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Irreversible Development of a Natural Resource

Abstract

The paper analyzes resource management that entails the irreversible de-
velopment of an exhaustible resource when the values of services generated
by the resource in either the developed or the undeveloped state are uncer-
tain. An exercise barrier approach is used to derive the privately-optimal
and the socially-optimal free boundaries. The two boundaries are used to
compare the pace of development under profit maximization and social op-
timization. Regulatory schemes on resource development that will induce
the profit-maximizing decision maker to behave as the social planner, with
regard to development choices under uncertainty and irreversibility, are also
presented.

Keywords: Natural resource, irreversible development, uncertainty, ex-
ercise boundary, private optimum, social optimum, regulation.

JEL Classification numbers: Q0, Q2



1 Introduction

Uncertainty is an issue of considerable interest in the environmental and re-
source economics literature. When the analysis is carried out in a dynamic
context the interactions between uncertainty and irreversibility are of spe-
cial interest.! One fundamental proposition in the area of environmental
economics, established by Arrow and Fisher (1974), is that an option value
exists associated with refraining from an irreversible decision now, when next
period benefits or losses resulting from the decision are uncertain, even if the
decision-maker is risk neutral. Closely associated with the above concepts is
the concept of timing of the irreversible decision, and the question of whether
or not the decision-maker should postpone action until more information is
acquired in the future.

Recent approaches to the solution of this type of stochastic control prob-
lem focus on the derivation of a free or exercise boundary derived from the so-
lution of the associated Hamilton-Jacobi-Bellman (HJB) equation (e.g. Dixit
and Pindyck 1994, Soner 1997). The basic property of the boundary is that it
divides a certain strategy space into two regions. Depending on the region of
the space in which a stochastic variable is realized, the decision-maker decides
whether or not to undertake the irreversible action.

The purpose of this paper is to analyze the problem of resource man-
agement that entails the irreversible development of an exhaustible resource,
when the benefits - or more precisely the values - of services generated by the
resource in either the developed or the undeveloped state are uncertain. In
analyzing the structure of the benefits associated with the resource, a broad
division of values into direct use values and indirect values or non-use values
is considered. Direct use values are associated with the value of services gen-
erated by the resource after it has been developed. On the other hand indirect
or non-use values are associated with the value of services generated by the
resource when it is in an undeveloped state. Indirect or non-use values can be
associated with services generated by the biodiversity of an undeveloped part
of an ecosystem, or with passive values related mostly to ethical positions.?
These indirect or non-use values are referred to, in the rest of the paper, as
the environmental or the intrinsic value of the undeveloped resource.

In the resource management problem, while the direct use values as de-
fined above can in principle be approximated by market prices associated
with the services generated by the developed resource, the non-use values are
much harder to approximate because of the well-known missing market prob-
lems. In practice these values, especially for the cases of aesthetic or existence
values, are approximated by state preference methods, such as contingent val-

'See for example Arrow and Fisher (1974), or Fisher and Haneman (1986, 1987). The
same issue has also received considerable attention in the literature of finance and investment
(e.g.Constandinidis 1986, Dixit and Pindyck 1994; Dixit, Pindyck and Sodal 1998) or public
finance (Hassett and Metcalf 1999).

2For detailed definitions of these values and measurement issues see, for example, Perrings
(1995).



uation, or revealed preference methods such as travel cost, hedonic models or
random utility models. The difficulties associated with any attempt to ap-
proximate non-use values induce a relatively high degree of uncertainty in the
estimates. On the other hand when environmental values are associated with
services provided by intact ecosystems, which might undergo irreversible de-
velopment, a more direct valuation might be possible. For example ecosystem
services relate closely to the development of new products in biotechnology
and pharmaceuticals. These services can be associated with the formation of
market values for bioprospecting rights in locations representing biodiversity
hot spots. Certain ecosystem services can have direct market values such as
watershed services (Chichilnisky and Heal 1998) or ecotourism services based
on the preservation of intact ecosystems (Heal 2000), which are ignored by
private developers.

The problem of analyzing the irreversible development of an environmen-
tal resource under use value and non-use value uncertainty is thus considered,
by explicitly taking into account the facts that: (i) the resource can be de-
veloped by a private profit-maximizing decision-maker that acquires profits
by developing the resource involved in the problem or by a social planner or
environmental regulator that seeks to maximize some appropriately-defined
social welfare criterion; (ii) the undeveloped resource has an environmen-
tal value which is not taken into account by the individual developer, but
is accounted for in the context of the social optimization problem faced by
the social planner or environmental regulator; and (iii) there is simultaneous
uncertainty both on profits from the resource development, that is market
prices associated with direct use values, and the environmental value of the
undeveloped resource, that is indirect non-use values.?

The resource management problem in this paper is analyzed by using an
exercise barrier approach corresponding to the associated stochastic control
problem and in particular by deriving the privately-optimal or unregulated
free boundary and the socially-optimal free boundary. These boundaries char-
acterize the optimal resource development in the sense that, depending on the
region of the space in which a stochastic variable associated with profit or/and
environmental uncertainty is realized, the decision-maker decides whether or
not to undertake the irreversible resource development. The two boundaries
are used to compare the pace of development under profit maximization or so-
cial optimization. It is shown that when uncertainty exists only with respect
to the market prices associated with direct use values, the pace of develop-
ment under social optimization is slower relative to the development pace
under profit maximization, a result anticipated by the existing literature on

3Scheinkman and Zariphopoulou (1999) have recently analyzed a similar problem of
resource management in a fairly general set up of simultaneous uncertainty on the returns
from the resource development and the returns of the undeveloped resource. In the present
paper by analyzing a simpler model it becomes possible to completely characterize and
distinguish optimal policies, under private profit maximization and social optimization, and
furthermore to address regulation issues under simultaneous uncertainty and irreversibility.



resource management. However when uncertainty is associated with both use
and non-use values, the pace of development could be reversed under certain
circumstances. This result is possible under a downward shift of the non-
use values relative to use values. If this shift is sufficiently strong then the
externality associated with non-use values that makes the socially-optimal de-
velopment pace slower than the privately-optimal, works the other way round
implying that in a given time interval the socially-optimal development should
be faster than the privately-optimal one.

Having established the deviation between the unregulated and the socially-
optimal free boundaries, the issue of policy design is addressed.* The idea is to
introduce a regulatory scheme in the form of development taxes or command
and control limits on development that will induce the profit-maximizing de-
cision maker to behave in the same way as the social planner regarding de-
velopment choices. We show that the optimal policy scheme is different in
the case of use value uncertainty relative to the case of simultaneous use and
non-use value uncertainty.

In the context described above, one contribution of this paper can be as-
sociated with using the concept of the optimal exercise boundary to compare
development paths under socially-optimal and market solutions under simul-
taneous use and non-use values uncertainty. By using this exercise boundary
comparison approach there is no need to compare expected equilibrium out-
comes. Instead a deterministic function for the exercise boundary is used to
compare development paths corresponding to the two solutions. Since the de-
velopment paths are obtained by comparing the boundaries to the observed
values of the stochastic variables, it is a straightforward process to compare
the development paths by simply comparing the boundaries relative to the
moves of the state variables. The comparison confirms the generally accepted
results that the socially-optimal solution implies slower development than the
market solution, but it also reveals the possibility, which to my knowledge
has not been explored yet, that it might be socially optimal to develop the
resource relatively faster at some time interval. This result is made possible
by the use of the boundary comparison approach to the general problem of
the simultaneous use and non-use value uncertainty.’

The paper contributes also to the design of policy schemes under uncer-
tainty. The main idea is that since the private profit-maximizing agent uses
a boundary to design management strategies, if a policy regime shifts the
boundary so that it coincides with the socially-optimal boundary, then the
privately-optimal development path will be the same as the socially-optimal
development path. Thus under uncertainty the policy objective is to develop
policy schemes that will make the optimal boundary of the profit-maximizing

4Uncertainty on the benefit and cost side in environmental problems has been related
to the choice between price or quantity environmental policy instruments (e.g. Weitzman
1974). Stavins (1996) analyses this issue under correlated benefit and cost uncertainty.

% A boundary comparison method has been used by Xepapadeas (1998) in a simpler model
of resource development with uncertainty only in prices.



agent, the same as the optimal boundary for the social planner.
2 Resource Development under Irreversibilities

A resource or environmental asset of fixed size S which can be developed into
a new use is considered. In the undeveloped state the asset has an environ-
mental or intrinsic value associated with indirect or non-use values equal to
¢:S, where ¢; is the unit environmental value of the resource at time ¢.5 The
asset can be some landscape that could for example undergo industrial, hous-
ing or agricultural development, or a scenic land that can potentially undergo
tourist development. At the undeveloped stage the land provides indirect or
non-use value services, such as services related to biodiversity of the unde-
veloped landscape, aesthetic values of the undeveloped land, or more general
existence values.

Assume that one potential developer” of the site exists and at each point
in time he or she develops h; > 0. Thus total cumulative development at time
t is defined as:

Dt:/o h(s)ds, Dy < S (1)

Since h; > 0, development is irreversible. After the development the
environmental value of the asset is defined as:

q: (S — Dy)

Thus the development of the site linearly reduces its intrinsic value.
However, the development generates a net flow of services for the devel-
oper, according to an increasing and strictly concave function:

f(Dy), (D) >0, f"(Dy) <0

We assume that the developer is small relative to the market for the
resource services, and that these services can be sold at some exogenously
determined world price.® This price, P;, evolves stochastically following a
geometric Brownian motion:

APy = ay Pydt + ny Pydzp (2)

with {z1;}being a Wiener process.”,!” Thus the developer’s net revenues at

This value could have been obtained by state preference or revealed preference methods.

"The qualitative nature of the results will not change if we assume n identical developers.

8This might be for example the case of services associated with the development of a
scenic land which are sold in the world market of tourist services.

9See for example Malliaris and Brock (1982) for definitions and more details.

10Tt should be noted that the Brownian motion assumption causes price to move away
from its starting point. If however price is related to long-run marginal costs, then a
better assumption about price movements could be a mean-reverting process. Under this
assumption price tends toward marginal costs in the long run and price movements can be



each instant of time are defined as

P f (D)

Let the cost of developing one unit of the resource be c. If the decision is
to develop the site by AD from the existing development level Dg, then

AD = D — Dy

The cost of this change in the development is then defined as:

cAD (3)

Given this structure we seek an optimal development strategy which takes
the form of a free boundary defined by an equation P = P (D) relating price
and cumulative development. When the realized price P" at any point in
time is such that P" < P (D), no development is undertaken, while when
P" > P (D), enough development is undertaken to restore equality between
the realized price and the value of the boundary.

3 Privately-Optimal Development

Consider the case of the developer when the initial market price of the services
generated by the developed resource is Py and the initial development is Dy.
Given a private discount rate p > 0,'' with p > aj, the developer seeks
the nondecreasing process Dy, that will maximize the present values of net
revenues less the cost of development.

Let D = {ADt : AD; >0, Vt > 0 and [ ADydu < L, Vt > 0} . The set
of admissible controls which represent resource development is defined as:
U={AD;: AD; € D, VD € [0,L)}. Then the developer’s problem is defined
as

max ] (Pi, Dy ADy) = & / P [Pof (D) — cADy] dt
0
subject to (2).

The value function associated with this problem can then be defined as:

V (D, B) = sup & / T et P (D)) — cADy dt (4)
u 0

By the concavity of f (D) and the linear dynamics it can be shown that
the value function is concave in D. The dynamic programming equation for
the developer’s problem takes the form (Soner 1997):

pV = max { [EZ’ID)] V+f(D) - cAD}

modeled as
dPt =a <Pt — Pt) Ptdt + O'Ptdzpt

where jSt can be interpreted as long-run marginal costs.
"For a small open economy with negligible country risk it could be assumed that firms
can borrow at a risk-free world interest rate.



where Ei’g = %U%PQ% + alP% + AD% is the differential generator.

At each instant of time the developer has two choices: to preserve the
site or to develop it. The time interval when no development is taking place
and the previously acquired development is used to generate net revenues
can be defined, following Dixit and Pindyck (1994), as the no action or the
continuation interval. A stopping time is defined as a non-negative random
variable 7 at which new development is undertaken.

Let DX be the optimal development process at time 7. Following Fleming
and Soner (1993) or Soner (1997), if 7 is a stopping time then by the dynamic
programming principle:

V (D, P) = sup & [ / " e PP, (D) du+ eV (D2, Py) (5)
u 0

Assume that in the time interval [0, 8] the developer undertakes no new
development, but keeps it constant at Dy. Then by the principle of dynamic
programming, the value function should be no less that the payoff (continua-
tion payoff) in the interval [0, 8], plus the expected value after 6, or:

0
V(D.P)2E | [ e Pf (Do) du
0

e PV (Dy, By)| (6)

with equality if Dy is the optimal policy in [0,6]. Applying the Itd lemma

to the value function on the right hand side of (6), dividing by € and taking

limits as @ — 0, we obtain :2

1
pV > 577%P2VPP +a1PVp + Pf (D) (7)

with equality if D; = Dy in the interval [0, 6].
Consider now the decision to develop instantaneously by AD = Dar — Dy.
Then the right hand side of the dynamic programming equation becomes

1 ~
max, {[£X5| V + f(D) - cAD} = 5P Ver +a1PVp + Pf (D) +H(Vp)

where

~

H (VD) = AHI%)aZXO {VDAD - CAD}
which implies
Vb—¢<0, AD >0, or

If Vb —c<0then AD =0 (8)
If AD>0the Vp —c=0, 9)

12Qubscripts associated with the value functions denote derivatives.




Thus when no development is optimal, (7) is satisfied as equality, while
when development is optimal, (9) is satisfied as equality. Combining the two
the HJB equation can be written as:

min { {pV - %ﬁ]ﬂvpp — a1 PVp — Pf (D)] ,—[Vp — c]} =0 (10)

The HJB equation can be used to derive the free boundaries at the un-
regulated and regulated equilibrium.

3.1 The free boundary at the private optimum

The HJB equation (10) determines the conditions under which a profit-maximizing]]
agent will undertake new development or not. Thus the HJB divides the

(P, D) space into two regions. The curve P = P (D) for the boundary be-
tween the two regions determines the profit-maximizing development process.

This optimal exercise or free boundary will divide the (P, D) space into two
regions: the ‘no development’ region, called region I, and the ‘development
region’, called region II. In region I the first term of the HJB equation is zero
since AD = 0 and the second term of the HJB equation is positive by (8),
thus

1
pV — 5n%PQVPP —a1PVp—Pf(D)=0 (11)
The general solution of (11) can be obtained as:

V (D, P) = Ay (D) PP1 + Ay (D) PP> + Pg(—m (12)
s

2
where 3, = % — %3'21* + \/(% — %) + %% > 1 is the positive route of the fun-

damental quadratic () = %n% (6—1) 4+ a18 — p = 0. We need to disregard
the negative root in order to prevent the value from becoming infinitely large
when the market size becomes very small, thus we set Ay (D) = 0. 13

In region II the second term of (10) is satisfied as zero and AD > 0, or

Vo (D,P)—c=0 (13)

Using (12) and (13), the constant A; (D) and the function P = P (D) can
be determined. To obtain this the ‘value matching’ and the ‘smooth pasting’
conditions are used.!*

The value matching condition means that on the boundary separating the
two regions the value functions should be equal. Solving (13) for P we can
obtain the yet unspecified function for the boundary P = P (D). Then we
have, combining (12) and (13) and substituting for P,

3See Dixit and Pindyck (1994).
"For a presentation of these conditions, see Dixit and Pindyck (1994).




/
D
Vp (D, P) = A} (D)Pﬁ1+PL:c, P =P (D) (14)
p—ai
The smooth pasting condition means that the derivatives of the value
functions with respect to P on the boundary are equal or:

Vpp (D, P) = 3, A} (D) PP~ 4 % =0with P=P (D) (15)
— ]

Combining (14) and (15) we can solve for the unknown functions P (D) and
A (D) to obtain:

o ﬂl 6C
PD)= 57D 16)
S (BN F(D)
40=-(2=)" (75-m) 1)

The optimal boundary is increasing in D by the assumption of diminishing
returns and the convexity of the cost function,

AP _ —f"(D)By (p—ar)e

dD (8, - 1) [/ (D:)]?

In region I, (6) holds as a strict inequality and no development is un-
dertaken. For any given D, random price fluctuations move the point (D, P)
vertically upward or downward. If the point goes above the boundary then de-
velopment is immediately undertaken so that the point shifts on the boundary.
Thus optimal development proceeds gradually. In the terminology of Dixit
and Pindyck, this is a ‘barrier control’ policy. The free boundary is shown
in figure 1. If the price P moves from Py to P;, the private developer will
undertake D — Dy new development.

[ Figure 1]

The equation describing the boundary can be interpreted in the following
way. For a small development dD, its expected present value is defined as:

E[PV] = (@) dD

where p — a; is the real discount rate defined as the difference between p
and the expected rate of growth of the price. Define the incremental cost of
this development as AC' = ¢, then the benefit cost ratio for this investment is
defined as BC = ﬂgl. As seen from the definition of the incremental benefits
and the strict concavity of f, the benefit cost ratio is lower, the higher the
development level is. Using the equation of the boundary to substitute for P,
the optimal investment rule requires:



B4
f1—1

The fact that the benefit cost ratio for the marginal project exceeds one, as
compared to the traditional rule of BC' = 1 in the no uncertainty /irreversibility]]
case, reflects the option value of keeping the status quo development level.

By equation (14) the incremental development is justified if the discounted

BC = >1

value of the incremental development marginal value product, Pp%gl, cov-
ers development costs, ¢, plus the opportunity cost of the option to wait
A} (D) PP1. By (17) the marginal option value A} (D) is negative, that is, it

represents a cost.1?
4 Socially-Optimal Development

Consider the case of a social planner or an environmental regulator that seeks
to optimally develop the site by taking into account - in addition to the
development benefits, that is the direct use values - the environmental losses
arising from the irreversible destruction of the site during the development
process.

In addition to price uncertainty, the regulator also faces uncertainty re-
garding the environmental or intrinsic value of the undeveloped resource. We
assume that the environmental values associated with the resource in the un-
developed state evolve stochastically following a geometric Brownian motion

dg; = azqdt + noqrdzg: (18)

The use of a geometric Brownian motion to model the evolution of en-
vironmental values fits better when these values are interpreted as reflecting
values of ecosystem services which can be associated with market values, such
as land values for bioprospecting,'®, watershed or ecotourism services.!”

YIntegrating (17) we obtain A; (D) as:
A, (D) :/ [—AL]ds =
D

(ﬂl_l)ﬁll/oo (f/(D)>Bl
c D 8.6

As shown by Dixit and Pindyck (1994) for the integral to converge with a Cobb-Douglas
development function, f(D) = D" ;0 < k < 1, k should be sufficiently small so that
By > .

'Heal (2000) mentions that bioprospecting rights might be worth as much as $9000 per
hectare in biodiversity hot spots.

'"This interpretation of the evolution of environmental values is related to the diffusion
formulation of environmental benefits at the undeveloped state used by Scheinkman and
Zariphopoulou (1999). On the other hand, when environmental values are interpreted as
unobserved existence values which are currently uncertain, the Brownian motion assumption
might not be the most appropriate because of the dependency of its drift and volatility on
uncertain current values.

10



The instantaneous benefits of the regulator can then be defined as:

B (Py,q1, D) = Bif (Dy) + ¢ (S — Dy)

with the value function defined as:

w (P, g, Dy) = sgp 50/0 e Pt [Pif (Dy) 4+ g+ (S — Dy) — cADy) dt
subject to (2) and (18)

In the value function definition above p® denotes the social discount rate
used by the regulator. With perfect private capital markets and no divergence
between private and social costs and benefits, the private and the social dis-
count rates coincide.'® The case of environmental losses due to irreversible
development of a natural resource examined in this paper, introduce a source
of deviation between private and social benefits implying potential differences
between the private and the social discount rates. In this context, Weitzman
(1994) shows that environmental effects imply a lower social discount rate
relative to the private one. Following Weitzman the environmental effect is
modeled here by introducing a correction factor § > 0, and defining the social
discount rate as

p*=p(l-9)

Following Davis and Norman (1990), the linear homogeneity of the benefit

function in P and ¢ implies that the value function is also linearly homoge-

neous.'” Then the dimensionality of the social planner’s problem can be

reduced from three to two for ¢ # 0. By taking the non-use values as the
numeraire, the social planner’s benefit function can be written as:

P,
vef (Dy) + (L —Dy) , vy = q_tt

Linear homogeneity of the value function implies that
w(P,q,D) = quw (v,1,D)
Then, it can be defined that:
W (v,D) =w(v,1,D) = q *w(P,q, D)

where W (v, D) is the value function associated with the problem:

W (v, D) =sup & /OO e Pt [vef (D) + (S — Dy) — cADy] dt
u 0

subject to

18The comparison between the private and the social discount rate is an issue that has
been discussed extensively. See for example, Arrow and Kurz (1970, Ch. 1.2), Lind (1982,
1990).

9See also Scheinkman and Zariphopoulou (1999).
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dvy = pedt 4 ovdz (t)

where:

~

=p*—a1=p(1—-06)—a1 >0
H=a1 —az
o =13 = 2y + 775

i

and 7 is the correlation coefficient of the Wiener processes dzp, dz,.
The stopping time for the regulator’s problem satisfies:

W (D,v) :mbz{xxgo {/OT e~ Pu [vu.f (Dy) — D + L] du
+e "W (DX, v;) (19)

Then, following the same steps as in the section above, the HJB equation is
defined as:

1
min { {ﬁW - §JZU2WUU — wwWo — (vf (D) — D+ L)} ,— [Wp — c]} =0
(20)
4.1 The free boundary at the social optimum
As before, the socially-optimal free boundary will divide the (v, D) space into
two regions: the ‘no development’ region I and the ‘development’ region II.
In region I the first term of the HJB is zero and the second term of the HJB

equation is positive, thus the general solution for the value function is defined
as:

W (D,v) = Ry (D) P%i +uf(¢D> - (D;m (21)

where ¢ = p — p and ﬁf is the positive roote of the fundamental quadratic,

2 .
Q* = 3026° (8° — 1)+uB°—p = 0, with solution: 85 = %_?;I%+\/(?% - %) + %% >I

1
In region II the second term of the HJB equation is zero and AD > 0 or

Wp (D,v) —c=0 (22)

The constant R; (D) and the function v = v (D) can be determined as
before, using the value matching and the smooth pasting conditions, or

Wp (D) = B, (D)o + oI 12

5 =c,v=v(D) (23)

> | =

12



and

Wpy (D,v) = B3Ry (D) v*17! + % =0 with v =v (D) (24)

Combining (22) and (23) we obtain:

g o3 +e)

V)= D) >
s _ \Bi—1 , g BT

Q(D):_(ﬂllHl) (f (;i)) (26)

p=p—p=p(l—906)+az—2a; >0 (27)

As before the optimal boundary is increasing in D by the assumption of
diminishing returns.

By equation (23) the incremental development is justified if the discounted
value of the incremental development marginal value product adjusted for

non-use values, vf IQED), covers development costs, ¢, plus the present value of

one unit of resource irreversibly developed, %, plus the opportunity cost of
the option to wait, R} (D)v®1. By (26) the marginal option value R} (D) is
negative, that is, it represents a cost.?’

The benefit cost rule for the regulated development is also determined as:

B1
BCs =151
pi—1

5 Comparison of Exercise Boundaries and Management Rules

The privately-optimal and the socially-optimal exercise boundaries determine
the profit-maximizing and the socially-optimal management rules respectively,
for the resource development. They are defined as:

P(D): ﬂl (p_al)c

B1—1 f(D)
B (f)—u)(%+0)
V(D)= 5 )

20Furthermore,

Ry (D) = /oo [—Ri (s)] ds

D
:<ﬂi—1)‘*11/°" (f’(D))ﬁl
1+¢ b \ B

where for the same Cobb-Douglas production function we must have 57 > ﬁ

13



p=air —az

1 o a;  1\? 2p
fr1= ——+\/<———> +=
! n? o 2)

T2
,Bs_l—ﬂ—F (ﬂ_1)2+2_’b

79 42 o2 2 o2
o?=nt —2ymmy+n3, p=p(1—6)—ay

For limp_,o f' (D) = oo, P(0) = v(0) = 0 and both boundaries pass
through the origin; furthermore they are both increasing in D.

To compare the two boundaries we start with the simplest case where the
environmental value of the undeveloped resource is fixed and normalized to
one, implying as = 1, = 0. In this case u = a;0? = 73 while for § — 0,
By — 7. In this case the difference P (D) — v (D) is defined as:

v(D)— P(D) = -PL_e=a)

Br—1 (D)

Thus the socially-optimal boundary is above the privately-optimal one. This
means that there is a need for a higher upsurge in price in order to under-
take development under social optimization. Thus the socially-optimal man-
agement rule in this case implies slower development of the resource. This
slowdown in the development occurs because the non-use values are taken
into account under maximization of social benefits, but are ignored under
maximization of private profits. The result is shown in figure 1. If the price
moves from P, to P*, the new private development is Dg — Do, while the
socially-optimal development is D*29 — Ds.

When ¢ is greater than zero, so that the social discount rate takes into
account the environmental correction factor and becomes lower than the pri-
vate discount rate, the v (D) — P (D) is more complex. However numerical
simulations indicate that % > 0.Figure 1la depicts the derivative w
as a function of ¢, for a; = 0.01, p = 0.1, ¢ = 1, ny = 0.1. Thus an increase
in ¢ shifts the socially-optimal boundary upwards, implying further slowing
down in the development of the resource. This result is in agreement with the
central proposition in the theory of exhaustible resources that a reduction in
the discount rate leads to greater conservation.

[Figure 1a]

When however we consider the general case with (ag,75) # 0, the com-
parison is not straightforward. To obtain some idea of the relative positions
between the two exercise boundaries, we consider the following parameter
values:

e a; =0.01

14



e ay = 0, this assumption implies that we do not expect the expected
value of the resource’s environmental value to change as compared to
the current level.

p=01,86=02

k=05,c=1

1Ny = 0.1, ny = 0.2, these values reflect the assumption that the volatility
of the resource’s non-use values is likely to be higher than the price
volatility associated with direct use values.

it is difficult to make a priori assumptions regarding the sign and the
size of the correlation coefficient v between profit and environmental
uncertainty, since the value of v is most likely to depend on the specific
problem. For example an increase in the price of the resource’s services
indicating stronger demand might be accompanied by an increase in
the undeveloped resource’s indirect use values because at the same time
more people might want to experience and preserve the undisturbed re-
source, yielding a positive correlation between profit and environmental
uncertainty.?!

Figures 2a and 2b show the private and social exercise boundaries as func-
tions of the cumulative resource development D and the correlation coefficient
~. Figure 2¢ shows the difference P (D)—wv (D). As shown for the chosen para-
meter constellation, the socially-optimal exercise boundary is uniformly above
the privately-optimal exercise boundary.

[ Figure 2 |

However the relative pace of development can not be inferred from the
relative positions of the exercise boundaries as in the case of profit uncer-
tainty alone (ag = 15 = 0). This is because the private agent chooses his/her
development plan according to the movements of P, while the social planner
chooses his/her development plan according to the movements of v; = %.
Thus unless % behaves exactly as P;, we expect different responses, which
can be summarized in the following proposition:

Proposition 1 Assume simultaneous uncertainty in the market price of re-
source services (use values) and the environmental value (non-use values) of
the undeveloped resource. Then, if the relative price of resource services with
the environmental value of the undeveloped resource as numeraire, %, evolves

2'When v = 0 implying that the social returns of the resource are uncorellated with the
private returns, then the Arrow and Lind (1970) result - that for small public investment
uncorellated with the previous national income, the government should be risk neutral -
implies that the environmental regulator should use a risk free discount rate, along with the
potential environmental correction.
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differently from the unadjusted price Py, the development of the resource un-
der social planning could be slower or faster relative to the profit-mazximizing
behavior.

This proposition can be shown with reference to figure 3, where the
socially-optimal exercise boundary is drawn uniformly above the privately-
optimal exercise boundary. Assume that from a given development level Dy,
and market price of resource services Fy, the price moves to P;, while the rel-
ative price moves from vy to v; = %. Then the social planner will undertake
new development D* — Dy, while the private developer will undertake devel-
opment DV — Dg > D* — Dy. Thus development is slower under the socially-
optimal rule. Assume now that instead of moving to P; the price moves to
Ps, while relative price still moves to v;. Then while the social planner still
undertakes new development D® — Dy, the private developer undertakes no
new development and development is faster under the socially-optimal rule.

[ Figure 3 ]

This result goes contrary to the generally accepted view that taking into
account environmental or intrinsic values, which are not taken into account
under profit maximization, implies greater conservation. The driver of the
result is the possibility of different evolution of market prices relative to non-
use values. Under plausible parameter values, the socially-optimal exercise
boundary is uniformly above the privately-optimal exercise boundary. This
indicates that under similar movement of market prices and environmental
values or under relatively faster growth of environmental values, the socially-
optimal development is always slower than the privately-optimal development.
However if there is a downward movement of environmental values, then the
externality effect goes the other way and for a certain time interval, develop-
ment at the social optimum is faster relative to the private optimum. This
could happen for example if new information pushes down bioprospecting
values of undeveloped ecosystems, or changes in preferences reduce the eco-
tourism value of the undeveloped landscape. In this case it would be socially
desirable to develop the resource faster. This is because the private developer
ignores, say the drop in bioprospecting values, and thus the loss from keeping
an asset whose return is going down relative to the returns of the alternative
(which is to develop the resource) is not internalized. This loss is internalized
at the social optimum which takes into account the relative returns of both
assets. Socially desirable development is also faster if the undeveloped part is
associated with negative intrinsic values, for example existence of a disease in
the undeveloped state of the resource. In this case the private optimization
problem might not fully internalize the external cost of the disease, which is
however internalized at the social optimum indicating relatively faster devel-
opment, which eliminates the negative externality.

This result indicating the possibility of faster development at the social
optimum can be related to a similar result obtained by Farzin (1984), where
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a reduction in the discount rate might lead to a faster and not slower devel-
opment of an exhaustible resource, depending on the capital requirement for
the production of a substitute and the size of the resource stock. In our case
the slow-down effect induced by the environmental correction might be coun-
terbalanced by the movement of environmental values relative to the market
prices.

6 Policy Design

Since development at the private optimum is determined with reference to the
privately-optimal boundary, the policy scheme should be chosen so that the
private exercise boundary following the introduction of regulation coincides
with the socially-optimal exercise boundary.

The case in which non-use values are fixed at the level 7, and uncertainty
exists only with respect to the use values is considered first. In this case
the socially-optimal development is always slower than the privately-optimal
development and a possible policy instrument could be a development tax
that will slow down private development. Consider a fixed tax 7 per unit of
incremental development so that the unit development cost is ¢ + 7. Then,
the regulated privately-optimal exercise boundary is defined as:

B1 (p—a)(c+T)
B -1 /(D)

while the socially-optimal exercise boundary becomes:

PE(D) =

g W —a)(c+F)
pi—1 f1(D)
It is clear that the optimal development tax which makes the two boundaries
identical is defined for 6 = 0 as:

P (D) =

v
P

T:

Thus the optimal development tax is equal to the present value of the flow of
one unit non-use value services which are lost by the irreversible development
of the resource. It is interesting to note that by looking at the policy design
problem as an issue of equating privately-optimal and socially-optimal free
boundaries, the optimal tax is the same as the tax that would have been used
under certainty. Since the private developer compares the regulated boundary,
which is now identical to the socially-optimal boundary, with observed market
prices, the regulation problem is solved by a simple deterministic tax without
the need to use contingent instruments.

The appealing characteristic of what might be called a barrier control
policy design, is that instead of choosing the optimal tax according to the
realization of a random variable, the tax is set at a level such that the private
developer is induced to behave like the social planner for any realization of
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the random variable. So the system is decentralized and once the tax is set
the private developer is left to respond to price changes.

When 6 > 0 then the development tax is defined as:

7= =V ) (o)
Bi(p —a1)
The larger 6 the larger is the difference v (D) — P (D) and the higher is the
tax is. This is expected since the larger the difference v (D) — P (D) is, the
slower the development at the social optimum and the higher the required
tax to induce the private developer to slow down is.

The general case with simultaneous use and non-use value uncertainty
is now considered. In this case the development tax that equates the two
boundaries is determined as:

ORI )
B -1 (p—a1)

However, under simultaneous uncertainty the private developer responds
to changes in P, while the social planner responds to changes in v; = Bf.
Thus although the regulated boundary coincides with the socially-optimal
boundary, it is not certain that the private developer will follow the socially-
optimal development. The socially-optimal development will be followed if
P, evolves in the same way as %. In all other cases the development tax will
not induce the socially-optimal behavior. This is summarized in the form of
a non-existence result.

=

—C

Proposition 2 Assume, under simultaneous use and non-use values uncer-
tainty, that market prices for use values P; evolve differently than the adjusted
prices fl—jtfﬁ. Then there is no development tax that can induce the private de-
veloper to undertake the socially-optimal development.

The result can be shown with reference to figure 4. Let the private bound-
ary P (D) shift after regulation to v(D), and observed prices move from
(Po,v9) to (P1,v1). The socially-optimal development is D% — Dy, but since
the private developer responds to the unadjusted price signal, the privately-
optimal development after regulation is D — Dy. The unregulated develop-
ment would have been DY — Dy. Thus although the tax does not achieve
the socially-optimal development, it restricts the unregulated development
towards the social optimum. This development tax can be regarded as a fixed
second-best tax.

[ Figure 4]

The socially-optimal development can be secured by a proportional tax on
the market prices equal to q—lt that will make the effective market price equal to
v¢, and a subsidy for the undeveloped resource equal to L — Dy per unit time.
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In this case the private solution exactly reproduces the social planner’s value
function. This scheme however is contingent on the realizations of the random
variables and dependent on the current development state, and may be hard
to implement, since it should be updated for changes in non-use values and
development levels.

Another way to implement the socially-optimal rule is to use a system of
quantity instruments, with a possible subsidy to correct for cases where the
socially-optimal development should be faster than the privately-optimal one.

By inverting (24) the socially-optimal exercise boundary can be written
as:

D*=g(v)=v"" (D)

Then the quantity instrument can be set as the limit D; < Dj. Under the
limit the HJB equation implies for the development region that:

Vo(D,P)—c—A<0, AD >0
A(D*—D)=0,A>0

where A is the Lagrangian multiplier associated with the quantity limit. Con-
sider figure 4, and suppose that prices move to (Pp,v;). Then D* < DY | the
constraint is binding and the limit secures the socially-optimal development.
Suppose now that the market price moves to P», while the adjusted price
remains at v;. To secure the socially-optimal development, a subsidy s should
be given, such that

(1+s)Pr=u

Under the subsidy the private developer responds to the correct, from the
social point of view, signal v" and undertakes the socially-optimal development
D?. The policy scheme can therefore be defined as follows:

e If DY > Dj then the development limit is set at D;.

e If DY < Dj then the private developer receives a subsidy s; : (1 + s;) =
1
a.

The above scheme is also contingent on the realization of the random
variable, ¢;, and dependent on the development state.

The analysis of the policy schemes seems to suggest that under simulta-
neous use and non-use value uncertainty, a fixed development tax can not
achieve the social optimum but could have only a second-best character. The
social optimum can be achieved by contingent, state development schemes,
which however might be difficult to implement.

7 Concluding Remarks

In this paper an exercise boundary approach has been used to analyze the
problem of irreversible development of a natural resource under uncertainty
in the use and non-use values associated with the resource.
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This approach seems to have a number of advantages that could be useful
in the analysis of dynamic management problems, not only in the field of envi-
ronmental and resource economics. In particular it allows the characterization
and comparison of development paths under privately-optimal and socially-
optimal management rules. The comparison of development paths made pos-
sible by this approach provides a basis for exploring situations where, con-
trary to the generally accepted intuition, socially-optimal development might
be faster than privately-optimal development for a certain time interval.

Furthermore the use of exercise boundaries indicates that regulation can
be designed in such a way that the regulated boundary coincides with the
socially-optimal boundary. For the case of uncertainty in use values only, this
approach shows that a simple fixed deterministic development tax can induce
the socially-optimal path. This is clearly an advantage since there is no need
for contingent instruments. When however uncertainty affects both use and
environmental values, the fixed tax can bring the regulated development closer
to the socially-optimal one, but can not achieve the socially-optimal path. To
do this contingent and state dependent schemes are required. It is an open
issue however, whether or not a fixed tax that approaches the optimal path
should not be preferred, on implementability and acceptability grounds, to a
complicated scheme that achieves the social optimum.
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Figure 2b: The socially-optimal exercise boundary
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