending on initial conditions. Suppose that for x = 0,
the directional selection is towards A;. Then the discussion above suggests
that there will be an & > 0 such that for x > Z there is directional selection
towards As and the productivity advantage of variety 1 is eliminated again.

The emergence of a polymorphic allocation strategy can also be pre-
sented by considering the more complex relative fitness values shown in
table 2, which are scaled to the fitness value of the A;A; allele when the
whole area is planted with variety 1. These values represent a more general
formulation where variety 1 might not kill all the A; A; alleles but will reduce
their relative fitness and the heterozygote does not have a fitness advantage
when z = 0.26

Table 2: Possible Relative Fitness Values

¥ Recall that Wi; (z) = wi; (1) z + wij (2) (1 — x), and that under our assumptions

Wii (1) = w11 (1) = Wi (1) = w12 (1) =0 < Waa (1) = wa2 (1)

20We are grateful to Simon Levin for providing this value structure.
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| |;13:0 |x:1 |
Wil 1l 1—7
Wi |1—hz|1—hz—(1—9g)T
W22 1—=2 1—=2

In table 2, 7 is the percentage loss in fitness of the A;A; allele when
the total area is planted with variety 1. The limiting case where variety 1
kills all AjA; alleles is 7 = 1. Furthermore (1 — g) 7 is the percentage loss
in fitness of the A Ay allele when the whole area is planted with variety 1.
The limiting case where variety 1 kills all A; Ay alleles is (1 — g) 7 =1— hz.

Forx=0and 0 < h<1,0<z<1we have Wi > Wia > Way. There
is directional selection towards A; and the monomorphism p; = p(0) =1 is
stable. Forx = 1 and z < (11__9}37, g1 > hz we have Way > Wis > Wiq. There
is directional selection towards A, and the monomorphism p, = (1) = 0
is stable, which implies the elimination of the variety 1 advantage. For a
polymorphism it is required that:

(1-2x)hz < x(g97 — hz)
1—-2z)(1-h)z > z[(1—9g)7—(1—h)Zz

which implies that x should be in the interval <%)Lf, Z—j) . For the special

case ¢ = 7 = 1 the polymorphism requires that > hz and hz < 1 which is
always true.?”

Therefore the valuation without heterozygote fitness advantage and with-
out complete elimination of the A1 A1, A1 As alleles by variety 1 suggests that
the polymorphism vanishes as x approaches unity, that is, as the whole area
is planted with variety 1, which means that ps () = 0 for some critical value
which in general is less than one.

4.1 Optimal allocation strategies for a special case

Given the results derived above, it is natural to ask whether an optimal
allocation strategy and an associated optimal composition of the gene pool
characterized by p, exist for the subproblem (4)-(7). The optimality criterion
for this case with given R and the total gross harvest flow B is to choose
{z (t)} to maximize the capitalized value of the net harvest flow. This flow
is defined as:

x(B—di(p) +(1—x)(B—dy(p) =
xp (da (p) — di (p)) + B—da (p) =
:L‘p(dg—dl)*FE—dz

"Furthermore, if we set 7 =1, Wiz (2 =0) =1 —w, Wiz (z=1) = 1 —w — (1 — g),
w =g, z = 0, then the fitness structure of table 2 is reduced to that of table 1 for w = 1.
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Consider now the subutility
U(z,p) =u(p)z, u(p)=ap, a>0 (13)

This subutility is derived by considering first the case where p =1, x = 1.
That is, the whole area is planted with variety 1 and resistance is complete.
Then dy—d; > 0is the growth advantage of variety 1 and u (1) = do—d; = a.
Consider second the case where p = 0, = = 0; that is, no resistance exists.
Then the growth advantage is eliminated and « (0) = 0. Using (13) as the
objective function the optimization problem can be written as:

max Ooe*” t)x (t)dt 14
max [ ") (14

subject to
p(t) = plG(p(t),=(t)) —1], p(0) = po given

where the maximization in (14) is equivalent to the maximization of the
capitalized value of the net harvest flow.

We analyze first the problem with zero discounting, r = 0. In the undis-
counted infinite horizon problem (r = 0) the integral (14) might not con-
verge. Thus we use the concept of overtaking optimality, which holds for
r > 0.2 The optimal steady state (OSS) (p*,x*) for this problem is the
solution of the static optimization problem

max pe subject to 0 = p(G (p,x) — 1) (15)
We know however from the analysis above that the solution for p of the con-
straint will correspond to an equilibrium p (z) that could be a polymorphism
or a monomorphism. The question is whether or not the OSS determines a
stable polymorphism.

Proposition 1 Under heterozygotic fitness advantage for x = 0, or the rel-
ative fitness values of table 2, and r = 0, the optimal steady-state allocation
strategy for the area between variety 1 and variety 2 4s 0 < z* < 1.

For proof, see Appendix.

Having established that in the undiscounted problem, it is optimal not
to plant the whole area with variety 1, we consider the discounted problem.
The current value Hamiltonian for this problem is defined as:

H(p,ZE,)\) =pr + Ap [G (p,fL‘)— 1] (16)

28 The concept of overtaking optimality is defined as follows.
Definition: A trajectory {p* (t)} emanating from an initial state p (0) and generated
by the control {x* (t)} is overtaking optimal, for r > 0, if:

Jim_inf / e " (e ()] - [p () (O]} dt >0

for any other trajectory {p (t)} emanating from (p (0)) and generated by the control {z (t)}.
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By the maximum principle the short-run optimal strategy is defined as:

z (p,A) = arg max H (p,z,\) (17)

The modified Hamiltonian dynamic system (MHDS) is defined as:

: OH
A = T)\—a—p

= PN - A ) 1] PP )
p = plG(pz(p,A)—1] (19)

The optimal steady-state equilibrium values for the state, costate and
control variables, p*, \*, * = x (p*, \*), will be defined by the solution of
the system (18) and (19) for p = 0, A = 0. If we assume the fitness structure
of table 1, or:

w11 (2) = W29 (1) = W22 (2) = w and w12 (2) = (1 + S) w, s 2 0

and wi; (1) = w2 (1) = 0 under the assumption that plant variety 1 kills
A1 A1 and AqAs pest types, then the short-run allocation strategy depends
only on the fitness differential of the heterozygote and is determined as:

1-pAR2-p)+2s(1—p) (1= N’
(1+s)—p@2—p)—ps[3(1—p)+p?

Substituting (20) into the MHDS we obtain the system that determines
the evolution of the proportion p and its shadow value A. A solution of this
system, if it exists, will determine the optimal steady state (p*, \*, x (p*, \*)).

The same optimal control problem can be solved for relative fitness values
of table 2. The assumptions about W;; imply the following values for w;; :

z(p,A) =

(20)

wi1(2) = Lwn()=1—7, wi2(2)=1—hz, wi2o(1)=1—hz—(1—g)7
’LU22(2) = ’LU22(1):1—Z

Then, the short-run allocation strategy is defined in terms of the fitness
parameters as:

Q+(@-1(1+@2h—1)p z+pp—29(p—1) —2) )’

(p—1) (p—1+z+p(hp—1)z—g(2p—1+(p—1)2z))7
(21)
As before a solution of the MHDS, if it exists, will determine the optimal
steady state.
From (18)-(20) it is clear that the optimal steady state is determined as
a solution of a nonlinear system, for which an analytical solution is not pos-
sible. Thus further characterization of the steady state requires numerical

z(p,A) =
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simulations. Using for example the fitness structure of table 1 and a discount
rate of r = 0.01, the results for s ranging from s = 0.5, that is 50% het-
erozygotic advantage, to s = —0.02, that is 2% heterozygotic disadvantage,
are shown in table 3.

Table 3: Optimal Steady States for the Special Case

# of eigenvalues

s p* A* x (p*, A*) | with negative real parts | H D

0.5 0.4473 | 1.1288 | 0.0870 1 0.295 | 0.158
0.4 0.4534 | 1.1627 | 0.0638 1 0.237 | 0.119
0.3 0.4609 | 1.2003 | 0.0417 1 0.173 | 0.780
0.2 0.4700 | 1.2418 | 0.0221 1 0.106 | 0.043
0.1 0.4809 | 1.2869 | 0.0073 1 0.043 | 0.014
-0.01 0.8284 | 1.0645 | 0.0368 1 0.158 | 0.071
-0.015 | 0.8112 | 1.0796 | 0.0473 1 0.190 | 0.090
-0.02 | 0.8005 | 1.0915 | 0.0568 1 0.218 | 0.107

Thus, for s = 0.5, the optimal proportion of A;A; alleles in the gene
pool is 44.7% and it is optimal to plant 8.7% of the area with variety 1 in
equilibrium. For s = —0.01, the optimal proportion of A;A; alleles in the
gene pool is 82.8% and it is optimal to plant 3.7% of the area with variety 1
in equilibrium. Furthermore, as shown by the eigenvalues, the equilibrium
point has the saddle point property, with a one-dimensional stable manifold.
The richness biodiversity metric is R? = 2 for the plants and R? = 3 for the
pests. The Shannon H = — 3, 5 2; Ina; and Simpson D = 1— 37, , x7
diversity indices® for the plants are shown in the last two columns of the
table.

The results of this subsection suggest that the optimal allocation strategy
results in a resilient and diverse system in terms of both plant varieties and
pests.

5 Optimal Management and Biodiversity Valua-
tion in the Unified Model

The analysis in the previous section indicates the existence of optimal allo-
cation strategies for the special case in which the ecological variables, that
is the resource and the biomasses, are kept constant at some equilibrium
values. This analysis does not however allow us to explore the responses of
the ecological variables to the management rules and to compare equilib-
rium biomass values and equilibrium biodiversities in the plant-pest system
under monoculture or polyculture.

29For the calculation of the indices, x1 is the calculated value of z* from table 3, while
rxo=1—1x1.
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5.1 The General Model

The unified mechanistic resource-based competition - natural selection man-
agement model, with the price of the harvested biomass normalized to one,
can be written as:

s Hy + Hy)dt 22
gy [ e (22)
st. B; = BilgR—d;(p)|—H;,i=1,2, B;(0)=B) (23)
R = S—aR-gwR > B;, R(0)=R’ (24)
i=1,2
p = plGpx)—1], p(0)=p° (25)
0 < x<1,0<H; <K™max (26)
di(p) = pdi+(1—p)da, d2(p) =d2, di <do (27)
with
1—
G(px) = Wi () p + Wi () (1 — p)

Wit (@) p? + 2Wig (2) p (1 — p) + Wag () (1 — p)?
Wij(x) = aw; (1) + (1 -2)w;(2),1=1,2

where wj; (1), w;j (2) are the viability fitnesses of the ij pest genotype for
plant variety 1 and 2 respectively.?’

This general model can be used to analyze two cases: the POMP where
private agents ignore effects of the natural selection mechanism in the evo-
lution of the pest resistance, and the SOMP where these interactions are
taken into account.

5.2 The POMP

In this problem the private agent ignores the genetic interactions described
by equations (5)-(7) and treats death rates as fixed with d; < da. Then the
POMP problem becomes:

et Hy + Hy) dt 28

[ e (01,4 1) (28)

s.t. BZ = Bi[gR—di]—Hi,i=1,2,d1<d2 (29)

R = S—aR-gwR» B (30)
i=1,2

0 < 2<1,0<H; <K™x (31)

30 Assuming the fitness structure of table 1, we have for example that since variety 1
kills the A1 A; and A1 Az genotypes but not the A2 Az, then wii (1) = w2 (1) = 0, while
wagz (1) > 0. On the other hand w;; (2) > 0, =1,2.
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Define

1
r = _B’B_B +B 39
Bl+B2 1 2 ( )

By, = aB, By=(1—2)B,H = H, + Hy (33)

By adding together the two biomass transition equations the constraints of
the POMP become

B = B(gR+z(dy—dy) —dy) — H (34)
R = S—aR-gwRB (35)
0 < 2<1,0<H<K™ (36)

The current value Hamiltonian for the POMP can be written as:
HY = H+ XN[B(gR+ z(dy — d1) — do) — H] + 1 [S — aR — gwRB] (37)

Maximization of the current value Hamiltonian over H subject to (36) im-
plies that the following conditions of the maximum principle should be sat-
isfied at the OSS:

0if A >1
H_{ Kmaxif A < 1 (38)
Furthermore the singular solution implies at the OSS that
AN = 1,B=0,R=0 (39)
H = B(gR+z(dy—dy)—ds) ,S—aR=gwRB (40)

We further analyze the singular solution, which represents the most in-
teresting case, with the help of the following lemma.

Lemma 1 Assume that an OSS with (F, H, }_%) > 0 exists for the POMP
and let B sufficiently high such that B > B. If K™ > % + B(dy — dy),
then A = 1.

For proof, see Appendix.

For the choice of x at this OSS the maximum principle implies that since
A=1, (F, ﬁ) > 0, dj < dg, and z should maximize \xB (dy — d;) in (37),
then the optimal choice should be

T=1 (41)

Thus the POMP plants the total area with plant variety 1 since it is per-
ceived as having a productivity advantage. With A = 1, x = 1 the maximum
principle implies that for the MHDS at the steady state:

0= (gR—di —p) — pgwR (42)
0=(p+a+gwB)u— By (43)
S —aR = gwRB (44)
H = B(gR —d1) (45)
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From the above system we obtain

(gR —dy — p)

Q1 (R, p,d1) JuR (46)
S —aR
f(R,p) = w (Rt 9) (47)

Equations (46) and (47) determine the steady state R (d;) from the so-
lution of Q1 (R, p,d1) = f(R,p). It can easily be seen that Q1 (R, p,d;) is
monotonically increasing and concave in R.3! Furthermore,

lim Ql (R7p7 dl) =" Ql (R , Py dl) = 0, Rf = 1—p
R—o0 w q

On the other hand f (R, p) is monotonically decreasing and convex in

R.32 Also ) g
f(Oap):_7f<_7p>:0
w a

Therefore, the intersection of Q1 (R, p,d1) and f (R, p) determines a unique
steady-state resource level R as shown in figure 1.

[Figure 1]

Then the optimal steady-state biomass level and harvest for the Bt-corn
monoculture is defined as:

S — CLE (dl)

Bla)= gwR (d1)

, H (d1) = B (d1) (¢R (d1) — dr) (48)

This steady state is not however sustainable since the genetic constraint (4)
implies that G (p,1) = 0 and p — 0 at the most rapid rate as shown in
section 4. Then the death rate of plant variety 1, which is not exogenous
as perceived by the private agents, tends to da or dj (0) = dy. This means
that eventually equilibrium is reached at the resource level R (ds) which is

defined as:
(gR—da — p)

Q2 (Ra P, d2) = JqwR =f (Ra P) (49)

Since dg > d; th_e locus Q_g (R, p,ds) is to the right of Q1 (R, p,d;) as shown
in figure 1 and R (d2) > R (d1).
From (44) we have

OB 0 (S—aR S

—_ == =———<0 50

OR 8R< gwR) guwR? (50)
o= 0, 2 = g <o

328f _ _ _S(atp) 2f 25p(a+p%
R —  w(pR+S) <0, ﬁg ~ w(pR+S)* >0
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Thus
B (ds) < B (dy) (51)

The difference

B (d1) — B (d2) (52)

can be regarded as a net loss from ignoring the genetic externality.

5.3 The SOMP

The SOMP is the unified Tilman-natural selection model. By making the
transformations (32)-(33) and adding the biomass transition equations we
obtain the current value Hamiltonian for the SOMP as

H® = H+AB(gR+ap(dy—dy) —dy) — H] + 1 (S — aR — gwRB)
+qp (G (z,p) = 1) + £ (1 —2) +(x (53)

where £ and ¢ are Lagrangian multipliers associated with the 0 < z <1
constraint. Assuming as before K™ > % + B (dz — dy) we obtain for the
singular solution at a steady state with positive biomass

A=1, H=B(gR+xp(dy—dy) —do) (54)

The maximum principle implies that for the choice of x :

oG
Bp(dg—d1)+qp$—f+<§0,l‘20 (55)
fO<Z<1lthené=(=0 (56)

Furthermore the system for the costate variables at the steady state
becomes

0 = (9R+ap(dy—di) —do—p) — pgwR (57)
0 = (p+a+gwB)u—gB (58)
0 - (p—p%f;@)q—w (s — d) (59)

From (57) and (58) we obtain as in the POMP case

Q5(R,p) — gR+ap (dz;;l) —dg—p (60)
S o S— aR

We know that if = 1 then p — 0 and the SOMP solution is the same
as the POMP solution. The same holds for z = 0, since as in the POMP
equilibrium, we have a plant variety 2 monoculture. Thus we set £ = ( =
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0 and explore solutions for 0 < Z < 1. In this case the OSS equations
become:

oG (p,
By (ds — dh) + 2D g (62)
gR+xp(d2—d1)—d2—p: S —aR (63)
gwR w(Rp+5)

oG (p,
(P —p#> q=2xB(d2 — d1) (64)
G(p,x)—1=0 (65)

S —aR
B=t (66)

which determine the five unknowns (B, z, R, p, q) at the OSS.

5.3.1 A Most Rapid Approach Path for the SOMP

The dimensionality of the SOMP with respect to the state variables can
be reduced by transforming the problem into a Most Rapid Approach Path
(MRAP) problem. Substituting H by

H:B(gR+l‘p(d2—d1)—d2)—B (67)

into the objective function for the SOMP, integrating by parts and assuming
that lim; ...e B (t) = 0, we have the following problem:33

max/ e "B (gR+ xp(dy — dy) —dy — p)dt 68)
0

z,B (
st. R = S—aR—gwRB (69)
p = plG(p,z)—1] (70)
0 < <1,0<B< B™ (71)

The current value Hamiltonian for this problem is

G=B(gR+zp(d2 —d1) — d2 — p)+ps (S — aR — gwRB)+qp (G (p,z) — 1)

(72)
For positive biomass at an OSS the singular solution implies
gR+ap(dy —di) —da — p = pagwR (73)
while for 0 <z < 1
oG (p, x
Bp (d2 — d1) + CI2PM =0 (74)

ox

#3See Kamien and Schwartz (1991, p. 97).
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The maximum principle also implies that for the costate variables at the

0SS

0 = (pt+a+gwB)u,—gB (75)
0 = (p — p%ﬁ) G2 — xB (da — dy) (76)

By comparing (73)-(76) with (55) and (57)-(59), it is clear that the OSS of
the MRAP is the same as the OSS of the complete SOMP.
Then from (73) and (74) we obtain for the OSS controls

v LR 9RE B D ep ) (77)
p(d2 — d)
429
B = L o _ 3R pyp 78
(d2 _ dl) /8( :u’2 D Q2) ( )

Therefore, the MHDS for the MRAP problem at an OSS is defined as:

0 = S—aR— gwRB* (79)
0 = G(pa’)-1 (80)
0 = (p+ta+gwB*)py—gB” (81)
oG (p, x* «
0 = (P—p%>%—$3 (d2 —di) = (82)
IG (p, x*) LO0G (p,x*)
PP T T (83)
If a steady state (R, T, D, qy) exists, then
T =X (R,7i2,5,02) » B =0 (R TP T2) (84)
B1=7TB,By=(1-7)B (85)
Fl == T ( l‘p dz—dl) dg) (86)
FQ = ( ) (gR +Tp rp (dz — dl) — dg) (87)

The difference B — B (dz) determines the loss in biomass from ignor-
ing the genetic externality, adopting a monoculture with everything planted
with plant variety 1, and eventually reaching a steady state where the pro-
ductivity advantage of plant variety 1 has been eliminated and there is a
monoculture in plant variety 2. Since B is the biomass for the optimal
polyculture, B — B (dz) can be regarded as the value of biodiversity corre-
sponding to the change in the biodiversity metrics (species richness, H, D)
from monoculture to polyculture.
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5.4 Numerical Approximations to Biodiversity Valuation

System (79)-(82) that determines the OSS for the SOMP is highly nonlinear.
Thus in order to obtain some insights into the structure of the solution and
verify whether or not biodiversity valuation through the term B — B (ds)
can be detected, we resort to some numerical simulations.

We start by calculating the OSS resource and biomass levels [R (d1) , R (d2)]
and [B(d1), B (dz)] respectively, for the POMP using the following para-
meter values:

p = 0.01,5=2,dy =0.05;a =0.10; w = 0.05; g = 0.05
dy = {0.1,0.2,0.3,0.4,0.5}

The results are shown in table 4.

Table 4: Steady-State Resource and Biomass Levels at the
POMP

|do | R(di) | R(d2) | B(di) | B(dy) | % loss in biomass |
0.5 | 4.72586 | 14.0897 | 129.281 | 16.779 | 87.02
0.4 | 4.72586 | 12.5887 | 129.281 | 23.549 | 81.78
0.3 | 4.72586 | 10.9029 | 129.281 | 33.375 | 74.18
0.2 | 4.72586 | 8.93162 | 129.281 | 49.569 | 61.66
0.1 | 4.72586 | 6.4253 | 129.281 | 84.507 | 34.63

As anticipated, the smaller the deviation between the two death rates
(that is, the smaller the productivity advantage of variety 1), the smaller
the percentage loss in biomass when the equilibrium moves away from the
unstable variety 1 monoculture to the stable variety 2 monoculture. The
richness metric for both the plant and the pest subsystems are R? = 1,
while for the plant subsystem H = D = 0.

At the next step we calculate the OSS for the SOMP by solving nu-
merically the nonlinear system (79)-(82).3* In table 5 we present solutions
for both heterogygotic advantage (s > 0) and disadvantage (s < 0) following
the fitness structure of table 1 for alternative values of dg, with the rest of
the parameters the same as in the POMP numerical analysis.>® Table 5
includes the steady states, the percentage gain in biomass of the OSS at the
SOMP relative to the variety 2 monoculture which eventually emerges at
the POMP, the Shannon and Simpson biodiversity indices, and the number
of eigenvalues with negative real parts. It should be noted the the richness
metric is R? = 2 for the plant subsystem and R’ = 3 for the pest subsys-
tem. Table 6 contains the same information but using the relative fitness
structure of table 2.

#The numerical solutions were obtained using Mathematica 4.0 (Wolfram, 1999) using
both Newton’s method and the secant method with accuracy goal set at 10.
#That is, p = 0.01, S = 2,d1 = 0.05,a = 0.10,w = 0.05, g = 0.05.
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[Tables 5 and 6 here]

Our numerical simulations indicate that, for s > —0.02 in table 53¢ and
for all the cases in table 6, the SOMP solution results in a polyculture,
and that there is always a gain in terms of biomass relative to the POMP
monoculture. This gain can be regarded as an endogenous measure of the
value of biodiversity which corresponds to a change from the monoculture
biodiversity metrics, R® = 1, H = D = 0, to the polyculture biodiversity
metrics R? = 2, R® = 3 for the plant/pest subsystems respectively, or the
H, D indices corresponding to the specific parameter constellations. This
measure depends not only on the ecological parameters, but also on economic
parameters, such as market prices and the discount rate. In our specific case
the biodiversity value seems to increase with the difference between the death
rates of the two varieties.

In terms of resilience the high biomass steady-state monoculture associ-
ated with the POMP, B (dy) , is not resilient and the system converges to the
low biomass steady state B (ds) with the losses in terms of biomass shown
in table 4. On the other hand the polyculture steady state is resilient along
a stable manifold whose dimension is determined by the number of negative
eigenvalues. Thus the more diverse system is more productive and resilient
along the stable manifold.

6 Conclusions and Areas of Further Research

In this paper we develop a conceptual framework for valuing biodiversity
from an economic perspective. Our approach is based on two central prin-
ciples. First that biodiversity is important because of a number of char-
acteristics or services that it provides or enhances. Second that the kind
of biodiversity loss that is of interest to us is a result of economic activ-
ity, and that this loss occurs because private optimizing agents ignore, to
some extent, properties or services that make biodiversity important. Ignor-
ing these services is equivalent to ignoring positive externalities associated
with diverse ecosystems. As a result the social return of the diverse sys-
tem where all characteristics and services are taken into account tends to
be less than private returns that ignore positive externalities. This dis-
crepancy leads to less diverse ecosystems under private optimization rules
relative to social optimization rules.?” Thus the creation of monocultures
is relatively more likely under private optimization rules.?® On the other

30For s = —0.02 the socially-optimal choice is ¢* = 0 and the SOMP and POMP
solutions coincide.

3TMore generally if there are negative externalities as well, such as diseases or weeds,
which are ignored by private agents, then the private and the social optimization rules
lead to a system with different diversity structures.

% Brock and Xepapadeas (2001) derive conditions under which a monoculture can be
created in a multispecies ecosystem under mechanistic resource-based competition when
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hand, socially-optimizing management that takes into account these exter-
nalities and thus the full social return of biodiversity results in general in
more diverse ecosystems. By comparing the optimal value of the SOMP
with that of the POMP we can obtain an endogenous measure of the bio-
diversity value and relate this measure to ecologically /biologically oriented
biodiversity metrics (species richness, Shannon, Simpson, diversity function)
that correspond to the equilibrium diversities of the SOMP and the POMP.

Thus our approach can be regarded as providing a link between the eco-
logically/biologically oriented biodiversity metrics and economically oriented
biodiversity metrics, with all measures being the outcome of optimizing be-
havior.

To build this link, however, we need to uncover the mechanism through
which economic decisions affect the biodiversity of an ecosystem and conse-
quently its resilience, productivity, value of services, and so forth. In this
paper we develop such a mechanism which is based on interactions between
ecological processes, reflected in mechanistic resource-based species compe-
tition, and genetic processes reflected in Hardy-Weinberg mating, to model
optimal harvesting decisions in a system where two plant varieties and three
pest types interact. We are able to derive the equilibrium productivity and
stability characteristics of: (i) the POMP, where the genetic constraint is
ignored and the system tends to a monoculture in the plant/pest domain;
and (ii) the SOMP, where the genetic constraint is taken into account and
the system tends to a polyculture in the plant/pest domain. By comparing
the equilibrium biomass values of the two solutions we are able to obtain the
endogenous measure of biodiversity value and to associate it with the eco-
logically /biologically oriented biodiversity metrics species richness, Shannon
and Simpson indices. By using numerical simulations we are able to confirm
our theoretical results and to obtain numerical measures of changes in bio-
diversity values between the SOMP and the POMP and the corresponding
changes in the ecologically /biologically oriented biodiversity metrics.

We feel that our methodological approach provides a modest step to-
wards solving, with the help of a unifying optimizing model, the puzzle of
valuing biodiversity. Although we have concentrated on a specific metaphor
inspired by the Bt-crop discussion, it seems that this unifying model should
contain two major building blocks. The first should be an objective function
that incorporates as far as possible the economic or social values associated
with the ecosystem under consideration, such as harvesting values, insurance
or knowledge values, or values of ecosystem services. The second building
block should be an ecological/biological module, that describes interactions

the value of ecosystem services are not taken into account. Scott (1998) and Murray
(1993) discuss the cases of Norway Spruce in scientific German forestry and the Nile perch
respectively, where creating a monoculture and ignoring the externalities associated with
interrelations among species, which allow the proper functioning of diverse ecosystems,
lead to the collapse of the ecosystems.
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among species, and interactions among economic decisions and ecosystem
state. Optimizing an objective function defined in terms of economic or
social profits, subject to the ecological/biological constraints, will result in
a maximal economic or social profit and a corresponding privately-optimal
or socially-optimal equilibrium biodiversity. Using the equilibrium ecosys-
tem diversity we can compute ecologically/biologically oriented biodiversity
measures for the private or the social equilibrium and then relate changes in
these measures to the changes in the maximal value of the objective function,
thus obtaining an endogenous valuation of biodiversity. The major obsta-
cles in this approach are: (i) the proper definition of the objective function,
since with the exception of harvesting values the rest of the value concepts
might be difficult to estimate; and (ii) the development of the appropriate
ecological /biological model.? In this paper the plant/pest interaction was a
useful framework, but not universally applicable, which suggests that apart
from the general principles characterizing the unified model, biodiversity
valuation from an economic perspective could be a case-by-case issue.

This observation suggests that further research in biodiversity valua-
tion should aim at building and linking realistic economic and ecologi-
cal/biological models and then trying to work out solutions correspond-
ing to privately- or socially-optimal decisions. For example in hierachical
metapopulation models with sites destroyed by human activities (Tilman
and Lehman 1997), if an objective function - defined in terms of both the
harvesting benefits (possibly including existence values of species) and the
economic benefits accruing from activities associated with sites destruction -
is added to the ecological module, then the above methodology can be used
to value biodiversity loss because human activities destroy sites and species.

Therefore, although our approach does not provide one model that can
be used to value biodiversity in different ecosystems, it provides a unifying
conceptual framework capable of determining endogenous values of biodi-
versity. The fact that a single all-purpose model does not seem to exist for
this purpose, is most likely to be the consequence of the complexity of the
processes that drive the ecosystems whose diversity we are trying to value.

39For example, in relating biodiversity to ecosystem functions, “keystone species” should
be identified and the effects of economic decisions on their abundance should be deter-
mined.
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Appendix

Proof of Proposition 1.

The steady-state objective function for the OSS problem (15) is g (z) =
P (x) z. In this function p (z) is defined by the solution for p (x) of the con-
straint function (15), or

B Wia (z) — Wao ()
©2Was (z) — Wiy (z) — Wag ()

p(z)

which is obtained by solving the constraint for p. For the function g (z)
observe that we have g (0) =0, g’ (0) =% (0)0+ 5 (0) = 5(0). But 5(0) €
(0,1], since p(0) > 0 under heterozygotic fitness advantage for x = 0 as
shown in (11a), or p(0) = 1 for the fitness values of table 2. Furthermore
g (1) < 0, since, as shown in the previous section, p () = 0 with & < 1. These
observations imply that the g (z) function has a global interior maximum
x* for x € [0,1], with p* =p(z*). O

Proof of Lemma 1.

Let (B,H,R) > 0 be an OSS. Then gwRB = S — aR. If at this OSS
A <1, then K™ =B (gR + x (d2 — d1) — d2) and we have:

wK™ = wB (gR+x (dz — d1) — d2) < wB (gR+ z (dy — dv)) =
S—a}_%+w§m(d2—d1)<S+w§x(d2—d1) y OS.I'Sl

Therefore K™ < 2 4 By (dy —d;) for A < 1. Thus if K™ > 2 4

A~

B (dy — dy) then A = 1.00
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Table 5: The OSS of the SOMP for the Fitness Values of Table 1
% gain # of eigenvalues with
(s,d2) R Ty D T r* B* B (dy) | in biomass H D negative real parts
(0.5,0.5) 13.65 | 5.94 | 0.3093 14.49 | 0.2164 | 18.593 | 16.779 10.81 0.522 | 0.339 1
(0.4,0.5) 13.73 | 5.87 | 0.3035 | 14.43 | 0.1841 | 18.282 | 16.779 8.96 0.478 | 0.300 1
(0.3,0.5) 13.81 | 5.79 | 0.2962 14.34 | 0.1480 | 17.949 | 16.779 6.97 0.419 | 0.252 1
(0.2,0.5) 13.89 | 5.71 | 0.2857 | 14.13 | 0.1071 | 17.588 | 16.779 4.82 0.340 | 0.191 1
(0.1,0.5) 13.99 | 5.62 | 0.2635 13.52 | 0.0604 | 17.195 | 16.779 2.48 0.228 | 0.113 1
(—0.01,0.5) | 13.35 | 6.23 | 0.9358 | 1684.88 | 0.1196 | 19.911 | 16.779 18.67 0.366 | 0.211 2
(—0.015,0.5) | 14.07 | 5.54 | 0.5889 14.10 | 0.0065 | 16.878 | 16.779 0.59 0.039 | 0.013 2
(—0.02,0.5) | 14.09 | 5.52 | 0.4975 | 29.61 | 0.0000 | 16.779 | 16.779 0.00 0.000 | 0.000 2
(0.5,0.4) 12.21 | 7.34 | 0.3093 15.46 | 0.2164 | 25.501 | 23.459 8.70 0.522 | 0.339 1
(0.5,0.3) 10.70 | 8.93 | 0.3093 | 15.37 | 0.2164 | 35.494 | 33.375 6.35 0.522 | 0.339 1
(0.5,0.2) 8.71 | 10.82 | 0.3094 | 13.46 | 0.2164 | 51.836 | 49.569 4.57 0.522 | 0.339 1
(0.5,0.1) 6.32 | 13.25 | 0.3993 7.49 0.2164 | 86.476 | 84.507 2.33 0.522 | 0.339 1
Table 6: The OSS of the SOMP for the Relative Fitness Values of
Table 2
% gain # of eigenvalues with
dy | R Tiy Ik s 2 | B* B(ds) | in biomass | H D negative real parts
0.5 | 1347 | 6.12 [ 0.7955 | 170.12 | 0.1186 | 19.386 | 16.779 18.22 0.364 | 0.209 1
0.4 ] 12.06 | 7.49 | 0.7955 | 179.89 | 0.1186 | 26.356 | 23.459 12.35 0.364 | 0.209 1
0.3 11047 | 9.06 | 0.7955 | 177.52 | 0.1186 | 36.414 | 33.375 9.11 0.364 | 0.209 1
0.2 | 862 | 10.91 | 0.7955 | 154.46 | 0.1186 | 52.817 | 49.569 6.55 0.364 | 0.209 1
0.1 ] 6.28 | 13.30 | 0.7955 [ 85.13 | 0.1186 | 87.308 | 84.507 3.31 0.364 | 0.209 1

IThe values of p and z* start becoming different after approximately the
13th decimal place.
2The value of z* lies in the interval defined in section 4, which for the specific
numerical values is (0.099723,0.210526) .
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Figure 1: The POMP Solution
(S=2, d,=0.40, d,=0.05, a=0.10,w=0.05, g=0.05)



