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1 Introduction
Optimal management of spatially distributed natural resources that are mobile
can rapidly lead to complicated mathematics of the optimal control of objects
like partial di¤erential equations, mixed integro-di¤erential equations, stochas-
tic partial di¤erential equations and the like (Brock 2000). To state it more
concisely, modelling optimal mosaic management is hard. We propose here to
investigate some simple metapopulation models that capture at least some as-
pects of management of an ecological mosaic. Although our analysis does not
correspond to “mosaic management in metapopulations models” in the ecol-
ogist’s sense of the word, the models developed in this paper are inspired by
actual such work..In their limiting form our models end up looking like Lotka
Volterra models after suitable re-interpretation. Thus our generalized Lotka-
Voltera system is mathematically equivalent to versions of spatial models.

Before we begin, we should note that these models are highly stylized and
are subject to the same rather devastating criticisms of simple deterministic
…sheries models made in Hilborn and Walters (1992). However, we still think
it is useful to investigate these models, not only to shed insight on what might
happen in more realistic models, but also to prompt appropriate questions to
put to those more realistic models.

This paper develops as follows. Section 2 analyzes species competition and
coexistence in spatially structured environments, with special attention to in-
teracting species models where there are hierarchical relationships among the
species. Although these models can be transformed into multi-species Lotka-
Volterra models, the hierarchical relationship structure allows many species to
co-exist in equilibrium. This is one way to avoid the limitations on the number
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of species due to competitive exclusion and limiting resources that were present
in the models analyzed by Brock and Xepapadeas (2000). The limiting e¤ects
of competitive exclusion are mitigated by di¤erential “colonization” rates, hier-
archical relationships, and di¤erential birth and death rates. We present results
on equilibrium specialization when the system is harvested, and we examine the
impact of site destruction on species abundance.

Section 3 analyzes management under three regimes: (i) socially optimal, (ii)
rational expectations competitive equilibrium with full property rights, and (iii)
rational expectations equilibrium (REE) with no property rights. The case of
no (complete) property rights is analytically equivalent to the case of adjoining
…sheries with in…nitely fast rates of di¤usion of …sh across each (zero rate of
di¤usion across each). We obtain equivalence of competitive equilibria under full
property rights to social optimum. A main message from this part of the analysis
is this. If di¤usion rates of the resource are localized enough so the …shing
space can be subdivided into areas large enough that di¤usion across them is
quite small, but still small enough that Ostrom (1990) type institutions can be
constructed to induce individual …shers within an area to act approximately like
the rational expectations optimizers of (ii) above, then approximate e¢ciency
could be achieved. Ostrom’s case studies as well as theory suggest that if the
number of …shers is small enough and the interactive relationships are long term,
then reasonably e¢cient common property management institutions can emerge
and be sustained.

Let us illustrate by considering the following hypothetical example. Imagine
that we have a world market for shrimp, shrimp …sheries are organized into areas
where shrimpers in each area have rights to …sh that area and to keep others out.
(The rights could have been purchased in a public auction so the public itself
could capture the rents.) Since shrimp do not di¤use very far, it is plausible
that the areas might be constructed so that the number of shrimpers in each
area is small enough to be able to organize workable Ostrom-like (cf. Ostrom
(1990) collective action social institutions that induce each one to act in the
collective long run interest of his/her fellow shrimpers in their jointly controlled
area. Of course this institution will require some understanding from regulatory
authorities such as anti-trust because the scheme won’t work unless “outside”
shrimpers can be excluded. An auction institution where shrimpers bid for
the rights to be “insiders” would transfer the rent of concern to the antitrust
authorities to the public. Anti competitive e¤ects in the shrimp market should
be of little concern because the optimal area of a shrimpery will be too small
to have an e¤ect on the world market price of shrimp. Of course tari¤s and
other barriers to outside shrimp sellers on each area’s shrimp market must not
be allowed to exist.

Under appropriate interpretation, the metapopulation models developed in
Sections 2 and 3 of the paper as well as many of the techniques used in the
analysis of these models can exploit well known core results of resource eco-
nomics and bioeconomics(cf. Clark 1990 and Dasgupta and Heal 1979). It is
useful to exploit this well known material to build a platform to launch probes
into less familiar territory. Thus, given the importance of the socially-optimal
solution for regulatory purposes, we develop in section 4 an extension of well
known value loss arguments to extend the turnpike theory reviewed in Carlson
et al. (1991) to quite general optimal management models of multispecies in
patches. Although we work with a …nite number of patches and species the
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methods we develop to extend value loss arguments suggest the potential of
extending of our methods to models of optimal control of partial di¤erential
equation models of multiple species on a continuum of patches. Brock (2000)
suggests this possibility but the value loss argument developed here does not
appear in that paper.

We exhibit examples where optimal decentralized regulation by incentive
instruments applied at the individual agent level of open access bionomic equi-
libria fails due to hysteresis and multiple equilibria. This is familiar from work
such as Clark (1990). We show that an appropriate re-examination of the rela-
tive speeds of adjustment of economic dynamics to biological dynamics as well
as an analysis of appropriate property rights regimes clari…es when hysteretic
regulation failure is likely to be a problem for the case of one species. Sec-
tion 5 concentrates on developing these results for the case of one and many
species. For the multi-species case the interaction between demand and biology
in this context can lead to complicated patterns of equilibrium and hysteretic
relaxation dynamics under open access exploitation. We present a quite gen-
eral result on decentralized regulation if the biological dynamics is slow enough
relative to the economic dynamics. However, if the biological dynamics is fast
enough relative to the economic dynamics, the hysteresis traps can re-appear
with much more complexity due to the interaction amongst the species on the
biological side and the interaction in demands on the economic side.

The information requirements needed to apply conventional propositions of
decentralized regulation like those we develop above are huge. This information
problem is aggravated by the complexity of interactions and the details about
biology and economics that are needed to implement regulation. Even well stud-
ied and relatively simple ecosystems present enormous di¢culties in practical
implementation of regulation (Carpenter, Ludwig and Brock 1999). The setting
here may be even more complicated. Furthermore controversies loom large in
ecology about which theoretical model is the appropriate baseline. Indeed it is
natural, in view of controversies in ecology about models with one stable state
or models with multiple stable states (Carpenter, Ludwig and Brock 1999), to
consider at least two baseline core models around which one wishes to design a
Robust regulatory mechanism that works well for a range of misspeci…cations
centered at each of these baseline models. The analysis in Sections 2 and 3
of this paper represent an analysis centered at one core baseline model that is
known exactly.

Section 6 of this paper starts the daunting task of formulating and analyzing
frameworks of Robust Regulation. The …rst part sets up a problem of a Bayesian
regulator who puts a posterior probability (presumably after use of all available
data and theory) on each of two models, M1and M2. We abstract away from
parameter uncertainty inside each Mi. The regulator chooses instruments to
steer the system towards the maximization of posterior expected social welfare.

But this is just Bayesian regulation and is not Robust regulation in modern
parlance. The second part attempts to Robustify your treatment of optimal
regulation by introducing a simple rendition or caricature of ideas Epstein and
Wang (1994), Liu (1999), and Sargent. 1

Following Epstein and Wang (1994) and Liu’s work (1999) we consider an
objective which is a weighted average of posterior expected welfare and the

1 See his website for a host of recent working papers on robust control.
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minimum of welfare over the two possible models M1 and M2. The idea is this.
If regulators are ambiguity averse(cf. Epstein and Wang 1994) with what we
shall call here, “degree e”, then their objective function is (1¡e) times posterior
expected welfare plus e times the minimum of welfare under Mi. The idea is
that Nature is “mean” and acts to hurt the policy maker with probability e and
is benign with probability 1¡ e.

One can view this formulation as an attempt to capture the discounting of
ambiguity that has been claimed to occur in experimental situations as well as
in the …eld. It is an example of recent work in decision theory on departures
from Bayesian decision making and departures from expected utility. That is,
it represents an attempt to conceptualize and measure the notion of ambiquity.
Here ambiguity refers to a feature of situations where a notion of subjective
probability not only makes no sense but is not consistent with laboratory and
…eld observations of actual decision making. 2

The evidence suggests that people will pay more to avoid an equal amount
of ambiguity than they will pay to avoid an equal amount of quantized and
knowable probability risk. Laboratory subjects appear to exhibit some kind
of insurance against worst case within known bounds type of behavior. Liu’s
work (building on that of Epstein and Wang) does a neat job of capturing this
feature in a decision making framework that posits the conventional Bayes for
1 ¡ eper cent of the time and minimization of loss over the class of possible
misspeci…cations, M , for e per cent of the time. The fraction 1 ¡ e represents
con…dence on the part of the decision maker that she has the speci…ed class
right and can proceed as a conventional Bayesian statistical decision maker.
The fraction e represents her lack of con…dence. The class Mof misspeci…cations
represents her ignorance about where the true speci…cation might lie. The world
she lives in is more ambiguous the bigger is M: There is still rather wide latitude
in framing decision making frameworks in this class (e.g. Epstein is currently
working on conceptualizing Degrees of Ambiguity) but the above framework
is rich enough to focus the mind on what human decision making behavior
might be like when the class of possible misspeci…cations M includes dynamical
processes with multiple stable states. Almost all of the ambiguity-decision-
theoretic frameworks we have seen produce a type of behavior that maximizes
against a worse case scenario within the class M . In any event, we shall use this
version of Robust Decision Making here.

2 Competition and Coexistence in Spatially Struc-
tured Environments

Tilman and Lehman (Tilman and Kareiva 1997, Chapter 10) put forth the
following model of species competition in a subdivided habitat:3

_xi = rixi

0@1¡D¡
iX

j=1

xj

1A¡mixi ¡
i¡1X
j=1

rjxixj ; i = 1; :::; n (1)

2 See Camerer’s chapter in Kagel and Roth (1995).
3 Tilman and Lehman’s notation has been changed for compatibility with Clark (1990).

See also Tilman (1994) for a similar model with D = 0.
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The interpretation here is as follows. There are a large number of sites,
each of which may contain one adult member of a species. Species 1 is a better
competitor than 2,..., species n¡ 1 is a better competitor than species n. Here
xi denotes the fraction of undestroyed sites occupied by species i, D is the
fraction of sites destroyed (e.g. by human activities), rixi is the rate of propagule
production by species i, mi represents the mortality rate of species i, the other
terms represent material balance of occupied and unoccupied sites as well as a
hierarchical set of competitive relationships that capture which species can push
another o¤ of a site. At an abstract level the ecosystem dynamics represented
by (1) can be mapped into the general Lotka-Volterra framework

_xi = xi(si ¡
X

aijxj) = Fi(x); i = 1; 2; :::; n ; or (2a)

_x = x­ [s¡Tx] ; x = (x1; :::; xn) ; (2)

si = ri (1¡D)¡mi ; aij = [ri + rj ]=ri; j < i¡ 1; aij = 0; j > i; aii = 1 ;

where the nxn matrix T has ith row, Rowi = (r1 + ri; r2 + ri; :::; ri¡1 +
ri; ri; 0; 0; :::; 0): Notice that T has ri on the diagonal of Rowi and all zeroes
above the diagonal.4 Hence (1) or (2) represents the ecological dynamics of
this competitive hierarchy when there is no harvesting by humans, but there is
habitat destruction by humans which is re‡ected by D > 0.

Unlike the Tilman type R¤models used by Brock and Xepapadeas (2001),
there can be a large number of co-existing species in steady state equilibrium of
(1) or (2). The steady state conditions in Nature can be written using (2) as5

Tx = s (3)

Since the determinant of T is the product of the diagonal terms and each
ri > 0, therefore the inverse S = T ¡1 exists. It is also lower triangular of the
same form as T as can be shown using ST = I, where I is the nxn identity
matrix. Let Tn denote the nxn matrix T in (2) above. We can use the recursive
structure as well as formulae for the inverse of a partitioned matrix to derive a
recursive relationship between the inverse of Tn+1 in terms of the inverse of Tn:
The matrix Tn+1 can be written thus,

Tn+1 =

·
Tn 0

gn+1 rn+1

¸
(4)

where the …rst n rows of Tn+1 are n£ (n+ 1), and gn+1 is 1£n and is the …rst
n elements of row n + 1 of Tn+1. The formula for the inverse of a partitioned
matrix (4) yields

Sn+1 =

·
Sn 0

hn+1 rn+1

¸
; hn+1 = ¡ 1

rn+1
gn+1Sn (5)

This recursion can be used to rapidly build expressions for the inverse of Tn

for fairly large matrices. This recursive structure can then be used to locate
4 The notation z = x­ y stands for the vector z with ith element, zi = xiyi. I.e. it is

a product which is formed by multiplying each element of the …rst vector x into the corre-
sponding element of the second vector y. When needed, we will form similar products for
conformable matrices as well as for conformable vectors.

5 We would like to thank Shiu-Sheng Chen for help with the results of this section.
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su¢cient conditions for for x¤ = Ss > 0. Here are some examples of such
assumptions.

x¤
1 =

s1

r1
= 1¡D ¡ m1

r1
> 0

x¤
2 =

1

r2
[s2 ¡ (r1 + r2) x¤

1] > 0

x¤
3 =

1

r3
[s3 ¡ (r2 + r3) x¤

2 ¡ (r1 + r3) x¤
1] > 0

:::::::::::

x¤
k =

1

rk

"
sk ¡

k¡1X
i=1

(rk + ri) x¤
i

#
> 0

If D = 1 ¡ m1

r1
then the abundance of species 1 goes to zero. Since for D = 0;

x¤
1 = 1 ¡ m1

r1
; species 1 becomes extinct if a proportion of the habitat equal to

its occupancy in a virgin environment is destroyed (Tilman and Lehman 1997).
For the special case ri = r > 0 for all i, we may assume:

r > 0; si > 0; si+1 > 2si ; i = 1; 2; :::; n¡ 1

It is straightforward to prove that the above assumption implies x¤
i > 0, i =

1; 2; :::; n:
We introduce harvesting Hi into the model. Following Clark’s (1990) no-

tation, let qi; Ei; pi; Yi; ci denote respectively catchability coe¢cient of species
i, e¤ort spent on capturing species i, unit price of species i, total number of
units captured of species i, and cost per unit e¤ort spent on species i, with
Hi = Yi = qixiEi: We …rst analyze a special case in order to bring into sharp fo-
cus the role played by the hierarchical competitive structure of species in optimal
harvesting patterns. Let U(Y ) =

Pn
i=1 ui(Yi) denote bene…ts from harvesting

and c(x; E) be the general harvesting cost function, and consider the problem

max

Z 1

0

e¡½t (U (Y )¡ c (E; x)) dt (6)

s.t. _xi = rixi

0@1¡D ¡
iX

j=1

xj

1A¡mixi ¡
i¡1X
j=1

rjxixj ¡Hi (7)

Buttel, Durrett, and Levin (2000) (BDL) investigate models that support
large numbers of species in equilibrium. Among models they analyze is a special
case of (7) above. BDL do this to set the stage for the study of models that are
compatible with large numbers of species coexisting. We consider a special case
by setting

ri = 1 ; mi = 1¡ (2i¡ 1)

(2n)
i = 1; 2; :::; n:

If all Hi = 0, one may compute the steady state of (1) or 7) and obtain
xi = 1=2n. Thus, for D = 0, as n increases “to in…nity the species are uniformly
spread and 1=2 of the sites are occupied...” (Buttel et al., 2000, p. 3). In
order to focus on one thing at a time, assume ui = u for all i and embed any
harvesting cost in the (net) utility u. First consider the linear case u(Hi) = Hi
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and assume ½ = 0. We may then …nd optimal steady states (OSS) by solving
the (undistorted by ½) static optimization problem

max
nX

i=1

Hi s.t. Hi = fi(x) ; i = 1; 2; :::; n;

where fi(x) is the right hand side of (7) for each i:
By solving problems for n = 1; 2, noticing a pattern in the …rst-order neces-

sary conditions (FONC) for optimality that holds for all n, it is easy to show that
the optimal thing to do is harvest o¤ all of the species except species n. This will
be done rigorously below. This result intuitively follows from the survival rate
of i; 1¡mi = (2i¡1)=(2n) increasing in i, together with lower numbered species
placing negative externalities on productivity of higher numbered species, but
each unit having the same net economic value.

Turn now to the case ½ > 0: If ui(Hi) = aiHi, we have a Most Rapid
Approach Problem (MRAP) 6. Hence the solution is to apply controls fHig to
move the state vector x(t) to

x¤ = argmaxf
nX

i=1

fai(fi (x)¡ ½xi)gg (8)

as rapidly as possible. Thus if ai = a for all i, we obtain the same form of
solution as above: Harvest down to extinction all species except species n as
rapidly as possible. Let us state this result as

Theorem 1 Under the assumptions above, x¤ = (0; 0; :::; 0; x¤
n) ; x¤

n = ~sn

2 ,

where ~si = (2i¡1)
(2n) ¡D¡ ½.

For proof see Appendix.
Theorem 1 re‡ects a polar case where specialization is optimal. It is useful

to have the opposite polar case where it is optimal to equate the xj for contrast.
Put ½ = 0 and consider the Leontief utility,

U(H) = minfHi; i = 1; 2; :::; ng (9)

Here the object is to achieve the highest common value of fi(x). Since ŝ1 <
ŝ2 < ::: < ŝn it is natural to look for solutions where species 1 constrains all
the others and optimize steady state harvest over species 1 subject to these
constraints. We have

Theorem 2 The optimal H is found by solving the problem

max x1(ŝ1 ¡ x1) s.t.

f1(x) = x1(ŝ1 ¡ x1) = f2(x) = x2(ŝ2 ¡ 2x1 ¡ x2) = ::: =

fn(x) = xn(ŝn ¡ 2[x1 + ::: + xn¡1]¡ xn)

and under Assumption A below:

Assumption A :

µ
ŝ1

2

¶2

> maximum

(µ
(ŝk ¡ ŝk¡1)

2

¶2

; k 6= 1

)
6 See Clark (1990, Section 2.7 and elsewhere).
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the optimal solution to this problem is given by

x¤
1 =

ŝ1

2
; x¤

2 = argmaxfx2(ŝ2 ¡ x¤
1 ¡ x2)g =

(ŝ2 ¡ ŝ1)

2
; :::;

x¤
n = argmaxfxn(ŝn ¡ 2[x¤

1 + ::: + x¤
n¡1]¡ xn)g =

(ŝn ¡ ŝn¡1)

2

For proof see Appendix.
Let us compute x¤

k for the special case mk = 1¡(2k¡1)=(2n); k = 1; 2; :::; n.
Here ŝ1 = 1=(2n)¡D; ŝk ¡ ŝk¡1 = 1=(2n).

For the system to be viable we must have ŝ1 > 0. Clearly an increase in D
(or an increase in n) crashes the entire system. If D is shocked by Nature on a
slower time scale than harvesting and D is badly measured by management, then
optimal steady state management may be in for a lot of unpleasant surprises.

As we have seen before, if D = 0, Nature’s equilibrium for this system is to
set each xk = 1=(2n). Abuse notation and let ŝi = 1¡mi; Si = ŝi ¡D. Direct
computation for D > 0 shows that Nature’s equilibrium is given by

x1 = S1; x2 = S2 ¡ 2S1; x3 = S3 ¡ 2(S2 ¡ S1)

x4 = S4 ¡ 2(S1 + S3 ¡ S2); x5 = S5 ¡ 2(S2 + S4 ¡ S1 ¡ S3)

We see right away that odd numbered species are injured by D > 0 whereas
even numbered species are helped. For the special case ŝi = (2i¡1)=(2n), direct
computation shows that

xi = 1=(2n) + D for i even;

xi = 1=(2n)¡D for i odd

Notice that D > 1=(2n) implies all odd numbered species go extinct. Com-
pare Nature’s equilibrium with the optimal economic steady state equilibrium
under zero discounting for Leontief utility (9) above which is given by x¤

1 =
1=(2n) ¡D; x¤

i = 1=2n for all i not equal to one. Economic management un-
does Nature’s threat of extinction of all odd numbered species except the …rst.
The lunch is not free however. Species 1 is still threatened and the even num-
bered species are less abundant under economic management than in Nature.
This …nding is reminiscent of alternating equilibrium abundances in hierarchical
trophic cascade models in ecology. That is, if 1 eats 2 eats 3,...,eats n, then high
abundance of 1 leads to low abundance of 2 which leads to high abundance of
3..., etc. In such settings economic management can take pressure o¤ of species
at risk by harvesting down the over abundant species in trophic cascades.

If one lets D be driven by a slow variable one can get interesting dynamics
out of this model. For example if D moves slowly up then slowly down in a
sinusoidal pattern, we would see recurring waves of extinctions of large numbers
of species if n is large. Hence if D proxies for habitat quality this kind of model
can be suggestive of possible ways to investigate economic trade-o¤s between
the costs of maintaining or enhancing habitat quality (including the opportunity
costs of alternative uses for the habitat such as economic development) and the
impact of habitat quality on revenue generated by natural resource capture
industries.

For example, if slow periodic trend movements (including stochastic ‡uctua-
tions about such trends) in climate drive the magnitude of D, these movements
alone could generate patterns that look like human-induced over harvesting.
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However, abundance distributions like these described above do not look like
abundance distributions observed in Nature. But BDL (2000) show how to …nd
parameters (e.g. by varying the colonization rates ci as well as the mortality
rates) of this model to produce abundance distributions that are more realistic.
It would be worthwhile to work out optimal economic equilibria as well as Clark
(1990) bionomic equilibria for more realistic abundance distributions. We still
think, however, that this model is enough to reveal how small changes in the
habitat destruction parameter can lead to large and surprising reverberations
(even mass extinctions) in abundance distributions.

3 Welfare Optimum, Rational Expectations and
Bionomic Equilibria in Spatially Structured
Environments

Having examined the impact of harvesting and habitat destruction in the spe-
cial case above, we now analyze in more detail the economic characteristics of
our model. We start by analyzing a simple Clark (1990, Section 5.2) static bio-
nomic equilibrium to this setting. After this is done, we extend Clark’s (1990)
treatment of dynamics to this setting.

The ‡ow of economic rent, i.e. pro…t, generated by species i is given by

Ri = (piqixi ¡ ci)Ei (10)

which implies that the steady state interior bionomic equilibrium is given by

piqixi ¡ ci = 0; pi = Pi(Y1; :::; Yn); (11)

Yi = qiEixi = RHS of (1) ; i = 1; 2; :::; n: (12)

where Pi denotes the demand function for species i7 .
For the case n = 1, the system (10)-(12) is thoroughly analyzed by Clark

(1990), not only for the linear Schaefer type of cost structure, but also for various
generalizations of the cost structure8.

3.1 Equlibria for a Single Species Case

Let us …rst do the case n = 1. We investigate three regimes. First, we investigate
the socially-optimal management problem (SOMP). Second, we show that if we
have N (without loss of generality put N = 1 for a “stand-in” …shery) identical
…sheries with the same dynamics and there is no mixing or di¤usion of …sh across
any of the N …sheries, then a version of the standard Equivalence Theorem of
capital theory (Becker and Boyd 1996) applies for rational point expectations
equilibrium. That is, the solution of the REE Problem is the same as SOMP.

7 Bionomic equilibria may be non-interior and have some species with zero price, if the unit
cost of e¤ort is too high relative to demand and if the catchability coe¢cient is too small. To
allow for these boundary equilibria, replace (11) by

Yi < RHS of (1) ) pi = 0

pi > 0 ) Yi = RHS of (1)

8 See Clark (1990, Figures 5.9, 5.10, 5.11, and surrounding text).
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Hence this form of intertemporal competitive equilibrium is e¢cient. This is
so because each of the N …sheries is operated to internalize any spillovers in
x. To put it another way, each …shery is operated taking the path of price as
parametric to maximize capitalized pro…ts but the dynamics of x are taken into
account. Third, we study the problem where there is perfect mixing or perfect
di¤usion of …sh across the boundaries of the N …sheries. In this case we assume
each …shery is operated without regard to the e¤ect on the dynamics of x. We
shall see that this case is ine¢cient for the same reasons discussed by Clark
(1990). That is to say, each …shery indulges in “scramble” competition to get
their …sh …rst before someone else does.

3.1.1 The Welfare Optimum

For the SOMP we de…ne welfare derived by catch Y = qEx; by the sum of con-
sumer and producer surplus or U (Y ) = S (Y )¡cE: Where S (Y ) =

R Y

0
P (u) du

is the area under the demand curve p = P (Q) ; up to Q = Y = qEx and
S

0
(Y ) = P (Y ) = p: The socially-optimal management problem is de…ned as:

max
fE(t)g

Z 1

0

e¡½t [S (qEx)¡ cE] dt (13)

subject to _x = x (s¡ rx)¡ qEx ; x (0) = x0 > 0 (14)

s = r (1¡D)¡m

The current value Hamiltonian for this problem is given by

H = S (qEx)¡ cE + ¹x (s¡ rx¡ qE)

The FONC for optimality are given by:

@H
@E

= 0 ; or ¹ = P (Y )¡ c

qx
(15)

_¹ =

µ
½¡ @F

@x
+ qE

¶
¹¡ qEP (Y ) ; F (x) = x (s¡ rx) (16)

_x = x (s¡ rx¡ qE) (17)

3.1.2 Rational Expectations Equilibrium

Let us now consider REE. Here the stand-in …shery takes the price function p(t),
t ¸ 0 as parametric, and chooses E to maximize discounted pro…ts pqEx¡ cE
subject to the biomass dynamics (14). So the REE solves

max
fE(t)g

Z 1

0

e¡½t [pqEx¡ cE] dt (18)

subject to (10) and 0 · E · Emax (19)

The current value Hamiltonian for this problem9 is given by

H = pqEx¡ cE + ¹x (s¡ rx¡ qE) (20)
9 The additional constraint 0 · E · Emax is required in order to make the REE problem

well posed, given its linear structure.
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The FONC for a singular solution are given by:

¹ = P (Y )¡ c

qx

where p (t) = P (Y (t)) ; along with (16) and (17). Let fE¤; x¤g be optimal
solutions and let p

¤
= P (qE¤x¤) : Then REE is de…ned by the requirement

that p = p
¤

for all dates t: By comparing the optimality conditions of the
SOMP and the REE problems it is clear that the FONC are the same for both
problems. Hence if there is only one solution for the socially-optimal problem,
REE replicates it and the equivalence between the two problems holds.

3.1.3 Bionomic Equilibrium

Now consider the third problem. Here each …shery takes p(t) as parametric,
but it also takes x(t) as parametric because of the perfect mixing i.e. perfect
di¤usion of …sh across boundaries. Of course, in the real world, …sh mix or
di¤use at a …nite rate so each …shery would partially take into account the
e¤ect of their harvesting on the stock of …sh, but it is instructive to analyze the
polar case of perfect mixing (in…nitely fast di¤usion). In this case each …sher
solves the problem

max
E

fpqEx¡ cEg (21)

taking both p and x as parametric.10 Optimality implies:

p = P (qEx); P (qEx)qx = c; with (22)

_x = x(s¡ rx¡ qE) (23)

At steady state we have, for steady state x > 0, from (22), and (23).

p = P (qEx) ; P
³³q

r

´
E(s¡ qE)

´ h³q

r

´
(s¡ qE)

i
= c (24)

Conditions (24) are a steady state version of Clark’s bionomic equilibrium
for one species. Since the curve P

¡¡
q
r

¢
E(s¡ qE)

¢ £¡
q
r

¢
(s¡ qE)

¤
need not be

monotonic in c; there could be multiple bionomic equilibria.11

Turn now to a comparison of Clark’s bionomic equilibrium with the social
optimum for OSSs. It will turn out that the conditions used here for OSS are
the same as for zero discount rate OSS for the SOMP.

For ½ = 0, by rewriting the OSS conditions above for the SOMP with ½ = 0,
we see that the OSS e¤ort is given by

max fS(qEx)¡ cEg s.t: 0 = x(s¡ rx)¡ qEx (25)

For x > 0, rx = s¡ qE, rewrite (21) thus,

max
n

S
³³q

r

´
E(s¡ qE)

´
¡ cE

o
= max J(E) (26)

10 As in the REE problem above in order to ensure that the problem is well posed for each
p; x we place an upper bound Emax on E and a lower bound of zero on E.

11 Multiple equilibria and their implications for regulation will be analyzed in detail in section
5.
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The …rst and second-order necessary conditions for an optimum are J
0

=
0; J

00 · 0. Thus, we obtain

p
³q

r

´
(s¡ 2qE) = c; p = P (qEx); rx = s¡ qE (27)

We compare the SOMP equilibrium (27) with interior bionomic equilibrium
as in Clark (1990, p. 131), which is given by:

p
³q

r

´
(s¡ qE) = c; p = P (qEx); rx = s¡ qE (28)

Theorem 3 The bionomic equilibrium de…ned by (28) is inferior in terms of
welfare relative to the socially-optimal equilibrium de…ned by (27).

For proof see Appendix.
The main economic conclusion for the case n = 1 is the ine¢ciency of the

open access equilibrium which of course is obvious from Clark (1990). More
interesting to study are the di¤erent regulatory attempts to correct the problem.

3.2 The Multi Species Case

The socially-optimal problem using general matrix notation can be written as

max
fE(t)g

Z 1

0

e¡½t

"
S (q­E­ x)¡

NX
i=1

ciEi

#
dt (29)

s. t. _x= x­ (s¡Tx)¡ q­E­ x ; s = r­ (I¡D)¡m

S (q­E­ x) = S (q1E1x1; :::; qnEnxn) ; Yi = qiEixi

@S

@Yi
= pi ; pi = Pi (Y1; :::; Yn) = Pi (Y)

where D is the fraction of sites destroyed (e.g. by human activities).
For the REE each stand-in …shery takes the price p(t), t ¸ 0 as para-

metric, and chooses the e¤ort vector E to maximize joint discounted pro…tsPn
i=1 (piqiEixi ¡ ciEi) subject to the biomass dynamics. So the REE solves

max
fE(t)g

Z 1

0

e¡½t
nX

i=1

(piqiEixi ¡ ciEi) dt

subject to (37) and 0 · E · Emax

where pi (t) = Pi (Y (t)) : By comparing the optimality conditions of the SOMP
and the REE problems it is clear that the FONC are the same for both prob-
lems. Hence if there is only one solution for the socially-optimal problem, REE
replicates it and the equivalence between the two problems holds. Assume that
the conditions for positive biomasses at Nature’s steady state described in sec-
tion 2 are satis…ed. Thus, when harvesting takes place the steady state of the
ecological system is de…ned using (2) as:

s + Tx = q­E­ x ;or x = S[q­E¡ s] ; S = T
¡1

Thus bionomic equilibrium is de…ned as:

p = P(Y) = P(q­E­ x) ; x = S[q­E¡ s]

and p­ q­ x = c ) p­q­[S[q­E¡ s]] = c (30)

12



From (44) we have n equations in n unknowns, E, as follows:

p (q­E­S[q­E¡ s])­q­[S[q­E¡ s]] = c

As in the simpler case of n = 1; this system of n equations in n unknown Es
may have more than one solution.

The characterization of the SOMP and the identi…ed deviations between the
SOMP solution and the bionomic equilibrium suggests that the SOMP solution
should be used as a yardstick for regulation purposes. Given however the com-
plexity of the dynamic model describing the ecosystem, which turns out not to
satisfy the usual concavity requirements, it is of interest to examine under what
conditions the SOMP for the general model converges to a steady state.

4 Su¢cient Conditions for Convergence of the
SOMP

Consider the problem (29) with ½ = 0; written, using (2a) for resource dynamics
as:

max

Z 1

0

S(H)dt; s.t. _xi = Fi(x)¡Hi ; i = 1; 2; :::; n

where S(H) denotes net current bene…ts from harvesting H = (H1; :::; Hn): It
is de…ned as S(H) = S1(H)¡ TC(H); where TC(H) denotes the total cost of
capturing the harvest H; and maximize is in the overtaking sense (Carlson et
al.1991). The standard value loss arguments(cf. Carlson et al. 1991) may be
adapted to produce the new value loss argument for the following SOMP model.
Let H¤; x¤ solve the OSS SOMP problem

max S(H); s.t. H = F (x) (31)

Take the integral of (31) up to horizon T and write:12Z T

0

[S (H)¡ S (H¤)]dt =

Z T

0

[@HS(H¤)(H¡H¤)]dt¡D1 =Z T

0

p¤[F (x)¡ _x¡ F (x¤)]dt¡D1

Assumption A1 : S(H) is strictly concave and di¤erentiable in H.
Assumption A2 : x¤ = argmax p¤F (x):
Notice that the FONC for a maximizer of p¤F (x) are the same as for a

maximizer of the OSS objective, S(F (x)). Suppose A1 holds for our problem.
If so we may writeZ T

0

p¤[F (x)¡ _x¡F (x¤)]dt¡D1 = p¤(x0 ¡ x(T ))¡D1 ¡D2

where

D2 =

Z T

0

p¤[F (x)¡ F (x¤)]dt

12 @x denotes the …rst derivative operator on a vector valued function f (x) :

13



The key thing to note is that under A1, the term D1 is an integral of non-
negative terms, each of which is zero if and only if H = H¤. Under A2, each term
of -D2 is non-negative. Hence under modest regularity conditions the standard
value loss arguments reviewed in Carlson et al. (1991) may be adapted to prove:

Theorem 4 Assume A1, A2 and regularity conditions . Let x¤(t; x0); H¤(t; x0)
solve the SOMP with initial condition x(0) = x0. Then for any initial condition,
we have

x¤(t; x0) ! x¤; H¤(t; x0) ! H¤; t !1
There is a new element contained in this theorem. Standard value loss

arguments assume concavity of F and make one more support argument like
that used to obtain term D1 to obtain term D2. We use Assumption A2 here.
At this level of generality the theorem holds for any F (x). We must investigate
the plausibility of Assumption A2. The …rst-order conditions for a maximum
of p¤F (x) are linear in x, since F (x) is quadratic in x. Hence p¤@xF can be
written in the form.

p¤@xF = L¡ Jx

where L is an n£ 1 vector and J is an n£n matrix which will be non-singular,
generically. Hence x that solves

0 = L¡ Jx (32)

will be generically unique. Since x¤ solves (32), Assumption A2 is automatically
satis…ed for this case provided that x¤ is non-negative.

The main theorem above suggests that we should expect convergence of the
SOMP to OSS for small ½ by a continuity argument. This kind of argument is
formalized in discrete time by Scheinkman’s Visit Lemma argument (cf. Becker
and Boyd 1997). We expect a similar result to hold in continuous time. More
importantly, many generalizations of the above argument suggest themselves.
For example suppose systems of the form _x = F(x) are placed upon sites and
are coupled by di¤usion across such sites as in Clark (1990). For example let us
couple two such systems as follows

_x1 = F (x1)¡ c1 + z(x2 ¡ x1)

_x2 = F (x2)¡ c2 + z(x1 ¡ x2)

The coupling only adds linear terms, therefore the same argument can be
applied as above to prove that the SOMP converges to a unique OSS under zero
discounting of the future. Hence, no matter how complicated the coupling and
no matter how many sites, so long as the di¤usion terms only add linear terms,
the same argument applies to obtain convergence.

4.1 Convergence of SOMP for Clark/Schae¤er Models

The Value Loss arguments that extend methods reviewed in Carlson et al.
(1991) that we made above are not directly applicable to Clark/Schae¤er (cf.
Clark 1990) where harvest Hi = qiEixi. To do this, …rst replace the transition
equations of the section above using (2a) by

_xi = xi(Ki ¡
X

aijxj)¡ qiEixi = xifi(x)¡ qiEixi; i = 1; 2; :::; n (33)

14



Let S(H) be social bene…t, P (H) = @HS(H) and assume S(H) is concave
nondecreasing in the harvest vector H. Net bene…t is given by S(H)¡cE. The
OSS problem for the Clark/Schae¤er model can be written as:

max S(H)¡ cE s.t. 0 = F(x)¡H; F(x) = x­ f (x) (34)

Suppose we have aggregated species in the model to the extent that it is
sensible to assume that all x¤

i > 0. Let c=q denote the vector with ith ele-
ment ci=qi. Notice that the social optimum problem can then be written thus:
Maximize S(F(x))¡ (c=q)f(x) over x. Let

x¤ = arg max S(F(x))¡ (c=q)f(x) (35)

and assume x¤ is unique. Notice that for the case n = 1, problem (34) is a con-
cave problem because S(H) is concave and nondecreasing in H; F (x)is concave
in x and f(x) is linear in x. In the general model, however, because of species
interactions coe¢cients aij in (33), problem (34) will not be a concave program-
ming problem even though F (x) is quadratic and f(x) is linear. However for
aij = 0 for i not equal to j, it is a concave programming problem. Hence there
will be an open set of A matrices for which (34) is a concave problem. Look at
the ith equation of (34). We may solve it for Ei and write:

Ei = (1=qi)f i(x)¡ [
dxi=dt

xi
] = (1=qi)f i(x)¡ [

dln(xi)

dt
]:

Notice the appearance of the derivative of the natural logarithm of xi in this
equation. This will be important in what follows. Now consider the following

W (T )¡W ¤(T ) =

Z T

0

[S(H)¡ cE¡ S(H¤) + cE¤]dt =Z T

0

fp¤[F(x)¡ _x¡F(x¤)]¡ c(E¡E¤)gdt¡D1

The term
R T

0
¡c(E¡E¤)dt can be writtenZ T

0

¡c(E¡E¤)dt =

Z T

0

¡(c=q)[f ¡ f¤]dt +

Z T

0

(c=q)
dln(xi)

dt
dt

Putting it all together we …nally obtain

W (T )¡W ¤(T ) = p¤:[x0 ¡ x(T )] + (c=q)[ln(x(T ))¡ ln(x0)]¡D1 +Z T

0

[p¤[F(x)¡ (c=q)f(x)]¡ [p¤:F(x¤)¡ (c=q):f(x¤)]]dt (36)

Finally recall that F(x) is quadratic and f(x) is linear. Therefore the pro-
gramming problem

max[p¤F(x)¡ (c=q)f(x)] (37)

is a quadratic programming problem with FONC for optimal x which are linear
in x. Furthermore the FONC for optimal x = x¤ that solve (34) are given by

@xS@xF¡ (c=q)@xf = 0 (38)
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The FONC for (37) are given by

p¤@xF¡ (c=q)@xf = 0 (39)

Since p¤= S0(F¤) then x¤ solves (39) since it solves (38) with @S = p¤.
Since (39) is a linear set of equations, generically x¤ is the one and only

solution to (39). Consequently if the optimum to (37) is interior, which we shall
assume, therefore the optimum is x¤ by the argument above. Hence we have
the value loss statement

p¤F(x)¡ (c=q)f(x) · p¤F(x¤)¡ (c=q)f(x¤); 8x ¸ 0:

Thus we may write

¡D2 =

Z T

0

[p¤F(x)¡ (c=q)f(x)]¡ [p¤F(x¤)¡ (c=q)f(x¤)]dt

Now that this preliminary work is done an obvious adaptation of Value Loss
arguments reviewed in Carlson et al. (1991) gives us

Theorem 5 Let x¤(tjx0); E¤(tjx0) solve the generalized Clark/Schae¤er model

max

Z T

0

[S(H)¡ cE]dt subject to (33)

Then if the OSS x*,E* is unique, we have¡
x¤(tjx0); E¤(tjx0)

¢ ! (x¤; E¤); t !1

5 Regulatory Approaches

Having characterized the steady state and its stability properties at the SOMP
we turn now to an analysis of regulatory approaches that would direct a har-
vested spatially structured system towards the socially-optimal steady state.

5.1 The Single Species Case

We start again by considering the special case of a single species model because
of the insight that it provides for the more general models. Suppose that under
open access …shing, the industry expands e¤ort when pro…ts are positive and
shrinks when pro…ts are negative. That is, suppose the adjustment mechanism

_E = ' [(J1 (E)¡ c) E] ; ' > 0 (40)

J1(E) = P (aE(b¡E)) a(b¡E); a =
q2

r
; b =

s

q
(41)

where J
0
1 (E) = aP

"
¡1 + (b¡E)

Ã
P

0

P

!
a(b¡ 2E)

#
(42)

describes the industry dynamics.13 Since (J1 (E)¡ c) E is short term equilib-
rium pro…ts when the industry is putting out e¤ort E, one would expect positive

13 This is ad hoc to be sure. But we doubt that a rational expectations dynamic like that
of Brock (1972) will change the point we wish to make here. Any dynamic mechanism where
…shermen increase (decrease) e¤orts when net pro…ts per unit e¤ort are positive (negative)
will yield the results we exhibit here. Even under farsighted rational expectations, in an
adjustment cost type model, ”scramble” competition is still likely to give us similar results.
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pro…ts to attract more e¤ort into the industry and vice versa for negative pro…ts.
Thus

_E

8<: >
=
>

9=; 0 as J1 (E)

8<: >
=
>

9=; c (43)

It is natural to assume that demand price is higher than c for small Y = qEx:
Thus demand price is higher than c for small E and large E slightly below s=q.
Therefore the smallest steady state of (29) will be locally stable under (29). If
there are only two steady states, only the smallest will be stable. If there are
three steady states the middle one will be unstable.

To analyze regulatory approaches consider …rst a tax per unit e¤ort. Suppose
the …shermen themselves own catch quotas that are transferable so they want
to jointly maximize the value of the …shery and achieve the social optimum.
Suppose they impose upon themselves a tax on E of ¿ per unit E which is
to be redistributed lump sum back to themselves by an authority that they,
themselves, construct.

Let E¤denote the socially-optimal e¤ort, which is de…ned from (27) as the
solution J2(E) = c; J2(E) = P (aE(b¡E)) a(b¡ 2E): An optimal tax per unit
e¤ort ¿¤ should be such that the bionomic equilibrium e¤ort for the regulated
…shery is E¤:

Since however bionomic equilibrium is determined by the steady states of
(25), while the socially-optimal equilibrium is determined by E¤ : J2(E¤) = c ,
we characterize the optimal tax per unit e¤ort ¿¤ in terms of the structure of
bionomic and socially-optimal equilibria.

We examine …rst the curve
J1(E) = P (aE(b¡E)) a(b¡E); a = q2=r; b = s=q; E 2 (0; b) :
Two cases can be distinguished:

1. J1(E) is downward sloping on (0; b)

2. J1(E) initially decreases, then increases, then decreases on (0; b); so that
multiple bionomic equilibria exist

Proposition 1 For J1(E) to initially decrease, then increase, then decrease
again on (0; b); so that multiple bionomic equilibria exist, it is necessary that
j"P j < 1 somewhere in the domain of E; where "P is the price elasticity of
demand.

For proof see Appendix.
Thus we see that demand elasticity must be small enough relative to biologi-

cal and economic parameters for a solution of J
0
1(E) = 0 to exist in (0; b). When

such a solution exists J1 initially decreases, then increases, then decreases again
on (0; b): Furthermore, as can be seen from the de…nition of J

0
1 above, J

0
1 < 0

for E 2 [0; b=2] ; since P
0

P < 0: Thus the J1 curve has the shape presented in
…gures 2-4. In general we could have one or an odd number of equilibria for
(29). With the direction of the ‡ow as shown in the …gures, a locally unstable
equilibrium is between a low e¤ort locally stable equilibrium and a high e¤ort
locally stable equilibrium.

[Figures 1- 4]
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For example with a linear demand function P (Y ) = A ¡ BY; J1 is given
by J1 (E) = A(1¡ ¯a (b¡E) E)a(b¡E); ¯ = B=A; assuming that the market
is large enough so that 1=¯ > max fa (b¡E) Eg : In this case J1 (E) is a cu-
bic function, that in general provides three equilibria as solutions to the cubic
equation (1 ¡ Ba (b¡E) E)a(b ¡ E) ¡ c

0
= 0; :c

0
= c=A:14 For the three equi-

libria linear demand model, the curve J1 (E) is decreasing in [0; b=2] and has
a local minimum and a local maximum in (b=2; b) : The local extrema can be
determined as follows. The …rst and second derivatives of J1 (E) are

dJ1 (E)

dE
= 4¯a2Eb¡ 3¯a2E2 ¡ ¯a2b2 ¡ a

d2J1 (E)

dE2
= 4¯a2b¡ 6¯a2E

From dJ1(E)
dE = 0 we obtain for ¯ab2 ¡ 3 > 0 the two real roots Emax =

1
3

2¯ab+
p

¯
p

a
p

((¯ab2¡3))

¯a ; Emin = 1
3

2¯ab¡p
¯

p
a
p

(¯ab2¡3)

¯a : It can be easily seen

that d2J1(Emax)
dE2 < 0;

d2J1(Emin)
dE2 > 0: Thus Emax is the local maximum and Emin

is the local minimum. In the (a; b) space the graph of the function b =
p

3=¯a is
a bifurcation curve. When the biological parameters cross the curve in the sense
that they move to the subspace where b >

p
3=¯a; then one equilibrium (the

single root of J1(E) = c) becomes three equilibria (the three roots of J1(E) = c):
Furthermore the depth of the bump in J1(E) is

J1 (Emax)¡ J1

¡
Emin

¢
=

4

27
p

¯

p
a

¡
¯ab2 ¡ 3

¢ 3
2

Therefore multiple equilibria will occur if unit harvesting cost c and market
size A are such that J1

¡
Emin

¢
< c=A < J1 (Emax) : The widthEmax ¡ Emin is

determined as 2
3

p
¯

p
a

p
(¯ab2 ¡ 3):

On the other hand since the J2 curve is downward sloping on (0; b=2) as
shown below, a unique socially-optimal e¤ort level exists.

Proposition 2 When demand price is higher than c for small E a unique
socially-optimal e¤ort level exists on (0; b=2) :

For proof see Appendix.
Thus while under inelastic demand the open access bionomic equilibrium

could produce three equilibria, the social optimum results in a unique sta-
ble equilibrium. Given these discrepancies we examine speci…c regulatory ap-
proaches.

14 The roots of this equation are given by

E1 = 1
6

K2
1 +4¯a(¯ab2¡3+bK1)

¯aK1

E2 = ¡ 1
12

K2
1 +4¯a(¯ab2¡3+2bK1)+i

p
3(¡K2

1 +4¯2a2b2¡12¯a)
¯aK1

E3 = ¡ 1
12

K2
1 +4¯a(¯ab2¡3+2bK1)¡i

p
3(¡K2

1 +4¯2a2b2¡12¯a)
¯aK1

where

K1 = 3

s
¡4

µ
2b3¯a2 ¡ 9ab + 27c0 ¡ 3

p
3

r³ ¡¯a2b2+4a+4b3¯2a2c0¡18¯abc0+27¯(c0)2

¯

´¶
¯2a
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5.1.1 Taxation on unit e¤ort

To determine the tax per unit e¤ort that can attain the socially-optimal e¤ort
E¤ we consider the following two cases:

CASE I : Both J1 and J2 are downward sloping on (0; b); (0; b=2) respectively.
In this case if E¤ is the unique solution of J2(E) = c, we can …nd ¿¤ such

that J1(E) = c + ¿¤ implies E = E¤: This case is depicted in …gure 1.
CASE II: Function J1 initially decreases, then increases, then decreases on

(0; b); J2 decreases on (0; b=2).
Let J1

¡
Emin

¢
denote the local minimum and J1 (Emax) denote the local max-

imum of J1 on (0; b). The following cases can be considered

1. J2 (E¤) 2 ¡
J1

¡
Emin

¢
; J1 (Emax)

¢
as shown in …gure 2. There are three

bionomic equilibria, two locally stable (E1
1 and E1

3 ); and one (E1
2 ) which

is locally unstable. Bionomic equilibrium depends on initial conditions.

(a) Bionomic equilibrium is at E1
1 : Then a tax ¿¤ can be de…ned as in

CASE I above to attain the socially-optimal e¤ort E¤:

(b) Bionomic equilibrium is at E1
3 : Application of the same tax will not

bring down e¤ort to E¤ since the locally stable equilibria are located
on the right side on the graph of J1(E) against E: As ¿ continues to
increase there will be a hard loss of stability at c + ¿ equal to the
local maximum of J1 on (0; b), which moves the system to the left
side of the graph at E0 < E¤. This may be viewed as too harsh so
the tax should be lowered in an attempt to implement E¤.15

2. J2 (E¤) > J1 (Emax) as shown in Figure 3. This case is equivalent to CASE
I where both J1 and J2 are downward sloping and E¤ can be implemented
by a tax per unit e¤ort.

3. J2 (E¤) < J1

¡
Emin

¢
; c < J1

¡
Emin

¢
as shown in …gure 4. There is a

unique bionomic equilibrium which is globally stable at the high e¤ort
level E1

3 : Increasing the tax at the local maximum of J1 will move the
system to the left side of the graph at E0 < E¤: But then the …shery
would stay undeveloped relative to the desired target E¤. The tax would
be lowered in an attempt to implement E¤ as in case 1b, but there would
be another hard loss of stability at c + ¿ equal to the local minimum of
J1 on (0; b), which moves the system to the right side of the graph at
E

0
0 > E¤: Then the …shery would be overexploited. This is a hysteresis

trap where the classic instrument of a tax on unit e¤ort cannot produce
the socially-optimal outcome.

The above results indicate that if demand is elastic enough
³

J
0
1 < 0 on (0; b)

´
then we may control a bionomic open access equilibrium with taxation of ef-
fort.16 On the other hand if demand is inelastic so that multiple open access

15 This is a hysteresis e¤ect. It is related to work on lake management problems by Carpenter
et al. (1999), Brock and Starrett (1999), Dechert and Brock (1999), Maler, de Zeeuw and
Xepapadeas (2000).

16 Of course this conclusion ignores other problems with taxation of e¤ort such as monitoring,
measurement, and policing of other mechanisms of evasion.
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bionomic equilibria emerge, then there are cases where the social optimum can-
not be implemented by a linear tax per unit e¤ort, and the regulated bionomic
equilibrium could be trapped either in a high e¤ort region of overexploitation, or
in a low e¤ort region of underexpoitation. Another possibility, depending on the
parameters of the problem, is that the implementation of the socially-optimal
e¤ort requires …rst increasing and then decreasing the tax on e¤ort, in order to
counterbalance the e¤ects of hysteresis.

5.1.2 Transferable E¤ort Quotas

When transferable e¤ort quotas are considered as a regulatory instrument, the
representative boat considers p and x as parameters and solves the constraint
optimization problem

max
E

fpqEx¡ cEg s.t. E · eE
where eE is the e¤ort quota. The boat can buy or sell quota units. Assume that
a competitive quota market exists and that quota can be bought or sold at price
v: The the net bene…t from an additional quota unit is given by

pqx¡ c = J1 (E)¡ c

Quotas will be demanded or supplied according to whether J1 (E) ¡ c ? v
respectively. Thus in equilibrium

J1 (E)¡ c = v (44)

Suppose that J1 (E) is downward sloping on (0; b) ; then (44) determines
the representative boat demand for quotas. The total demand for quotas is
determined as the sum of individual demand as G (v; a; b; c) : If the total quota
is E =

P
E then the equilibrium quota price is determined by

E = G (v; a; b; c)

It is clear that if the total quota is chosen to be equal to the socially-optimal
e¤ort level or E =

P
E¤; then quotas are equivalent to taxation, since (44)

implies that for E = E¤; v = ¿¤:
If however J1 (E) initially decreases, then increases, then decreases on (0; b);

then (44) implies that a downward sloping demand function for quotas for the
representative boat can not be de…ned. That is, for a given quota price there
will be three equilibrium quota quantities, two stable and one unstable. The
analysis is similar to the case of taxation and indicates that under inelastic de-
mand regulation of the bionomic equilibrium of the open access …shery through
transferrable quotas faces the same di¢culties as regulation through taxation
of unit e¤ort.

5.1.3 Limits on e¤ort

When non transferable limits (or quotas) on e¤ort are set, the representative
boat considers again p and x as parameters and solves the constrained optimiza-
tion problem

max
E

fpqEx¡ cEg s.t. E · Em

20



where Em is the maximum allowed e¤ort. The Lagrangian for this problem is
given by

L = [pa (b¡E)¡ c] E + ¸ (Em ¡E)

The Kuhn-Tucker conditions for an interior solution E0 imply

pa
¡
b¡E0

¢¡ c = ¸

¸
¡
Em ¡E0

¢
= 0 ; ¸ ¸ 0 (45)

where pa
¡
b¡E0

¢
= J1

¡
E0

¢
: If we set Em = E¤; then since E¤ < E1 and

J1 (E1) = c in open access bionomic equilibrium, then for any locally stable
bionomic equilibrium we have J1

¡
E0

¢¡ c = ¸ > 0: But then (45) implies that
Em = E0 = E¤: So regulation through limits on e¤ort attains the socially-
optimal e¤ort level. In …gure 4 for example this type of regulation implies
that the representative boat restricts its e¤ort to E¤: At this level however the
representative boat earns positive pro…ts since J1 (E¤) ¡ c > 0, which implies
that there are incentives for new entries into the open access …shery which would
expand total e¤ort beyond the socially-optimal level. Thus we need an entry
fee to deter new entrants. This fee should be set such that

pa (b¡E¤) E¤ ¡ cE¤ ¡ F = 0 ; p = P (a (b¡E¤))

5.1.4 Non linear taxation on e¤ort

The socially-optimal e¤ort level can also be implemented by a nonlinear costing
of e¤ort at the margin rather than the constant costing of e¤ort at the margin
by the tax ¿ . That is, we must …nd a schedule ¿(E), and an entry fee F such
that

1. The representative boat maximizes pro…ts facing p; x as parametric, and
paying a tax ¿(E) per unit e¤ort or

max
E

f( pqx¡ c) E ¡ ¿(E)Eg (46)

which implies that e¤ort should be chosen so that

pqx¡ c¡ ¿(E)¡ ¿
0
(E)E = 0

2. At the pro…t-maximizing e¤ort E0 excess entry or exit is prevented by a
fee F (? 0) given by

pqE0x¡ cE0 ¡ ¿(E0)E0 ¡ F = 0

p = P (qE0x) ; rx = s¡ qE0

The problem then is to …nd T (E) = E¿(E) in (44) to mimic the FONC of
the socially-optimal problem. To determine T (E) we consider that the repre-
sentative boat treats p and x as parameters and solves

max
E

f( pqx¡ c) E ¡ T (E)g
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with FONC

pqx¡ c = T
0
(E) or pa (b¡E)¡ c = T

0
(E) ; where

x =
s¡ qE

r
; a =

q2

r
; b =

s

q

Since the FONC for the SOMP are given by

pa(b¡ 2E)¡ c = 0

by equating coe¢cients we obtain T
0
(E) = paE: Then

T (E) =
paE2

2
or ¿ (E) =

paE

2

5.2 The Multiple Species Case i = 1; :::; N

For clarity purposes we focus on two species, that is N = 2: In this case biomass
dynamics are determined by:

_x1 = x1 (s1 ¡ r1x1)¡ q1E1x1 = F1 (x1)¡ q1E1x1

_x2 = x2 (s2 ¡ (r1 + r2) x2 ¡ r2x2)¡ q2E2x2 = F1 (x1; x2)¡ q2E2x2

si = ri (1¡D)¡mi ; i = 1; 2

5.2.1 Full property rights for each species

We assume that there are two groups of price taker …shers and each group has
full property rights on each species. Each group takes as …xed the biomass of
the other species and solves

max

Z 1

0

[piqiEixi ¡ ciEi] dt

s.t. _xi = Fi (xi)¡ qiEixi , i = 1; 2

The current value Hamiltonian is de…ned as

H = piqiEixi ¡ ciEi +
2X

i=1

¹i [Fi (xi)¡ qiEixi]

and the FONC imply that

¹i = pi ¡ ci

qixi
singular solution

_¹i =

µ
½¡ @Fi

@xi
¡ qiEi

¶
¹i ¡ piqiEi

On the other hand the FONC for the SOMP are given by

¹i = pi ¡ ci

qixi
singular solution

_¹1 =

µ
½¡ @F1

@x1
¡ @F2

@x1
¡ q1E1

¶
¹1 ¡ p1q1E1

_¹2 =

µ
½¡ @F2

@x2
¡ q2E2

¶
¹2 ¡ p2q2E2
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Comparing SOMP with the full property rights equilibrium it is clear that the
full property rights equilibrium ignores the e¤ects of species 1 on the biomass
of species 2. Thus …shery 1 fails to internalize an external e¤ect on …shery 2
re‡ected in the term @F2

@x1
. That is, …shery 2 bene…ts when …shery 1 aggressively

harvests o¤ x1. An appropriate dynamic subsidy per unit e¤ort from two to
one can be designed to align the incentives so that the necessary conditions for
optimization are the same as the necessary conditions for the SOMP. Since it
is straightforward to do this, we concentrate on the question of whether it is
possible to design taxes on e¤ort to steer the open access bionomic equilibria to
the social optimum.

5.2.2 Open access harvesting

We de…ne again gross surplus as S (Y1; Y2) ; Yi = qiEixi ; i = 1; 2; with @S
@Yi

= pi.
For ½ = 0 the OSS conditions are obtained by solving the problem

max S (q1E1x1; q2E2x2)¡ c1E1 ¡ c2E2

s.t. 0 = x1 (s1 ¡ r1x1)¡ q1E1x1

0 = x2 (s2 ¡ (r1 + r2) x1 ¡ r2x2)¡ q2E2x2

si = ri (1¡D)¡mi ; i = 1; 2

For xi > 0 we obtain from the biomass equations

x1 =
s1 ¡ q1E1

r1
(47)

x2 =
s2 ¡ q2E2

r2
¡ (r1 + r2) (s1 ¡ q1E1)

r1r2
(48)

Then we de…ne

Y1 = q1E1x1 = E1a1 (b1 ¡E1)

Y2 = q2E2x2 = E2 [a2 (b2 ¡E1)¡ ° (b1 ¡E1)]

° =
q1q2 (r1 + r2)

r1r2

Thus the SOMP can be written as

max
E1;E2

S (E1a1 (b1 ¡E1) ; E2 [a2 (b2 ¡E1)¡ ° (b1 ¡E1)])¡ c1E1 ¡ c2E2

or max
E1;E2

J (E1; E2)¡ c1E1 ¡ c2E2

Assuming that J (E1; E2) has a negative de…nite Hessian the socially-optimal
e¤ort levels (E¤

1 ; E¤
2) are determined by the solution of the FONC for the social

optimum:

p1a1 (b1 ¡ 2E1) + p2° ¡ c1 = 0 or J1
2 (E1; E2)¡ c1 = 0

p2a2 (b2 ¡ 2E2)¡ c2 = 0 or J2
2 (E1; E2)¡ c2 = 0

The open access bionomic equilibria are de…ned on the other hand by

p1a1 (b1 ¡E1)¡ c1 = 0 or J1
1 (E1)¡ c1 = 0

p2 [a2 (b2 ¡E2)¡ ° (b1 ¡E1)]¡ c2 = 0 or J2
1 (E1; E2)¡ c2 = 0
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For the open access bionomic equilibria the e¤ort for species 1 E1
1 is de-

termined by the solution of J1
1 (E1) ¡ c1 = 0; while the e¤ort for species 2 is

determined by the solution of J2
1 (E1

1 ; E2)¡ c2 = 0:
Suppose that as in the case of one species, industry dynamics are character-

ized by the adjustment mechanism

_E1 = '1

£¡
J1

1 (E1)¡ c1

¢
E1

¤
; '1 > 0

_E2 = '2

£¡
J2

1 (E1; E2)¡ c2

¢
E2

¤
; '2 > 0

Equilibria are determined by a recursive solution. Thus for E1 we could have
three equilibria as in the case of one species, under the appropriate restrictions
on the elasticity of demand for this species. For each equilibrium for species 1
the adjustment mechanism for species 2 determines a new set of equilibria. So
we could have a maximum of nine equilibria for species 2, three locally unstable
and six locally stable. Thus a hard loss of stability due to hysteresis in species
1, which creates a jump to another isolated locally stable equilibrium, could
produce a consequent hard loss of stability in species 2.

To compare SOMP with open access bionomic equilibrium we start by com-
paring species 1, using

J1
2 (E1; E2) = p1a1 (b1 ¡ 2E1) + p2°

J1
1 (E1) = p1a1 (b1 ¡E1)

With p2° > 0 for 0 · E2 · E2 the J1
2 (E1; E2) curve shifts to the right of the

corresponding curve for a single species. On the other hand J1
1 (E1) remains

the same as in the case of a single species. This comparison indicates that the
…shery for species 1 could be underexploited in bionomic equilibrium relative
to the social optimum, because bionomic equilibrium does not internalize the
impact of species 1 on species2 (Figure 5).

[Figure 5]

A regulatory approach with taxes per unit e¤ort can be used to determine
taxes (or subsidies) per unit e¤ort ¿¤

1; ¿¤
2 such that

J1
1 (E1) = c1 + ¿¤

1 =) E1 = E¤
1

J1
1 (E¤

1 ; E2) = c2 + ¿¤
2 =) E2 = E¤

2

Taxes per unit e¤ort will, however, face the same di¢culties regarding the at-
tainment of the social optimum as in the case of a single species because of
hysteresis. The problem could be even worse given the increase in the number
of possible equilibria for species 2.

On the other hand, non transferable limits on total e¤ort along with entrance
fees to restrict entry, as in the case of a single species, could be a more feasible
regulation method.

A non linear tax as in the case of a single species could also be used. The
FONC for the private optimum under tax schedules Ti (Ei) = ¿ i (Ei) Ei ; i = 1; 2
are

piqixi ¡ ci = T
0
i (Ei)
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Combining with the FONC for the social optimum and equating coe¢cients we
obtain

¿1 (E1) =

µ
p1a1E1

2
¡ p2°

¶
¿2 (E2) =

p2a2E2

2

Entrance fees to restrict entry are also required as in the case of a single species.
For the general multi-species case, we seek solutions that are locally stable

under the industry dynamics

_E = Á fp (q­E­S[q­E¡ s])­q­[S[q­E¡ s]]¡ cg
The regulatory framework will be of the same structure as the one analyzed

for the cases of n = 1 and n = 2: The potential emergence of multiple equilibria
and traps of hysteresis creates the di¢culties in the use of linear e¤ort taxes
discussed for the cases of n = 1 and n = 2.

5.3 A Role of Fast and Slow Time Scales in Decentraliza-
tion Possibilities

We pointed out in the sections above a di¢culty in using e¤ort taxes to steer
an open access …shery to the social optimum. However, we assumed that the
biomass relaxes fast to the steady state relative to the economic variables in that
treatment. Let us bring issues into bold relief by treating the polar opposite
case here. Let \¤" denote the socially-optimal solution, i.e. of problem (12).

At date t, let pro…ts to an individual representative …shery with output Yt

taxed at ¹¤
t per unit be given by

ptYt ¡ cEt ¡ ¹¤
t Yt

where ¹¤
t is the socially-optimal solution for the costate variable associated with

the Hamiltonian function of problem (12). Recall that Y = qEx, so assume that
e¤ort expands so rapidly relative to the speed of change of x that temporary
economic equilibrium given xt is given at date t (dropping t subscripts to ease
notation) by:

pqx¡ c¡ ¹¤(qx) = 0 (49)

_x = x(s¡ rx)¡ qEx ; x(0) = x0 given; (50)

p = P (Y ) ; Y = qEx (51)

If it is assumed that economic equilibration is fast relative to the rate of
change of biomass _x, then (49)-(51) is a reasonable abstraction.

Here is the key question for decentralized regulation: Will the function ¹¤(¢)
cause the system (49)-(51) to produce the socially-optimal path fx¤(¢); E¤(¢); p¤(¢)g;
where p¤ = P (Y ¤) ; Y ¤ = qE¤x¤ ?

Clearly the starred solution is a solution of (49)-(51) as can be seen by
inspection of the FONC (15)-(17) for the socially-optimal problem. Assume the
demand function D(¢) maps the positive real line onto itself. Then, equations
(49) and (51) can be solved to give the solution

Yt = qEtxt = E[xt; ¹¤
t ] = P ¡1[

c

qxt
+ ¹¤

t ] (52)
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at each date t. Hence we may rewrite (50) as a time dependent di¤erential
equation as follows:

_x = x(s¡ rx)¡ P ¡1[
c

qxt
+ ¹¤

t ] = g (x; t) ; x(0) = x0 given (53)

The key observation is this. The function x¤(t) solves the same di¤erential
equation. Hence, since x¤(0) = x(0) = x0, the basic uniqueness theorem of
solutions of ordinary di¤erential equations delivers (under modest regularity
conditions) the result that x¤(t) = x(t) for all non-negative t. This argument is
generalized to the case of N species below.

At date t, let ¹¤
it be the tax per unit output of species i; where ¹¤

it is the
socially-optimal solution for the costate variables associated with the Hamil-
tonian function of problem (29). The equilibrium conditions are given, after
dropping t; by:

piqixi ¡ ci ¡ ¹¤
i (qixi) = 0 (54)

_x= x­ (s¡Tx)¡ q­E­ x ; x(0) = x0 given (55)

pi = Pi (Y1; :::; Yn) = Pi (Y) ; Yi = qiEixi (56)

As before the socially-optimal solution is a solution of (54)-(56) as can be seen by
inspection of the FONC for the socially-optimal problem.(29). Assume that the
system of demand functions (56) is de…ned in an open set U ½ Rn

+ and that all
demand functions are smooth. Let @YP (Y ) be the Jacobian matrix associated
with system (56) and assume that this Jacobian matrix is non singular. Then
there is an open set V ½ Rn

+, Pi (Y) 2 V and a function P ¡1
i :V ! Rn

+: Thus
if the Jacobian of the demand system is non singular17 the demand system is
invertible in some open set. Then, using (54)

qiEitxit = E[xt; ¹¤
t ] = P ¡1

i

µµ
c

qxt

¶
+ ¹¤

t

¶
; i = 1; :::n

and (55) can be written as

_x= x­ (s¡Tx)¡P¡1

µµ
c

qxt

¶
+ ¹¤

t

¶
(57)

The socially-optimal function x¤(t) solves the same di¤erential equation. Hence,
since x¤(0) = x(0) = x0, the basic uniqueness theorem of solutions of ordinary
di¤erential equations delivers the result that x¤(t) = x(t)

This is a powerful result. It says that all we must do is impose an output tax
equal to the social shadow price of a unit of biomass, ¹¤(t), at each date t and
let free entry of e¤ort and market equilibration deliver the social optimum. Of
course this particular lunch is not free. It relies on the assumption that biomass
dynamics move slowly relative to economic dynamics. Our previous result on
the potential impossibility of decentralized implementation of social optimum by
output taxation assumed the polar opposite assumption on relative dynamical
adjustment speeds. That is, that result assumed biomass dynamics were fast
relative to economic dynamics. Surely the real world is somewhere in between.
In any event, our brief treatment of the role of fast/slow dynamical speeds

17 For n = 2; this implies @P1
@Y1

@P2
@Y2

6= @P1
@Y2

@P2
@Y1

:
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of adjustment of economic dynamics and biological dynamics has exposed an
important consideration in the practical design of decentralized implementation
of social objectives. That is to say, in systems where there may be multiple
stable states in the biological dynamics, it may not be possible to steer the joint
dynamics into desirable parts of the state space using decentralized regulatory
instruments such as catch taxes.

5.3.1 Regulation of capital accumulation

Let us now turn to a brief discussion of decentralized regulation of capital ac-
cumulation into a …shery. The socially-optimal problem is given by

max

Z 1

0

e¡½t[S(NqEx)¡NcE ¡A(I)¡QI]dt

s.t. _x = x(s¡ rx)¡NqEx ; x(0) = x0 ; given
_N = I ¡ nN ; N(0) = N0 ; given

Here the extra terms are the number of boat units, N , a convex cost of
adjustment function, A(I) for investment I; Q is the price of a unit of investment,
and n is the rate of depreciation. Let ¹¤,¸¤ be the socially-optimal current value
costates (i.e. shadow prices) of biomass x and capital stock N . An analog of the
argument above shows that the social optimum can be implemented by imposing
catch taxes on Y at rate ¹¤ under rational point expectations equilibrium as
follows.

Let the privately-optimal problem be given by having the representative
stand-in …shery take price function fp(t)g and biomass function fx(t)g as given
and choose fE; Ng to maximize

max

Z 1

0

e¡½t[pNqEx¡NcE ¡A(I)¡QI ¡ ¹¤NqEx]d

s.t. _N = I ¡ nN ; N(0) = N0 ; given

Let fN 0; E0; I 0g be the optimal solutions. Let fx0g solve

_x = x(s¡ rx)¡N 0qE0x ; x(0) = x0 ; given

Let p0 be given by

p0 = D[N 0qE0x0]

REE is de…ned by the requirement

p = p0

x = x0

for all dates t. That is, this is the concept of rational point expectations (That
is„ self consistent perfect foresight).18 This proposition is proved by showing
that quantities in the FONC match. It is a special case of ideas contained in
the general equivalence theorem(cf. Becker and Boyd 1997).

18 It can easily be generalized to stochastic settings (cf. Stokey and Lucas 1989, Sargent
1987).
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6 Rational Routes to Robust Regulation

Most economists and ecologists argue that in view of the di¢culty of actually
estimating the parameters of coupled ecological/economic systems, regulatory
design should re‡ect our ignorance especially in the presence of irreversible
acts. This concern underlies arguments for Precautionary Principles and related
ideas. We attempt here to sketch an approach based on recent work on Robust
Control(Hansen and Sargent (2001) and Knightian Uncertainty(Epstein and
Wang 1994, Brock and Durlauf 2001). In particular Hansen and Sargent (2001)
review approaches to macroeconomic management in the face of ignorance and
uncertainty that are similar in spirit to what we do here. To be speci…c, return
to the problem of designing taxes on e¤ort to regulate an open access …shery
in bionomic equilibrium. This problem has the following structure. There is a
welfare function, W (E(t; µ); t; µ); where t is the policy maker’s instrument, and
E(t; µ) is the system’s equilibrium response for each value of the instrument t.
A Bayesian would face this problem by forming a prior on µ; p(µ), collecting a
dataset (DS), forming the posterior p(µjDS) and choosing t to maximize the
posterior mean of W . As treated by Epstein and Wang (1994) a Knightian
might proceed as follows. She has a baseline prior p¤(µ) and a family FP of
perturbed priors around p¤(:). She might form a posterior using her dataset DS
for each of these to get a family (abuse notation and call it FP) of posteriors
with baseline p¤(µjDS). She might then choose t to maximize

(1¡ e)E¤W (E(t; x); t; x) + eInfEpW (E(t; x); t; x) (58)

where E¤ is expectation w.r.t. the baseline posterior p¤(µjDS), Ep is expectation
w.r.t. posterior p, where the Inf (“Inf” stands for “In…mum”) is taken over the
family of posteriors FP. We will make this expression precise below. One can
think of this procedure as follows. There is a probability e that Nature is mean
to the policy maker. If e = 0, the policy maker is a conventional Bayesian deci-
sion maker. But the policy maker believes that Nature is mean with probability
e. Furthermore she has beliefs about the set FP of alternative posteriors that
Nature could play against her to minimize her welfare. To hedge against such
a Nature, the Knightian policy maker chooses t to solve problem (67) above.
This kind of behavior of a policy maker could be justi…ed by ambiguity aver-
sion. For example the experimental literature has shown that subjects will pay
more to avoid an ambiguous urn than a Bayesian would. Another justi…cation
is that forms of extreme bounds approaches to robust econometrics can be jus-
ti…ed as solving decision problems of the form (67). See Hansen and Sargent
(2001) and Epstein and Wang (1994) for a discussion of rationales for study-
ing such behavior. However, Sims (2001) raises several questions about this
approach including: (i) the possibility of Dutch Books arising from irrational
behavior, (ii) appropriateness of assuming minimax behavior of social planners
and regulators in contrast to the individual agents, and (iii) the tendency to
focus on deviations about a central model. Sims argues that compromises made
in order to achieve analytical tractability may end up causing the researcher to
focus “on relatively unimportant sources of model uncertainty. In particular he
argues that by focusing the minimaxing on “a narrow, technically convenient,
uncontroversial range of deviations from a central model.....the danger is that
we will be misled by the rhetoric of robustness into devoting less attention than
we should to technically inconvenient, controversial deviations from the central
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model.” In the …rst part of this section we investigate an “e-contaminated”
version of Knightian Uncertainty studied by Epstein and Wang (1994). Later
on we investigate a caricature of a controversial deviation from a central model
with no hysteresis possibilities in the form of another model equally consistent
with the data (and possibly the theory too) that displays hysteresis possibili-
ties. For example, Hansen and Sargent (2001) argue that the class of possible
misspeci…cations one wishes to robustify against should be disciplined by the
data in the sense that the class should only contain members consistent with
available data. Of course, we oversimplify their argument here.19 In order to
have a precise context return to the de…nitions of J1 (E) ; J2 (E) which we copy
here for convenience.

J1(E) = P [aE(b¡E)]a(b¡E); J2(E) = P [aE(b¡E)]a(b¡ 2E) (59)

Recall that we wish to implement E¤ such that J2(E¤) = c by attempting to
…nd a t¤ such that

J1(E) = P [aE(b¡E)]a(b¡E) = c + t¤ implies E = E¤ (60)

We showed in the case where J `
1 has two zeroes E1 < E2 and E¤ 2 (E1; E2)

that there were problems in implementation of E¤. Here the parameter vector
µ = (a; b; c; °); W (E; µ) = S(Ea(b¡E))¡ cE; and S0(Y ) = P (Y ) = p. Here °
denotes parameters of demand. We assume the policy maker is trying to choose
t to implement E via (60) to maximize W , but, like a policy maker in real world,
she does not know µ. In order to be speci…c suppose the uncertainty resides in
her knowledge of b. Let W (E; b) = S(aE(b¡ E))¡ cE and suppose the policy
maker’s ignorance is of the e¡contaminated form

P (e) = (1¡ e)b + em; m 2 M(B)

where brepresents a point mass of unity at b and M represents the entire set of
probability measures with support [b¡B; b + B]. Following Epstein and Wang
(1994, p. 288, equations (2.3.1) and (2.3.2)) we shall assume the policy maker
wishes to choose action E to maximizeZ

WdP (e) = (1¡ e)W(E; b) + e[Inf

Z
W (E; w)dm(w)] (61)

Since W(E; b) is increasing in b, and M contains all probability measures over
b values with support [b¡B; b + B], (61) boils down toZ

WdP (e) = (1¡ e)W(E; b) + eW (E; b¡B) (62)

Let E¤(b) =argmaxEW (E; b). If we did a mean preserving spread of b by
taking EW (E; b + ez) where z is a random variable with zero mean and …nite
variance, we would …nd that dE¤=de = 0 when evaluated at e = 0. This is the
classic second order e¤ect of risk analysis.

Let us compute the analog for Knightian Uncertainty of the e-contaminated
form. The …rst-order necessary condition for

E¤(b; B) = argmaxE(1¡ e)W (E; b) + eW (E; b¡B) (63)
19 See Hansen and Sargent (2001) for the full details.
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is given by

(1¡ e)WE(E¤; b) + eWE(E¤; b¡B) = 0 (64)

Di¤erentiate (64) w.r.t. e and evaluate at e = 0 to obtain

WEE(E¤; b)
dE¤

de
= WE(E¤; b)¡WE(E¤; b¡B) > 0 (65)

Since WEE < 0 by concavity of W in E, we have dE¤=de < 0 by (65). Compare
this result with an increase in e for EW (E; b + ez). The …rst-order necessary
condition for E¤ is given by

EWE(E¤; b + ez) = 0 (66)

Di¤erentiate (66) w.r.t. e to obtain

E
½

WEE(E¤; b + ez)
dE¤

de
+ WEb(E¤; b + ez)z

¾
= 0 (67)

Evaluate (67) at e = 0 to obtain

WEE(E¤; b)
dE¤

de
= 0 (68)

Hence dE¤=de = 0, in contrast to the Knightian Uncertainty case. Even though
this is simple it serves as one way to formalize the notion of a Precautionary
Principle for ecological management in the face of ambiguity and ignorance of
the true parameters of the system. For example the parameter b could serve as a
measure of the width of the uncertainty and the parameter ecould measure the
degree of ignorance. The case e = 1 represents the case of complete ignorance.
However Sims’s (2001) critique prompts several questions about the objectives
(58) and (62) as well as interpretation of the results. For example the welfare
function W(E) = S(Y )¡cE can be written as a sum of consumers’ surplus and
producers’ surplus as follows,

W (E) = S(Y )¡ cE = S(Y )¡D(Y )Y + D(Y )Y ¡ cE

where the …rst term is consumers’ surplus and the second term is producers’ sur-
plus. It can be seen that both are positive at the social optimum E¤ depicted in
Figure 1. Of course under open access equilibrium producers’ surplus is driven
down to zero at E1 depicted in Figure 1. It is well known that quasi-linear util-
ity functions rationalize consumers’ surplus expressions like the above. Hence
in order for the regulator’s preferences to represent a faithful aggregation of
the preferences of the consumers and producers in the economy, the consumers
must be quasi-linear Knightians and the producers must be linear utility of dol-
lars Knightians. Notice that standard arguments for Bayesian posterior utility
maximization and expected utility theory may produce Dutch Books against
consumers and producers in this economy. When such potential inconsistencies
in their choice rules are pointed out to them, they may drop their Knightian
behavior. However, assuming that both consumers and producers are appropri-
ately sheltered from Dutch Book arbitrageurs and the data is vague enough so
that producers and consumers are not able to di¤erentiate across the class of
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potential misspeci…cations, the same arguments used by Gilboa and Scheidler
(as discussed by Hansen and Sargent (2001)) as well as by Hansen and Sargent
(2001) could be used by these agents to act Knightian as formulated here. Al-
ternatively, the regulator herself could be Knightian when she aggregates the
preferences of the inhabitants of the economy that she represents. It does not
seem di¢cult to generate plausible arguments for a regulator’s behavior that
does some insuring against worst case scenarios, especially when one looks at
the incentives that regulators themselves face. For example they tend to be paid
on government salaries that reward them much less when things turn out right
than the punishment they receive when things go wrong, especially if things
go badly wrong. In any event, the reader is warned that we are working in a
controversial area here. Nevertheless it seems appropriate, in the face of the
huge uncertainties faced by both regulators and the regulated when it comes
to ecosystem management, to start exploiting recent work on robustness. We
did so above for a simple steady state non-dynamic example that centered at
a baseline model and entertained misspeci…cations in the form of perturbations
around that particular model. Turn now to cases where there is more than one
baseline model. Let us …rst study a Bayesian regulator facing the problem of
opening a new …shery (e.g. this …shery may have been closed for some time to
achieve restoration). Assume the regulator only has the e¤ort tax instrument
available. Suppose a Bayesian analysis has placed posterior probabilities p1

and 1¡ p1 on µ1and µ2 respectively. This Bayesian expected utility maximizer
chooses the tax t to solve

W (E(t; µ1); t; µ1)p1 + (1¡ p1)W (E(t; µ2); t; µ2) (69)

Expression (69) contains an ambiguity. We need to specify how E(t; µ2) is
chosen when there are two possibilities. See Figure 2 for the zone of values of
c; c + t where there are two possible locally stable rest point solutions E to the
di¤erential equation (40). It seems natural that in the case where the …shery
is being opened after having been closed, that e¤ort would expand from a low
level so the left most solution in Figure 2 would be chosen.

Suppose the initial E0 is small so the purpose of regulation is to restore a
recovered …shery or to open up a relatively pristine area or …shery. We look for
a rare but large shock (a Holling surprise) that could frustrate our attempts to
use the instrument t to keep the system near the desired target E¤.

We construct Figure 4a where b/2 and b are quite large relative to P (0)ab
and this makes it easier to …nd a c-line such that an uncertainty band of width
d around this c-line puts µ-instrument regulator in a more precarious” position
if there is a rare but large enough tailed shock to E¤ that could push it out of
the attraction basin of E¤, past the root E1 of J 0

1 = 0 that separates the two
basins of attraction:

[Figure 4a]

In equation (69) let µ be replaced by c and in Figure 4a consider a c¡band of
widthd. Also let us represent mathematically the possibility of a large but rare
shock to E chosen by Nature (it could be a technical surprise or an oversight by
the regulator of current technical possibilities that enables e¤ort to be increased
by …shers more than the regulator expected) by f = probability there is such a
large enough shock to E0 that puts the system into a bad E-basin (if parameters
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are such that a bad basin exists). Assume that given t and shock (if there is
one), the system “slaves” onto the stable branch of Figure 4a corresponding to
the basin that the system is shocked (if there is a shock) into. Hence if the
band [c + t¤ ¡ d; c + t¤ + d] is wide enough to include parts of the rightmost
stable branch of J1 on Figure 4a, where t¤ is chosen to implement E¤ when
d = 0; f = 0, the Bayes/Blinder (Blinder 1998, Onatski 2000) regulator would
choose t to maximize

(B=B) (1¡ f)EW (E(t; z; E0); c + z) + fEW(E(t; z; E0 + S); c + z):

We need to de…ne the objects in equation (B/B). To keep things simple
suppose the distribution of the shock S is a point mass at a number S large
enough that for all z 2 [c ¡ d; c + d] the system is pushed into the Bad Basin
area of E. Assume t moves …rst z moves second, and the system relaxes to the
stable branch of J1 in Figure 4a where E0 + S is. Notice that we can construct
graphs in which for some zs such that the horizontal line c + t + z doesn’t cut
the graph of J1 on the right side (only the left side is cut), we will still go to
the good side of J1 even though the initial condition is E0 + S. We now have a
mathematically well de…ned rule that selects E(t; z; E0 + S).

Now turn to our Bayesian in (69). Call this kind of regulation, indirect
control via instrument t. The simplest version is to assume that the variance
of z is zero so all attention is placed upon (f; S). Since z = 0 and c is …xed
throughout the analysis, suppress them in the notation for (B/B) and put

B(t; f) = (1¡ f)W (E1(t + c)) + fW (E3(t + c))): (70)

In the case where J1 is not monotone decreasing but is …rst decreasing, then
increasing, then decreasing, let Jmin

1 ;Jmax
1 denote the local minimum and the lo-

cal maximum values of J1: Let Emin; Emax denote the local minimizer and local
maximizer of J1. Let J1i denote the restriction of J1 to [0; Emin]; [Emin; Emax]; [Emax;1).
Each of these functions is invertible on its domain. Let J¡1

1i denote the inverse
function. Put

J1(E1
i (t + c)) = t + c (71)

where i = 1; 3 denote the smallest and largest locally stable solutions and i = 2
is the middle (locally unstable solution). Let t¤(f) maximize (70) s.t. (71).

Theorem 6 dt¤=df > 0

For Proof see Appendix.
Notice that this Bayesian facing a “Holling nasty surprise” with probability

f , facing slaving of E to E1
1 or E1

3 depending on whether the surprise ap-
pears to shock the small initial condition E0 into the Bad Basin of E3 acts
observationally (to us scientists) rather like a Knightian! In fact we could prob-
ably formulate a Knightian problem (without Holling surprises) that gives the
same t¤ response of the regulator as does this Bayesian regulator. That is, this
Bayesian reacts …rst order to increasing f at f = 0 in contrast to the usual
second-order reaction of a Bayesian to a mean preserving spread.

Now we can ask what happens to the optimal t¤ in a Knightian indirect via
instrument t regulatory control problem facing both Holling surprise shocks and
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mean preserving spread z. Let the timing be as follows. Regulator chooses t,
Nature then draws z from density fZ(z): She ‡ips a device with Bad occurring
with probability f; and if Bad happens the shock S is added to E0. The actual
E is then determined by:

J1(E1
i (t + c + z)) = t + c + z, root E1

1 chosen if Good. If Bad and E0 + S
is in the basin of the bad root E1

3 , root E1
3 is chosen. Otherwise root E1

1 is
chosen.

De…ne B(t; f; d) by

B(t; f; d) = (1¡ f)EW (E1
1 (t + c + z)) + fEW (E1

3 (t + c + z)))

Assume the regulator chooses t¤ to maximize

(1¡ e)B(t; f; d) + eInfB(t; f; z)

where the support of z is [¡d; d]. The Infoperator is de…ned by

InfB(t; f; z) = Inf(1¡ f)W (E1(t + c + z)) + fW (E3(t + c + z))) (72)

where the In…mum of RHS (72) is taken over all z in [¡d; d].
With this setup we may now compute t¤(e; f), compute t¤

f (0; 0) and see if it
increases with e. That is, we can also compute the cross partial t¤

fe(0; 0) and
see if it is positive. We expect it to be positive because we would expect the
Knightian to be even more cautious.

6.1 General Treatment of Bayesian Facing Alternative Sta-
ble States with Initial Condition Shocks

We formulate the general problem …rst, then turn to a special case. Consider
the following set of di¤erential equations

dp=dt = lp(P ¡1(p)¡ qEx); p0 given;

dx=dt = lx(x(s¡ rx)¡ qEx); x0 given

dE=dt = lE(pqEx¡ (c + t)Ex); E0 given; E0
0 = E0 + S

Let the regulator set t to maximize

ELimsup
T

µ
1

T

¶ Z T

0

[S(qEx)¡ cE]dt (73)

Here the integral is from 0 to T , and we take the Limsup above because
the time average may not converge whereas the Limsup is always de…ned. The
Limsup is taken as T tends to in…nity. The expectation is taken over the
distribution of initial E-state shocks S. Consider the in…nite horizon present
value of a bene…t stream discounted at rate r, call this PV (r). There are
theorems that relate the limiting value of PV (r)=r to time averages like (73).
Hence we use (73) as an analytically tractable “…rst cut” approximation to an
objective like PV (r)=r for small values of r. Now let lp tend to in…nity relative
to the other ls. This amounts to assuming that price formation is fast relative
to the other dynamics. We also assume (which is automatic for the simple one
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dimensional case above) that the price dynamics has only one stable state. Thus
we assume

P ¡1(p)¡ qEx = 0; i.e: p = P (qEx)

Now suppose that lx is also in…nite. We must also assume that s¡ qE > 0.
Thus

x[(s¡ rx)¡ qE] = 0; i.e. rx = s¡ qE; for x > 0

It is easy to see that the solution rx = s ¡ qE > 0 is globally stable for all
initial x0 2 (0;1). Finally we assume that lE is also in…nity. Our problem (73)
now reduces to the following problem. Choose t to maximize

EW = FS(E2(c+ t))[W (E1(c+ t)]+(1¡FS(E2(c+ t))[W (E3(c+ t)] = K(t):

That is, choose t to maximize K(t). Here FS(x) = Pr [S < x] is the cumu-
lative distribution function of random shock S. Root E1 of J1(E) = c + t is
chosen if E0 +S < E2(c+t) where E2(c+ t) is the middle root of J1(E) = c+t
and root E3 of J1(E) = c + t is chosen if E0 + S > E2(c + t). Obvious choices
are made for the case where J1(E) = c + t has only one root. The function
K(t) is now well de…ned.

Notice that Nature is mean with probability 1 ¡ FS(E2(c + t)). We now
have a justi…cation for the appearance of ein the Knightian formulation! To put
it another way, we have endogenizedeby hierarchic time scales and alternative
stable states together with possibilities of large shocks to the state of the sys-
tem. That is, if Nature chooses a shock to the initial condition of your managed
ecosystem big enough to put you in a bad basin for that ecosystem and regula-
tory institutions are such that there is a cost to changing the instrument’s value
rapidly enough to undo the damage caused by this large initial-state shock then
the regulator should act like a Knightian with

e = 1¡ FS(E2(c + t))

Notice that W (E3(c + t)) is the worst steady state value that Nature can
play against the regulator! In the original formulation of Knightians and of
Robust controllers there is a set of priors that one minimizes over efraction
of the time. If we replace that set with the worst steady states and replace
ewith the probability that the shock to the initial state condition throws the
system into the basin of attraction of the worst steady states, we are close
mathematically to the original Knightian setup! But now the parameter eas
well as the worst possible outcome are derived from the underlying structure of
the scienti…c problem rather than being imposed in a somewhat ad hoc manner.
In general if a regulator is choosing instruments to regulate a system that is
complex enough to possess multiple time scales, and we take the time average
of the welfare generated for each …xed value of the regulatory instrument t,
we get the general problem above. We believe that this particular analytical
regulatory framework may be more appropriate for the analysis of regulation
of complex ecosystems with a hierarchy of time scales and potentially complex
dynamics with multiple attractors than conventional analytical frameworks. We
have already seen how our framework exposed a new consideration in designing
regulatory instruments. That is, we posed the question of how one should deal
with potential alternative stable states and potential surprise shocks to the state
of the system.
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7 Concluding Remarks

In this paper we have studied the optimal economic management of multispecies
ecosystems where the underlying ecosystem was modeled by a series of di¤eren-
tial equations. While the underlying di¤erential equation dynamics are math-
ematically equivalent to a generalized Lotka-Volterra multispecies system, we
discussed alternative interpretations which included hierarchical metapopula-
tion models with an underlying spatial mosaic. Di¤erent contexts give di¤erent
underlying generalized interaction matrices.

We studied optimal regulation of these systems using decentralized instru-
ments such as taxes. Novelties arose from dealing with problems caused by
multiple equilibria and hierarchical time scales. For example we showed that
implementation of social optimum by decentralized taxes on e¤ort in open ac-
cess institutions was possible if biomass dynamics are slow enough relative to
economic dynamics. But implementation was not possible if biomass dynamics
were fast relative to economic dynamics. We also located su¢cient conditions for
in…nite horizon management to drive the system to a unique steady state. This
was a nontrivial generalization of received value-loss arguments in the turnpike
theory literature.

Perhaps most importantly, in Section 6 we extended the received theory of
regulation of ecosystem management to the case of Robust Regulation when
there is not only uncertainty, but also ambiguity about the dynamics. We un-
covered a new justi…cation for recently received mathematical models of Robust
Regulation. Our approach arises from two time scales and shocks to initial con-
ditions after regulatory actions are taken. We believe that potential extensions
of our result may help produce new models of Robust Regulation that overcome
some of the criticisms of the recently received theory.
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Appendix
Proof of Theorem 1: Put a = 1, W.L.O.G. Write U =

Pf(fi ¡ ½xi)g
thus, using si notation,

U = x1(~s1 ¡ x1) + x2(~s2 ¡ 2x1 ¡ x2) + ::: + xn(~sn ¡ 2[x1 + :::xn¡1]¡ xn)

~s1 < ~s2 < ::: < ~sn

Observe that if xi > 0 and xj > 0 solve the FONC for an interior optimum we
must have

~si = 2[x1 + ::: + xn] = ~sj

which is a contradiction to ~si < ~sj for i < j. Hence only one xi can be positive at
an optimum. Check that it must be xn = ~sn=2 by showing that this particular
specialization yields maximum economic value. Q.E.D.

Proof of Theorem 2: Clearly x¤
1 = ŝ1

2 ; x¤
2 = (ŝ2¡ŝ1)

2 ; :::; x¤
n = (ŝn¡ŝn¡1)

2 .
Since the optimal harvest H¤ is the minimum of the maximal fk(x), therefore
under Assumption f¤

1 > maxff¤
k ; k 6= 1g. Q.E.D.

Proof of Proposition 1: De…ne the curves J1(E) for the bionomic equi-
librium and J2(E) for the SOMP optimum as follows

J1(E) = P
³³q

r

´
E(s¡ qE)

´ ³q

r

´
(s¡ qE)

J2(E) = P
³³q

r

´
E(s¡ qE)

´ ³q

r

´
(s¡ 2qE)

We see that J1 lies above J2; that J2 < 0 for E > s=(2q), and that J1 < 0 for
E > s=q. Thus the smallest root of J2(E) = c is achieved for a smaller value of
E than the smallest root of J1(E) = c. Put a = q2=r; b = s=q and rewrite the
equations above as follows

J1(E) = P (aE(b¡E)) a(b¡E)

J2(E) = P (aE(b¡E)) a(b¡ 2E)

Since J1(0) = J2(0) = P (0)ab > 0, J1 < 0 for E > b; and J2 < 0 for E > b=2;
it follows that J1 lies above J2, for E 2 (0; b) :20 Thus we see that at the condi-
tions J1 (E1) = c for bionomic equilibrium and J2 (E¤) = c for social optimal,
bionomic equilibrium loses welfare relative to the optimum, since J1 (E¤) 6= c.
The welfare loss results from the taking of too many …sh. Q.E.D.

Proof of Proposition 1: Since the demand price is higher than c for small
E , it follows that J1 initially decreases for small E. Then J1 becomes negative
for E > b. Therefore if J1 fails to be monotone decreasing on (0; b); its …rst
derivative, J

0
1; must be zero at some point Ê in (0; b). This gives the necessary

condition

J
0
1 = aP

"
¡1 + (b¡E)

Ã
P

0

P

!
a(b¡ 2E)

#
= 0

Since "P =P=(QP
0
(Q)), we have P

0

P = 1
"P

1
Q : Substituting for Q = aE(b ¡ E)

and inserting into the necessary condition above gives us

(b¡E)
1

"P

1

aE(b¡E)
a(b¡ 2E) = 1

20 Notice that the only di¤erence between J1 and J2 is the “2” in J2.
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or 1
"P

(b¡2E)
E = 1 i.e. Ê = b

2+"P
: Hence for Ê < b, we must have b > b

2+"P
;

i.e. j"P j < 1 Q.E.D.
Proof of Proposition 2: The …rst derivative of J2 is:

J
0
2 = 2aP

"
¡1 +

1

2

Ã
P

0

P

!
a(b¡ 2E)2

#
< 0

since P > 0; P
0

< 0: Therefore J2 is monotone decreasing on (0; b=2) and a
unique socially-optimal e¤ort level exists. Q.E.D.

Proof of Theorem 6: Bt(t
¤(f); f) = 0; Btt[t

¤0] + Btf = 0; Btt < 0 (by
SONC). So we must show that ¡Btf < 0: Now at f = 0; WE(E1

1 ) = 0 (E1
1 =

E¤ at f = 0). Since

Bt = (1¡ f)WE(E1
1 )E10

1 + fWE(E1
3 )E10

3

Therefore,

Btf = ¡WE(E1
1 )E10

1 + WE(E1
3 )E10

3 = WE(E1
3 )E10

3 > 0

since E10
3 < 0; WE < 0

Q.E.D.
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Figure 5: Social optimum and bionomic equilibrium for two species


