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Abstract 
 
A stochastic Cobb-Douglas production frontier is used to provide estimates of output-
oriented technical efficiency, input-oriented technical efficiency, input allocative efficiency 
and cost efficiency for a sample of seabass and seabream farms in Greece.  Mean output-
oriented technical efficiency is estimated at 78.5%, input-oriented technical efficiency at 
73.6%, input allocative efficiency at 79.2%, and cost efficiency at 58.2%.  Considering the 
sources of efficiency differentials among fish farms, it is evidence from the empirical results 
that large farms tend to achieve higher (technical and allocative) efficiency scores; 
specialization in either seabass or seabream affects positively technical and cost, but not 
allocative, efficiency; and utilization of skilled labor seems to have a positive impact only on 
technical efficiency.  
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Introduction 
 
Since the first half of the 1990s, Greek aquaculture has been dominated by seabass and 
seabream production.  Output grew dramatically from 53 tons in 1985 to 17,553 tons in 1995 
(Table 1) and was almost equally shared between seabass and seabream.  Eventually Greece 
became the largest producer of seabass and seabream in Europe accounting for 55% of total 
European production in 1995, compared to only 25% in 1989.  The growth of seabass and 
seabream production occurred at the expense of freshwater fish production, primarily of trout 
and carp (Kallifeidas 1997).  The number of seabass and seabream farms almost doubled in 
the first half of the 1990s, but the absolute number of farms entering the industry in the 1990s 
decreased compared to the second half of the 1980s, when a large number of small fish farms 
entered the industry (Table 1). 

Farm production varies considerably from small units producing up to 50 tons per 
year to big ones producing more than 200 tons per year.  The average farm size increased 
significantly from 18.6 tons per year in 1990 to 109.6 tons per year in 1995 (Table 1). How- 
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ever, regardless of farm size, the same type of technology is used as far as fish-cages and 
growing stocks are concerned (Kallifeidas 1997).  The situation is entirely different with 
respect to hatcheries, as it is difficult for small and medium size enterprises to integrate 
vertically due to high establishment cost and lack of technical expertise.  As a result, the 
number of seabass and seabream hatcheries increased at a much slower rate than the number 
of fish farms. 
 
Table 1  Production, fish farms and fish hatcheries of seabass and seabream in Greece, 1985-

1995 

Year Production Number of Number of Average Farm 
 (in tones) Fish Farms Hatcheries Production (tones) 

1985 53 2 - 26.5 
1986 89 9 1 9.9 
1987 105 17 1 6.2 
1988 200 27 1 7.4 
1989 500 62 5 8.1 
1990 1600 86 9 18.6 
1991 2459 114 11 21.6 
1992 4845 139 16 34.8 
1993 9500 145 22 65.6 
1994 13500 164 25 81.7 
1995 17553 160 25 109.6 

Source: Kallifeidas (1997) 
 

The ongoing rapid development of seabass and seabream production in Greece is closely 
related to the competitiveness of the sector in both domestic and export markets.1  Efficiency 
is one of the main factors determining competitiveness.  The higher the degree of efficiency, 
the lower will be the unit cost of production and as a result, fish farms would be able to 
supply their products at lower prices.  Consequently, more efficient fish farms would have 
better chances of surviving and prospering in the future than less efficient ones.  Along these 
lines, an analysis of efficiency would provide information about the potential sources of 
inefficiency.  In addition, measures of potential cost savings that can be achieved from 
improvements in technical and allocative efficiencies could be derived and used by fish farms 
as a benchmark to improve competitiveness. 

The objective of this paper is to examine the extent of both technical and allocative 
efficiencies in seabass and seabream production in Greece based on a sample of 30 fish farms 
at 1994 and using the stochastic frontier approach.  First, estimates of output-oriented 
technical efficiency are obtained directly from the econometric estimation of a Cobb-Douglas 
production frontier function.  Second, estimates of input-oriented technical efficiency, input 
allocative efficiency, and cost efficiency are derived by using an indirect approach, initially 
proposed by Kopp & Diewert (1982) and latter extended by Bravo-Ureta & Rieger (1991) to 
stochastic frontier models, which relies on the derived cost frontier.  Third, a second-stage 
regression approach is used to explain intra-firm variation in input-oriented technical 
efficiency, input allocative efficiency, and cost efficiency.  

                                                             
1  The greatest portion of domestic production (around 60% in 1994) is exported, mainly to Italy and other 

Mediterranean countries.  The portion consumed domestically has decreased over time, while that of export 
has increased (Kallifeidas 1997). 
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There are relatively few studies dealing with the measurement of efficiency in open-
access fisheries and aquaculture.2  Specifically, Kirkley et al. (1995; 1998) assessed technical 
efficiency in mid-Atlantic sea-scallop fishery; Campbell & Hand (1998) compared technical 
efficiency scores among domestic and distant water fishing fleets in the Solomon Islands 
fishing zone; and Sharma & Leung (1999) analyzed technical efficiency of longline fishery in 
Hawaii.  On the other hand, Sharma & Leung (1998) examined the technical efficiency and 
its determinants for a sample of extensive and intensive fishpond farms in Nepal; Sharma 
(1999) measured technical efficiency of carp production in Pakistan; Iinuma et al. (1999) 
analyzed the productive performance of a sample of carp pond farms in Peninsula Malaysia; 
and Sharma et al., (1999) studied technical and allocative efficiencies for a sample of Chinese 
polyculture fish farms.  Empirical results from these studies indicate that the factors 
influencing efficiency in commercial fisheries and aquaculture are dissimilar.  In open access 
fisheries, recruitment and subsequent harvestable stocks are important in determining 
productive efficiency.  However, these factors seem to have no influence in controlled 
aquaculture production.  Instead, stocking rates and fish feed, along with local environmental 
conditions, are the most influential factors in determining fish farm output and the degree of 
inefficiency. 
 
Methodological Framework 
 
Technical efficiency reflects the ability of firms to produce as much output as possible from a 
given level of inputs, or to use as little input as possible to obtain a given level of output.  
Accordingly, two measures of technical efficiency could be defined (Kopp 1981).  The first 
one is the output-oriented Timmer-type measure, which relates actual output to best practice 
output.  It gives the maximum amount by which output can be increased for a given input 
vector.  The second one is the input-oriented Farrell-type measure, reflecting the ratio of best 
practice input usage to actual input usage, output held constant.  It gives the maximum 
amount by which an input vector can be decreased proportionally, while producing the same 
amount of output.  Moreover, the input-oriented measure has an intuitive cost interpretation 
since one minus the degree of technical efficiency gives the percentage decrease in total cost 
associated with the complete removal of technical inefficiency (Kopp 1981).3  In addition, 
Fare & Lovell (1978) shown that input-oriented technical efficiency is less, equal, or greater 
than output-oriented technical efficiency under decreasing, constant, or increasing returns to 
scale.4  

Input allocative efficiency reflects the ability of using the cost-minimizing input 
combination given input prices and output.  It determines the maximum amount by which a 
technically efficient input vector can be decreased proportionally in order a given output level 
to be produced at least cost.  On the other hand, cost efficiency reflects the ability of a firm to 
produce a predetermined level of output at least cost.  It determines the maximum amount by 
which an input vector can be decreased proportionally, while producing the same amount of 
output at the minimum cost for a given input price vector.  Cost efficiency has a direct cost 
interpretation depicted by the ratio of minimum actual to cost of producing a given level of 
output (Kopp 1981), and algebraically equals the product of input-oriented technical 

                                                             
2 Production function analyses in aquaculture have been limited to assess the profitability of new investment, to 

estimate economies of scale, and to determine optimum intensity of input use.  For a comprehensive literature 
review see Hatch & Tai (1997). 

3 In contrast, such a cost-saving interpretation is not applicable to the output-oriented measure of technical 
efficiency, expect in the special case of constant returns to scale (Kopp 1981). 

4  The two measures are also equal if both equal one and thus production is technically efficient. 
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efficiency and input allocative efficiency (Farrell 1957).  Thus a firm is economically 
efficient if, and only if, it is both technically and allocatively efficient.  

To the extent that technical and allocative inefficiency have different causes, a 
determination of which of the two constitutes the main source of cost inefficiency could 
provide useful policy recommendations (Kumbhakar & Lovell 2000, p. 133).5  In addition, 
output- and input-oriented measures of technical efficiency provide quite different 
information, especially from a policy point of view.  The former determines by how much 
output supply could be increased if technical inefficiency is completely removed, while the 
later shows by how much cost of production could be reduced by operating with full 
technical efficiency.  Consistency in terms of both measurement and interpretation requires 
these various efficiency measures to be obtained from the same model.  However, from the 
existing literature it is evidence that firm-specific estimates of all the aforementioned 
efficiency measures can be obtained at once only at the cost of using self-dual production 
frontier functions (e.g., Cobb-Douglas), the inflexibility of which inherit the danger of biased 
estimates of output-oriented technical efficiency since the unmodeled complexity of 
production technology may appear in the composed error term.6   

In stochastic frontier analysis, two approaches (i.e., Schmidt & Lovell 1979, 1980 and 
Bravo-Ureta & Rieger 1991) were developed in this direction both of which exploited the 
self-duality property in measuring efficiency rather than in estimating the underlying 
production technology.  Also both approaches share a common feature in that extract 
estimates of output-oriented technical efficiency from the composed error term appended into 
the primal production frontier.  They differ however in the way of measuring input-oriented 
technical efficiency and input allocative efficiency.  Schmidt & Lovell (1979, 1980) used the 
analytical solutions for the cost frontier and the input demand functions, both defined in 
terms of the estimated parameters obtained from a system of equations consisting of the 
primal self-dual (Cobb-Douglas) frontier and the first-order conditions for cost minimization.  
Bravo-Ureta & Rieger (1991), on the other hand, used Shephard’s lemma, the first-order 
conditions for cost minimization, and the analytical solutions for the cost frontier defined in 
terms of the estimated parameters obtained from a single-equation estimation of the primal 
self-dual (Cobb-Douglas) frontier.   

The main advantage of Bravo-Ureta & Rieger (1991) approach is that allows 
decomposition of economic efficiency with a single-equation model, namely the primal self-
dual frontier.7  It is expected that by moving from a single-equation (Bravo-Ureta & Rieger) 
to a simultaneous-equation model (Schmidt & Lovell) involves a more complicated 
estimation problem and requires more data (i.e., input prices).  Even though input price data 
are also needed in Bravo-Ureta & Rieger’s (1991) approach, they involve only in the 
measurement of input-oriented technical efficiency and input allocative efficiency and not 
directly in the estimation of the model as in Schmidt & Lovell (1979, 1980).  Moreover, 
                                                             
5 It may also be possible that technical and allocative efficiency are interrelated (see Schmidt & Lovell 1980).  

For example, Kalirajan & Shand (1992) found that the existence of technical inefficiency influence the degree 
of allocative efficiency, but the opposite was not true.  

6 Attempts to model technology in a more flexible way, by using for example a translog function, restrict the 
number of the above mentioned efficiency measures that could be obtained at once.  For example, with cross-
section data, a translog cost frontier and a simultaneous equation model Kumbhakar (1997) was able to derive 
estimates of input-oriented technical efficiency and input allocative efficiency but not of output-oriented 
technical efficiency.  Reinhard et al. (1999), on the other hand, by combining stochastic frontier analysis with 
shadow price models, were able to obtain at once estimates of input- and output-oriented technical efficiency 
from a translog production frontier.  

7 Single-equation estimation of production frontiers is theoretically consistent with the assumption of expected 
profit maximization under output price uncertainty (Zellner et al. 1966).  But in such a case, expected profit 
maximization implies cost minimization for risk neutral producers (Batra & Ullah 1974).  This enables us to 
go back and forth between the stochastic production and cost frontiers in a theoretically consistent way.   
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given that both input-oriented technical efficiency and input allocative efficiency are 
independent of input price scaling (Kopp 1981), adequate firm-specific efficiency estimates 
could be obtained by using either regional or even national input price data.8   

To proceed consider the following stochastic production frontier function:  
 

        (1) 
                     
where yi is the observed output produced by the ith firm, xji is the quantity of the jth input used 
by the ith firm, β’s are parameters to be estimated, vi is a symmetric and normally distributed 
error term (i.e., statistical noise with ) that represents those factors that cannot be 
controlled by the firm, and ui is an one-sided, non-negative error term representing technical 
inefficiency in production which is assumed as in Stevenson (1980) to follow a truncated 
normal distribution, i.e., .9  It is further assumed that vi and ui are independently 
distributed from each other.  Then, firm-specific estimates of output-oriented technical 
efficiency are obtained by applying Battese & Coelli (1988) predictor to the following 
relation: 
 

          (2) 
 
and confidence intervals for  are calculated by using Horrace & Schmidt (1996) 
formulas.   is by definition bounded between zero and one. 

Following Bravo-Ureta & Rieger (1991), to obtain firm-specific estimates of the input-
oriented measure of technical efficiency, computation of technically efficient input vector  
is required.  This is derived by solving simultaneously the system of equation 
 

      (3) 
 

and the input ratios  (j>1) for each firm, where  is the maximum output that 
can be produced by the ith firm given its production technology and input use (which is also 
equal to its observed output adjusted for the statistical noise, vi), and kji  is the ratio of 

                                                             
8 Scaling all factor prices will have no effect on the input-oriented measure of technical efficiency because only 

relative prices matter. This property of input-oriented measures of efficiency is due to their radial nature. 
9 Equation (1) implies that the frontier is a neutral shift of the conventional production function in a sense that 

different methods of applying various inputs influence output equally.  On the other hand, Kalirajan & 
Obwona (1994) and Huang & Liu (1994) proposed alternative non-neutral specifications, which incorporate 
the diversity of individual decision making behavior.  However, there are some problems by applying either of 
these models in Bravo-Ureta & Rieger’s (1991) approach.  By applying the stochastic varying coefficients 
frontier approach there is no guarantee that the resulting cost frontier will satisfy the linear homogeneity 
property because the primal frontier is derived by using the highest of each estimated response coefficient and 
the intercept term.  Whenever the resulting cost frontier is not linear homogeneous in input prices, inadequate 
estimates of cost efficiency would be obtained.  In addition, as pointed out by one referee, the variables 
included in the technical inefficiency effect model of Huang & Liu (1994) cannot be ignored in deriving the 
resulting cost frontier; this however complicates extremely its derivation.  For these reasons we proceed by 
using the standard error component model (1).                
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observed inputs x1i and xji at .10  Then, firm-specific estimates of input-oriented technical 
efficiency are obtained as (Kopp 1981): 
 

         (4) 

 
where wji  is the factor price of the jth input for the ith firm and .  

Firm-specific estimates of cost efficiency are obtained by using the derived cost frontier, 
evaluated at .  Assuming that the production frontier in (1) is self-dual (e.g., Cobb-
Douglas), a closed-form solution can be obtained for the dual cost frontier as: 
 

         (5) 
 
where ci is the minimum cost of the ith firm associated with output  and αj are the 

corresponding parameters.  The cost efficient input vector, , is obtained by applying 
Shephard’s lemma to (5) and by substituting input prices and (3) into the derived system of 
factor demand equations.  Then, cost efficiency is given as (Kopp 1981): 
 

         (6) 

 
where .  Finally, firm-specific estimates of input allocative efficiency are 
obtained by utilizing Farrell’s (1957) decomposition, i.e., 
 

        (7) 

 
As with the other two input-oriented measures . 

                                                             
10 Specification (3) ensures the stochastic nature of (1) and distinguishes Bravo-Ureta & Rieger’s (1991) 

approach from Kopp & Diewert’s (1982) deterministic approach.  Another distinguished feature between 
them is that the former is based on the estimation of a production (primal) frontier while the latter is based 
on a dual (cost) frontier.  As a result, the input-based measure of allocative efficiency is obtained residually 
in the former case by using Farrell’s (1957) decomposition, while the input-based measure of technical 
efficiency is calculated residually in the latter case. 
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After computing the above efficiency measures, it is common to attempt an explanation 
of intra-firm variations in efficiency by using a second-stage regression approach.  This 
involves specification of a regression model relating efficiency scores (dependent variable) 
with a set of explanatory variables that are expected to influence efficiency differentials 
among firms.  In Bravo-Ureta & Rieger’s (1991) model, this approach can appropriately be 
used in explaining input-oriented technical efficiency, input allocative efficiency and cost 
efficiency but not in explaining output-oriented technical efficiency.  The reason is that using 
output-oriented technical efficiency as a dependent variable in the second-stage regression is 
inconsistent with the assumption of an identically and independently distributed one-sided 
error term in (1) (Kumbhakar et al. 1991; Reifschneider & Stevenson 1991).  Thus, the 
general form of the second-stage regression is specified as follows:        

 
        (8) 

 
where , zji are variables used to explain efficiency differentials 
among firms, δ’s are parameters to be estimated, and ωi is an identically and independently 
distributed random variable capturing the impact of unobserved explanatory variables, 
measurement errors and other sources of statistical noise.  
 
Empirical Procedures 
 
Data and Variables  
The data used in this study were collected through questionnaires filed with the Greek 
Ministry of Agriculture, Department of Fishery, by 140 seabass and seabream farms at 1994.  
From these, 30 were selected randomly for the purposes of the present study.11  This sample 
corresponds to almost 23% of fish farms producing seabass and seabream in Greece at 1994 
and they accounted for approximately 30% of total national production.  They were diverse in 
size producing from a low of 45 tons/year to a high of 451 tons/year of seabass and seabream 
with a mean production level of 145 tons/year and a relatively high standard deviation of 83 
tons/year (Table 2).  They were also diverse in inputs used especially in that some of fish 
farms included in the sample were not employing skilled labor (scientists and technicians).   

For each fish farm, there is available information about production of seabass and 
seabream, annual sales, outlays on and quantities of stocking rate and fish feed, and the 
number of workers employed.  Output (y) is consisting of annual seabass and seabream 
production measured in tons.  Output quantity data were converted into indices by choosing a 
representative fish farm as a base to normalize these series.  The choice of the representative 
fish farm was based on total sales and the smallest deviation from sample mean.  Aggregation 
of seabass and seabream quantity indices was conducted using Divisia indices, where revenue 
shares were used as weights.   

Stocking rate (x1), fish feed (x2) and labor (x3) are the primary inputs.12  Stocking rate is 
measured by the number of juveniles utilized while the quantity of fish feed is measured in 
tons.  Both these quantity series were converted into indices by using the representative fish 

                                                             
11 Current policy of the Ministry of Agriculture regarding confidential information restricted accessibility to data 

on all 140 fish farms included in the original sample.  Due to this, a sample consisting of 25% of the fish 
farms included in the original data set were selected via a random process.  Unfortunately, for five of them 
there were missing values for one or more of the variables included in the empirical model.  Thus, we end up 
with a total of 30 fish farms included in our sample.      

12 There were no available data on capital and for this reason it is not included as an input variable in the 
production function.  
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farm as a base of normalization.  Aggregation of seabass and seabream stocking rates was 
conducted using Divisia indices, where cost shares were used as weights.  Labor input was 
measured by the number of workers.  Besides having information about the number of skilled 
and unskilled workers we did not have separate data on their total annual cost.  Both kinds of 
labor (skilled and unskilled) were aggregated into a single variable using Divisia indices.  In 
constructing the relevant cost shares for aggregating labor, it was assumed that skilled labor 
was paid one and a half time more than unskilled labor.13  

 
Table 2  Summary statistics of the variables involved in the analysis. 

 Mean Min Max Standard 
Deviation 

Output     
Seabass and Seabream Production 
(tons) 

145 45 451 83 

Input Quantities     
Stocking Rate (ths.) 259 14 462 127 
Fish Feed (tons) 328 85 1144 204 
Unskilled Labor (No of workers) 8 2 29 5.4 
Skilled Labor (No of workers) 2 0 7 1.7 

Input Prices     
Stocking Rate (Drs) 96.1 52.2 113.4 12.6 
Fish Feed (Drs) 2,000 2,000 2,000 0.0 
Wage (ths Drs) 5.4 4.5 5.5 2.8 

 
Input prices needed to measure the total cost of production for each fish farm in the 

sample were obtained by dividing total outlays with the corresponding quantity used.  They 
are defined as follows: w1 represents the price of stocking rate in drachmas ($1 U.S.=242 
drachmas at 1994), w2 is the per tone price of fish feed in thousand drachmas, and w3 is the 
annual payment to unskilled labor in thousand drachmas based on the number of equivalent 
unskilled workers.  A summary of statistics of input prices is given in Table 2 from where it 
can be seen that all farms in the sample face the same unit price for fish feed, indicating a 
fairly competitive market for this input.   

The farm-specific variables aimed to explain efficiency variation among fish farms were: 
first, the size of producing units expressed as the volume of their total (seabass and seabream) 
output (z1).  Second, the degree of specialization in either seabass or seabream production, 
which is depicted by two dummy variables (z2 and z3).  These specialization dummy variables 
were constructed as the ratios of seabass and seabream production to total production 
(measured in tons).  If these ratios were greater than 75%, a value of one was assigned in the 
dummy variable indicating specialization on seabass or seabream production; otherwise it 
was zero.  Thus, fish farms were considered as specialized if the share of either seabass or 
seabream output is more than 75% of its total production.  Third, the total number of skilled 
labor units employed by each fish farm (z4). 
 
Empirical Model 
The stochastic production frontier function used to analyze the underlying technology of the 
Greek fish farms is specified to be of a Cobb-Douglas form, i.e., 
 

                                                             
13 This ratio was based on skilled and unskilled labor salaries in food industry.  A sensitivity analysis within 1-2 

range has shown no significant changes in the econometric results.   
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       (9) 

 
The dual cost frontier corresponding to (9) is given as: 
 

       (10) 

 

where , ,   

and .  On the other hand, the second-stage regression equation (8) is specified 

in a log-linear form as follows:  
 

       (11) 

 
and since the dependent variables, which lie between 0 and 1, have been transformed it can 
be estimated with OLS (Kumbhakar & Lovell 2000, p. 264). 

The parameters of the stochastic production frontier (9) are estimated using maximum 
likelihood (ML) and the Frontier (Version 4.1) computer program developed by Coelli 
(1992).  The variance parameters of the likelihood function are estimated in terms of 

 and , where the -parameter has a value between zero and one.  
Several hypotheses can be tested by using the generalized likelihood-ratio statistic, 

, where  and  denote the values of the log-
likelihood function under the null  and the alternative  hypothesis, respectively.14  
First, if , each fish farm in the sample is operating on the technically efficient 
frontier and the model reduces to the average response function.15  Second, if  the 
model reduces to the Aigner et al. (1977) formulation, with technical efficiency following a 
half-normal distribution.  

 
Empirical Results 
 
ML Estimates and Hypotheses Testing 
The estimated parameters of the Cobb-Douglas average and frontier production functions are 
presented in Table 3.  It can be seen that there are significant differences with respect to the 

                                                             
14 If the given null hypothesis is true, the generalized likelihood-ratio statistic has approximately a  

distribution, except the case where the null hypothesis involves also .  Then, the assumptotic 

distribution of  is a mixed  (Coelli 1995) and the appropriate critical values are taken from Kodde & 
Palm (1986). 

15 The value of  determines the point where the truncation of the distribution of the one-sided error term takes 
place. 
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estimated variance of the error term and marginal factor productivities, except that of labor 
which is found to be insignificant under both specifications.  In the stochastic frontier model, 
the estimated variance of the one-sided error term is found to be  and that of the 
statistical noise . Given the estimated parameters of the Cobb-Douglas frontier 
production function in Table 3 and by using (11), the dual cost frontier is given as: 
 

  (12) 
 

Hypotheses testing concerning model representation are reported in Table 4.  It is evident 
that the traditional average production function does not represent adequately the data of fish 
farms in the sample as the null hypothesis that  is rejected at the 5% level of 
significance.  This is also depicted by the statistical significance of the parameter (Table 
3).  Moreover, Aigner et al. (1977) specification is not an adequate representation for the 
particular sample of fish farms as the null hypothesis that  is also rejected at the 5% 
level of significance.  
 
Production Structure 
According to the estimated Cobb-Douglas frontier production function, stocking rate and fish 
feed are the foremost important factors of production for seabass and seabream farms (Table 
3).  As it is indicated from the relevant estimates of output elasticities, 1% increase in 
stocking rate and fish feed results in, ceteris paribus, 0.39% and 0.33% increase in total 
output, respectively.  Labor, on the other hand, exhibits a considerably lower output elasticity 
(0.092), which is also statistically insignificant at the 5% level of significance.   
 
Table 3: Parameter estimates of average production function and stochastic production frontier  

Variable   Average Function  Stochastic Frontier  
  Estimate Estimate 

Constant β0 0.316 (0.083)* 0.685 (0.067)* 

Stocking Rate β1 0.424 (0.114)* 0.384 (0.087)* 
Fish Feed β2 0.484 (0.127)* 0.325 (0.083)* 
Labor β3 0.031 (0.114) 0.092 (0.131) 

 
 

0.055 (0.025)** 0.081 (0.034)** 

  - - 0.421 (0.018)* 
µ  - - 0.192 (0.027)* 
Ln(θ)  -12.813 -4.602 
RTS  0.939 0.801 

In parentheses are the corresponding standard errors. 
* Significant at the 1% level; ** significant at the 5% level. 
 

The second feature of the structure of production is concerned with returns to scale.  The 
hypothesis of constant returns to scale is rejected at the 5% level of significance (Table 4).  
Returns to scale can be measured directly through the estimated parameters of the Cobb-
Douglas frontier production function by the sum of output elasticities, or through the 
corresponding cost frontier (12) by the reciprocal of the output-related derived parameter.  
Returns to scale are found to be decreasing and on average to be 0.801.  This implies that an 
equiproportional increase in all inputs by 1% results in a 0.801% increase in total output.  It 
also implies that a 1% increase in total output is associated with 1.248% increase in total cost.  
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Decreasing returns to scale are more likely associated with the restricted number of cages that 
can be placed in each sheltered bay due to environmental regulations.   
 
 Table 4 Hypotheses Tests  

 Hypothesis statistic Critical Value (α=0.05) 

 14.42 * 

 7.45  

 (CRTS) 16.32  

* Critical values are obtained from Kodde and Palm (1986). 
 
The derived dual cost frontier (12) may be used to obtain estimates of factor demand 

elasticities, which are defined as .  Our empirical results indicate that 
all factor inputs considered have inelastic demands with that of labor being the less price 
sensitive.16  In particular, the estimated demand elasticities are found to be -0.479 for 
stocking rate, -0.406 for fish feed, and -0.115 for labor.   
 
Efficiency Measurement 
Estimates of input-oriented technical efficiency, output-oriented technical efficiency, input 
allocative efficiency and cost efficiency for the sample farms are reported in Tables 5 and 
their frequency distributions are depicted in Table 6.  In addition, confidence intervals for the 
estimates of output-oriented technical efficiency are presented in Table 5.  These intervals are 
found to vary widely among the sample farms.  The difference between the lower and the 
upper efficiency intervals is within 2.3% to 14.2% limits.  In general, confidence intervals are 
not too wide and the majority (70.0%) of fish farms is within 2% to 8% limits. 

The estimated mean output-oriented technical efficiency is found to be 78.5%, which 
means that 21.5% increase in production is possible with the present state of technology and 
unchanged input uses, if technical inefficiency is eliminated (Table 5).  On the other hand, the 
estimated mean input-oriented technical efficiency is found to be 73.6%, which implies that 
by operating at full technical efficiently 26.4% decrease in total cost of production can be 
achieved without altering technology and the volume of output produced (Table 5).  
Estimated input-oriented technical inefficiency measure is lower than the corresponding 
output-oriented measure due to decreasing returns to scale.   This holds for all fish farms in 
the sample.  Output-oriented technical efficiency scores varied from 52.5% to 99.6%, while 
input-oriented technical efficiency scores varied from 41.0% to 94.5% (Table 5).  However, 
both measures show that almost 67% of sample farms achieved technical efficiency greater 
than 70% (Table 6).   

 
Table 5 Output- and Input-Oriented Technical Efficiency, Allocative Efficiency and Economic 

Efficiency by Fish Farm 

 
Fish     

Farm MV LB UB RG    
1 67.4 66.4 72.4 6.1 64.4 67.5 43.5 

                                                             
16 Cross-price demand elasticities are zero for Cobb-Douglas technologies and the corresponding Allen-Uzawa 

partial elasticities of substitution are equal to one.  On the other hand, the Morishima elasticties of 
substitution are zero. 
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2 85.7 82.3 89.7 7.4 81.2 77.9 63.3 
3 83.3 80.1 87.1 7.0 80.3 79.6 64.0 
4 65.7 62.3 68.5 6.2 57.7 82.6 47.7 
5 66.3 63.1 69.5 6.4 64.7 82.7 53.6 
6 67.9 65.4 69.9 4.5 62.4 86.2 53.8 
7 87.4 86.6 89.7 3.1 83.3 65.6 54.6 
8 65.6 64.5 66.9 2.3 59.2 88.4 52.3 
9 99.5 97.2 100.0 2.8 93.5 90.4 84.5 

10 75.9 72.3 81.0 8.6 69.0 74.7 51.6 
11 78.4 75.3 80.4 5.1 73.5 72.5 53.2 
12 99.4 95.6 100.0 4.4 94.5 96.5 91.2 
13 86.9 85.4 88.0 2.5 82.3 69.3 57.0 
14 77.7 72.3 81.2 8.9 72.2 96.1 69.5 
15 78.3 75.7 80.5 4.8 73.5 86.5 63.6 
16 79.6 74.5 82.8 8.2 75.7 56.2 42.5 
17 58.8 54.2 61.2 7.0 51.2 67.1 34.4 
18 59.3 52.3 66.5 14.2 55.7 89.4 49.8 
19 97.1 94.3 99.9 5.7 93.6 94.7 88.6 
20 75.3 71.2 79.4 8.2 72.9 67.1 48.9 
21 98.2 96.6 100.0 3.4 93.5 78.3 73.2 
22 89.3 81.3 94.3 13.0 84.4 75.1 63.3 
23 87.6 83.5 91.2 7.8 83.5 93.3 77.9 
24 82.3 77.4 84.6 7.2 79.5 81.8 65.0 
25 75.8 71.2 79.4 8.1 71.2 73.8 52.6 
26 98.7 92.5 100.0 7.5 89.4 73.2 65.5 
27 85.6 80.3 89.4 9.1 83.5 47.8 39.9 
28 57.6 55.6 59.3 3.7 48.7 84.9 41.3 
29 58.6 53.2 62.7 9.5 51.2 86.5 44.3 
30 65.9 61.2 70.2 9.0 62.3 89.1 55.6 

Mean 78.5 74.8 81.5 6.7 73.6 79.2 58.3 

Note: LB: lower bound; MV: mean value; UB: upper bound; RG: range.  
 

The degree of technical efficiency indicates that the majority of fish farms in the sample 
operate below the efficient frontier.  This may be due to the infant stage of the industry, 
which started its operation in the middle of the 1980s, and still more of the fish farms receive 
gains from learning-by-doing economies by using the existing state of technology.  Although 
there has been no major breakthrough on the technology used, it seems that farmers are still 
adjusting themselves into the new cultural practices and techniques.  Fish farms in the 
industry may gain a lot in terms of technical efficiency by reducing juveniles damages, 
improving know-how associated with growing conditions, and investing in new fish-cages.  

Mean input allocative efficiency was found to be 79.2%, ranging from 47.8% to 96.5% 
(Table 5).  In addition, the frequency distribution results show that around 73% of the sample 
farms achieved more than 77% of input allocative efficiency (Table 6).  These results indicate 
that sample farms have achieved a relatively good allocation of existing resources and on 
average were reacting satisfactory to market price signals. Nevertheless, a 20.8% decrease in 
total cost of production is still feasible by a further reallocation of inputs for any given level 
of output and input prices.  On the other hand, mean input allocative efficiency is by 5.6% 
higher than corresponding point estimate of input-oriented technical efficiency implying that 
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on average fish farms did better in allocating existing resources than in achieving the 
maximum attainable output for given resources.17  
 
Table 6  Frequency Distribution of Technical (Output- and Input-oriented), Input Allocative and 

Cost Efficiencies 

Range (%)     

<30 0 0 0 0 
30-40 0 0 0 2 
40-50 0 1 1 7 
50-60 4 5 1 9 
60-70 6 5 5 7 
70-80 7 7 8 2 
80-90 8 8 10 2 
90-100 5 4 5 1 
Mean 78.5 73.6 79.2 58.3 
Minimum 52.5 41.0 47.8 33.4 
Maximum 99.6 94.5 96.5 91.2 
Std Deviation 13.1 13.6 11.8 14.3 

 
Based on the input-oriented technical efficiency and input allocative efficiency estimates, 

mean cost efficiency is found to be around 58.3% (Tables 5).  This figure represents the ratio 
of minimum to actual cost of production.  It implies that significant cost savings (41.7%) may 
be achieved by eliminating both technical and allocative inefficiencies.  From the above 
results it is clear that the largest portion of economic inefficiency is due to technical 
inefficiency.  Cost efficiency of fish farms in the sample ranges from 33.4% to 91.2% (Table 
5).  The frequency distribution results show that only 17% of fish farms in the sample 
achieved more than 70% of economic efficiency (Table 6).  

Potential cost savings at full economic efficiency by farm size are presented in Table 7.18  
According to our results, large farms (>200 tons) would be able to reduce their actual costs 
by 39.7%, medium sized farms (100-200 tons) by 41.8% and small farms (<100 tons) by 
46.3% by operating at full technical and allocative efficiency levels.  On average potential 
total cost savings are estimated to be 60.8 million drachmas per year, ranging from 44.4 to 
102.7 million drachmas for small and large farms.  However, potential total cost savings 
would in relative terms be greater for small (46.3%) rather than large farms (39.7%) 
indicating that large farms achieved higher efficiency scores.  But in absolute terms potential 
total cost savings are much greater for large farms due to substantially higher production cost.  
Moreover, given that the degree of technical inefficiency found to be greater than that of 
allocative inefficiency (Table 5), operating at the full technical efficiency level accounts for a 
larger percentage of total cost reduction.  These percentage figures are similar for small and 
medium farms but differ substantially for large farms.   

 
 

Table 7  Potential Cost Savings for Fish Farms by Size 

Farm Size Actual  Potential Cost Reduction1 

                                                             
17 Theoretically, only the comparison of input-oriented measures of technical and allocative efficiency is 

compatible.  Any comparison between output-oriented technical efficiency and input-oriented allocative 
efficiency is meaningless.  

18 These estimates are obtained by multiplying actual cost by  and , and calculating 
residually the potential cost savings arising from eliminating input allocative inefficiency. 
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 Cost1 TEI AEI Total 

Small (<100 tons) 96 23.8 (53.6) 20.6 (46.4) 44.4 
Medium (100-200 tons) 152 33.2 (52.2) 30.4 (47.8) 63.6 
Large (>200 tons) 259 65.2 (63.5) 37.4 (36.5) 102.7 
All Farms 146 35.3 (58.1) 25.5 (41.9) 60.8 

1 in million drachmas.  
In parentheses are the corresponding percentage values of total cost reduction. 
 
Determinants of Efficiency Variation 
Empirical results concerning the potential sources of efficiency differentials among sample 
farms are presented in Table 8.  Farm size has a positive and significant effect on efficiency 
levels, which suggests that, on average, large farms operated at higher efficiency levels than 
small farms.  In the presence of decreasing returns to scale, this suggests that large farms 
achieved higher efficiency scores through better monitoring of labor and to improved feeding 
and health management of juveniles.  Specialization in either seabass or seabream production 
affects positively technical and cost efficiency but it does not seem to affect input allocative 
inefficiency as the related estimated parameters found to be statistically insignificant at the 
5% level of significance.  This in turn implies the dominance of efficiency over scope 
economies.  On the other hand, utilization of skilled labor (scientists and technicians) does 
not seem to affect the input allocative and cost inefficiency in a statistically significant way.  
In contrast, skilled labor affects positively technical efficiency implying that know-how is 
dependent on workers’ skill endowment.   
 
Table 8  Parameter Estimates of the Second-Stage Regression of Input-Oriented Technical, 

Allocative and Economic Efficiencies on Farm-Specific Characteristics 

 Variable     

Constant δ0 4.543 (0.345)* 0.564 (0.099)* 2.321 (0.234)* 

Farm Size  δ1 0.088 (0.035)* 0.150 (0.066)** 0.104 (0.046)** 

Specialization in Seabass δ2 0.098 (0.037)* 0.123 (0.148) 0.316 (0.101)* 

          »          in 
Seabream 

δ3 0.134 (0.058)** 0.084 (0.071) 0.229 (0.088)* 

Skilled labor units δ4 0.235 (0.134)** 0.342 (0.259) 0.144 (0.129) 

`  0.255 0.298 0.302 

In parentheses are the corresponding standard errors. 
* Significant at the 1% level; ** significant at the 5% level. 
 
Concluding Remarks 
 
The growth in supply of seabass and seabream has led to considerable decrease in market 
price since 1989 and producers have seen their profit margins declining even though average 
production cost has also been reduced.  This is expected to continue, as supply will increase 
steadily to meet demand requirements.  Thus gains in seabass and seabream production or 
potential cost savings stemming from improvements in efficiency would be important for the 
Greek industry in the light of increasing competition.  The results of the present study suggest 
that there are still considerable cost savings that may be realized by improving efficiency; 
these are estimated to be around 42% on average and in relative terms are expected to be 
greater for small farms.  Moreover, by eliminating technical inefficiency production may on 
average increase by 21.5% without altering the state of technology and inputs use.  Thus 
there is still room for suppressing average cost to maintain previous profit margins.   
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According to our results, technical inefficiency seems to be the main source of 
inefficiency.  Thus the larger portion of cost saving would be realized by improving existing 
know-how.  This may be achieved by lowering food conversion ratio and by improving fish 
ongrowing conditions.  The former is related to appropriate husbandry practices and adequate 
feeding methods (e.g., use of demand feeders).  Improving fish ongrowing conditions, on the 
other hand, result in better surviving rate and in increased production.  Surviving rate depends 
on fry quality, fish-cages and health management.  Even though a lot of progress has been 
done in fry production by the establishment of domestic hatcheries and in fish-cages by the 
progressive replacement of exposed site cages with offshore cages, disease problems have 
significantly increased in recent years and still more effort is required on finding solutions to 
bacterial problems. 

 Our second-stage regression analysis identifies two main sources of improving technical 
inefficiency, namely specialization and utilization of skilled labor (i.e., scientists and 
technicians).  The former implies that cost savings associated with product diversification 
tend to be outweighed by cost saving arising from removing inefficiencies.  As a result farms 
specialized in either seabass or seabream production achieved higher efficiency scores and 
apparently have a larger margin to squeeze average cost.  On the other hand, employing 
skilled instead of unskilled labor will in general result in better production management and 
consequently, in higher technical efficiency.  Eventually the resulting extra labor cost would 
well be covered by increased revenue.  The above results could be used (with some caution 
however due to data limitation problems) as a benchmark for improving competitiveness of 
Greek seabass and seabream farms.  

    
Acknowledgements  
 
We would like to thank four anonymous reviewers for constructive comments and 
suggestions. 
 
References 
 
Aigner, D.J., Lovell, C.A.K. & Schmidt, P. (1977). Formulation and estimation of stochastic 

frontier production function models. Journal of Econometrics, 6, 21-37. 
Batra, R.N. & Ullah, H. (1974). Competitive firm and the theory of the input demand under 

uncertainty. Journal of Political Economy, 82, 537-548. 
Battese, G.E. & Coelli, T.J. (1988). Prediction of firm-level technical efficiencies with a 

generalized frontier production function and panel data. Journal of Econometrics, 38, 
387-399. 

Bravo-Ureta, B.E. & Rieger, L. (1991). Dairy farms efficiency measurement using stochastic 
frontiers and neo-classical duality. American Journal of Agricultural Economics, 73, 
421-428. 

Campbell, H.F. & Hand, A.J. (1998). Joint ventures and technology transfer: The Solomon 
Islands pole-and-line fishery. Journal of Development Economics, 57, 421-442. 

Coelli, T.J. (1992). A computer program for frontier production function estimation: Frontier 
version 2.0. Economics Letters, 39, 29-32. 

Coelli, T.J. (1995). A Monte Carlo analysis of the stochastic frontier production function. 
Journal of Productivity Analysis, 6, 247-268. 

Farrell, M.J. (1957). The measurement of productive efficiency. Journal of Royal Statistical 
Society Series A, 120, 253-281. 

Färe, R. & C.A.K. Lovell (1978). Measuring the technical efficiency of production. Journal 
of Economic Theory, 19, 150-162. 



16         Measuring productive efficiencies of seabass and seabream farms in Greece • G. Karagiannis et al. 

Aquaculture Economics and Management 4(3/4) 2000 

Hatch, U. & Tai, C.F. (1997). A survey of aquaculture production economics and 
management. Aquaculture Economics and Management, 1, 13-27. 

Horrace , W.C. & Schmidt, P. (1996). Confidence statements for efficiency estimates from 
stochastic frontier models. Journal of Productivity Analysis, 7, 257-282. 

Huang, C.J. & Liu, J.T. (1994). Estimation of a non-neutral stochastic frontier production 
function. Journal of Productivity Analysis, 5, 171-180. 

Iinuma, M., Sharma, K.R. & Leung, P.S. (1999). Technical efficiency of carp pond 
production in Peninsula Malaysia: An application of stochastic production frontier and 
technical inefficiency model. Aquaculture, 175, 199-213. 

Kalirajan, K.P. & Shand, R.T. (1992). Causality between technical and allocative 
efficiencies: An empirical testing. Journal of Economic Studies, 19, 3-17. 

Kalirajan, K.P. & Obwona, M.B. (1994). Frontier production function: The stochastic 
coefficient approach. Oxford Bulletin of Economic and Statistics, 56, 87-96. 

Kallifeidas, G. (1997). Aquaculture. in Trends and prospects in the agricultural sector, G. 
Mergos and K. Papageorgiou (eds). Stamoulis Publishing Company, Athens, Greece, 
pp. 363-413  (in Greek). 

Kirkley, J.E., Squires, D. & Strand, I.E. (1995). Assessing technical efficiency in commercial 
fisheries: The mid-Atlantic sea scallop fishery. American Journal of Agricultural 
Economics, 77, 686-697. 

Kirkley, J.E., Squires, D. & Strand, I.E. (1998). Characterizing managerial skill and technical 
efficiency in a fishery. Journal of Productivity Analysis, 9, 145-160. 

Kodde, D.A. & Palm, F.C. (1986). Wald criteria for jointly testing equality and inequality 
restrictions. Econometrica, 54, 1243-1248. 

Kopp, R.J. (1981). The measurement of productive efficiency: A reconsideration. Quarterly 
Journal of Economics, 96, 477-503. 

Kopp, R.J. & Diewert, W.E. (1982). The decomposition of frontier cost function deviations 
into measures of technical and allocative efficiency. Journal of Econometrics, 19, 319-
331. 

Kumbhakar, S.C. (1997). Modeling allocative inefficiency in a translog cost function and cost 
share equations: An exact relationship. Journal of Econometrics, 76, 351-356. 

Kumbhakar, S.C. & Lovell, C.A.K. (2000). Stochastic Frontier Analysis, New York: 
Cambridge University Press. 

Kumbhakar, S.C., Ghosh, S. & McGuckin, J.T. (1991). A generalized production frontier 
approach for estimating determinants of inefficiency in US dairy farms. Journal of 
Business and Economic Statistics, 9, 279-286. 

Reifschneider, D. & Stevenson, R. (1991). Systematic departures from the frontier: A 
framework for the analysis of firm inefficiency. International Economic Review, 32, 
715-723. 

Reinhard, S., Lovell, C.A.K. & Thijssen, G.J. (1999).  Econometric estimation of technical 
and environmental efficiency: An application to Dutch dairy farms. American Journal 
of Agricultural Economics, 81, 44-60. 

Schmidt, P. & Lovell, C.A.K. (1979). Estimating technical and allocative inefficiency relative 
to stochastic production and cost frontiers. Journal of Econometrics, 9, 343-366. 

Schmidt, P. & Lovell, C.A.K. (1980). Estimating stochastic production and cost frontiers 
when technical and allocative inefficiency are correlated, Journal of Econometrics, 13, 
83-100. 

Sharma, K.R. (1999) Technical efficiency of carp production in Pakistan, Aquaculture 
Economics and Management, 3, 131-142. 



G. Karagiannis et al. • Measuring productive efficiencies of seabass and seabass farms in Greece            17 

Aquaculture Economics and Management 4(3/4) 2000 

Sharma, K.R. & Leung, P.S. (1998). Technical efficiency of carp production in Nepal: 
application of a stochastic frontier production function approach. Aquaculture 
Economics and Management, 2, 129-140. 

Sharma, K.R. & Leung, P.S. (1999). Technical efficiency of the longline fishery in Hawaii: 
An application of stochastic production frontier. Marine Resource Economics, 13, 259-
274. 

Sharma, K.R., Leung, P.S., Chen, H. & Peterson, A. (1999). Economic efficiency and 
optimum stocking densities in fish polyculture: An application of data envelopment 
analysis (DEA) to Chinese fish farms. Aquaculture, 180, 207-221. 

Stevenson, R.E. (1980). Likelihood functions for generalized stochastic frontier estimation. 
Journal of Econometrics, 13, 343-366. 

Zellner, A., Kmenta, J. & Dreze, J. (1966). Specification and estimation of Cobb-Douglas 
production function models. Econometrica, 34, 784-795. 

 


