
 
 
 
 
 

SELF-DUAL STOCHASTIC PRODUCTION FRONTIERS  

AND DECOMPOSITION OF OUTPUT GROWTH:  

THE CASE OF OLIVE-GROWING FARMS IN GREECE 
 

 

 

 

 

 

 

G. Karagiannis* and V. Tzouvelekas** 
 
 
* Senior Researcher, Institute of Agricultural Economics and Rural Sociology, 
National Agricultural Research Foundation, and Visiting Associate Professor, 
Department of Economics, University of Crete, Greece 
 
** Visiting Lecturer, Department of Economics, University of Crete, Greece 
 
 
 
 
 
 
 
 
 
 
 
 
 
Corresponding Author: G. Karagiannis, Institute of Agricultural Economics and Rural 
Sociology, National Agricultural Research Foundation, 184c, Kifisias Av., 145 62 
Kifisia, Athens, Greece; tel. ++30-1-80 10 816; fax ++30-1-80 88 947; email 
igeke@compulink.gr 
 



 1 

SELF-DUAL STOCHASTIC PRODUCTION FRONTIERS  

AND DECOMPOSITION OF OUTPUT GROWTH:  

THE CASE OF OLIVE-GROWING FARMS IN GREECE 

 
 
 
 
 
 

This paper provides a decomposition of output growth among olive-growing farms in 
Greece during the period 1987-1993 by integrating Bauer’s (1990) and Bravo-Ureta 
and Rieger’s (1991) approaches.  The proposed methodology is based on the use of 
self-dual production frontier functions. Output growth is attributed to the size effect, 
technical change, changes in technical and allocative inefficiency, and the scale 
effect.  The empirical results indicate that the scale effect and the effect of allocative 
inefficiency, which were not taken into account in previous studies on output growth 
decomposition analysis, have caused a 7.3% slowdown and a 11.0% increase in 
output growth, respectively.  Technical change found to be the main source of TFP 
growth while both technical and allocative inefficiency decreased over time. Still 
though, 56.5% of output growth in attributed to input growth.        

 
 
 
 
 

Introduction 
 
Several recent studies (i.e., Fan, 1991; Ahmad and Bravo-Ureta, 1995; Wu, 1995; 

Kalirajan et al., 1996; Kalirajan and Shand, 1997) have attempted to explain and to 

identify the sources of output growth in agriculture.  By using a production function 

approach, they have attributed output growth into the size effect (input growth), 

technical change, and improvements in technical efficiency.  In this framework is 

however assumed implicitly that technical change and changes in technical efficiency 

consist the only components of total factor productivity (TFP) changes.  Nevertheless, 

in a purely theoretical ground, returns to scale and allocative efficiency may also be 

significant sources of TFP growth and consequently, of output expansion.  Bauer 

(1990) has provided such a decomposition of TFP changes within a cost function 

framework. 

 There are empirical evidence (e.g., Park and Kwon, 1995) that scale 

economies stimulate output growth even in the absence of technical change and 

improvements in technical efficiency as long as input use increases.  Analogously, 

diseconomies of scale could slowdown output growth under similar circumstances, 



 2 

which is more likely to be the case for agriculture.  The scale effect can correctly be 

omitted in the decomposition of TFP growth only in the case of constant returns to 

scale (Lovell, 1996).  Since the range of scale economies is not known a priori, it 

seems appropriate to proceed by statistically testing the hypothesis of constant returns 

to scale.  If this hypothesis is rejected, the scale effect is present and should be taken 

into account.  Its relative contribution to output growth depends on both the 

magnitude of scale economies and the rate of input growth. 

On the other hand, output gains may also be obtained by improving allocative 

efficiency.  As noticed by Bravo-Ureta and Rieger (1991), focusing only on technical 

efficiency understates the benefits that could be derived by individual producers from 

improvements in overall performance.  However, in highly protected sector, such as 

agriculture, allocative inefficiency tends to be an important source of TFP slowdown 

(Fulginiti and Perrin, 1993; Kalaitzandonakis, 1994).  Nevertheless, in the presence of 

price support schemes, the improvement of allocative efficiency provides an additional 

incentive for output increases.  The magnitude of allocative efficiency and the relative 

contribution of its improvement on output growth remain an open empirical question. 

The theoretical framework employed in previously mentioned studies on 

output growth decomposition analysis cannot incorporate accurately the effects of 

returns to scale and of allocative inefficiency.  In particular, Lovell (1996) has shown 

that in a production function framework, the effects of scale economies and of 

allocative inefficiency on TFP changes cannot be separated from each other even if 

there are available information on input prices.  Indeed, the effect of returns to scale 

can only be identified if allocative efficiency is assumed, and this case there is no need 

for input price data.  Then, output growth may be attributed to input growth, technical 

change, improvements in technical efficiency, and the effect of scale economies.  In 

contrast, the effect of allocative inefficiency cannot be identified even if constant 

returns to scale are assumed.   This seems a serious shortcoming of the production 

function approach on output growth decomposition analysis.  

The aim of this paper is to propose Bravo-Ureta and Rieger’s (1991) approach 

as an alternative to handle separately the effect of returns to scale and of allocative 

efficiency (along with input growth, technical change and technical efficiency) in 

output growth decomposition analysis and still relying on the econometric estimation 

of a production function frontier.1  The direct outcome of integrating properly Bauer’s 

(1990) and Bravo-Ureta and Rieger’s (1991) and approaches would be a complete and 
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accurate analysis of the sources of output growth at the extra cost of information on 

input price data, which are necessary to identify the effect of allocative efficiency.  As 

an indirect result, it is shown that the opportunity cost of duality between production 

and cost frontier functions may be less severe than the maintenance of constant-

returns-to-scale assumption suggested by Fare and Primont (1996).  That is, it may be 

the use of a self-dual production frontier that allows for variable returns to scale, but 

restricts input substitutability.       

In Bravo-Ureta and Rieger’s (1991) approach, the use of self-dual production 

frontier functions is important in deriving an analytical (closed form) solution for the 

corresponding cost frontier and in maintaining the distinction between technical and 

allocative efficiency.  This may restrict however the functional specification of the 

underlying frontier production functions.  In the present study, this shortcoming is 

partially overcame by using a generalized Cobb-Douglas (or quasi translog) frontier 

production function, proposed by Fan (1991).  This functional specification allows for 

variable returns to scale, input-biased technical change, and time varying production 

and substitution elasticities, but it restricts the latter to be unchanged over farms.  

Nevertheless, it permits statistical tests for the hypotheses of zero rate of technical 

change and constant returns to scale.  Thus, this specification represents a reasonably 

flexible alternative (Fan and Pardey, 1997). 

In addition, Bravo-Ureta and Rieger’s (1991) approach has two advantages. 

First, the resulting inefficiency measures are unbiased from statistical noise as the 

limiting assumption of the deterministic frontier models (namely, that any deviation 

from the frontier is attributed to inefficiency), used initially by Kopp and Diewert 

(1982), is not anymore employed.  Instead, a composed error term is used to account 

for both statistical noise and efficiency disturbances.  Second, it enables the 

simultaneous derivation of (input-oriented) technical, allocative, and productive 

efficiency measures based solely on the econometric estimation of a production 

frontier function by using a single-equation procedure, under the expected profit 

maximization hypothesis.  Notice that this was also a maintained hypothesis in 

previous output growth decomposition studies of Fan (1991), Ahmad and Bravo-Ureta 

(1995), Wu (1995), Kalirajan et al. (1996), and Kalirajan and Shand (1997). 

The rest of this paper is organized as follows: the theoretical framework, 

integrating properly Bauer’s (1990) and Bravo-Ureta and Rieger’s (1991) approaches, 

is presented in the next section.  The empirical model, based on Battesee and Coelli’s 
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(1995) inefficiency effect model, is discussed in the third section.  Data and their 

sources sources are described in the fourth section.  A discussion of empirical findings 

and a comparison with previous studies on sources of output growth are given in the 

fifth section.  Concluding remarks follow in the last section.  

  

Theoretical Framework 
 
The present study differs from all previous studies on output growth decomposition 

analysis in a distinct respect.  The proposed analysis relies on input-oriented, Farell-

type measures of technical, allocative and productive efficiency, while all previous 

studies have used the output-oriented, Timmer-type measures of technical efficiency.2  

The use of input-oriented efficiency measures is however necessary in integrating 

properly Bauer’s (1990) and Bravo-Ureta and Rieger’s (1991) approaches as the 

output-oriented measure of technical efficiency allows for a separate (from input 

growth) measurement of the scale effect only in the presence of allocative efficiency 

(Lovell, 1996).   In such a case, perfect competition in input and output markets 

ensures that production elasticities and factor shares are equal to each other (Chan and 

Mountain, 1983).  Otherwise, a price adjustment effect should also be included to 

account for allocative inefficiencies (Bauer, 1990). 

 A Farrell-type, input-oriented measure of productive efficiency may be defined 

as  (Bauer, 1990; Lovell, 1996), where 

,  is a well-defined cost frontier function,  is the 

observed cost,  is output quantity,  is a vector of input prices,  is a time index 

that serves as a proxy for technical change, and  and  are the cost minimizing and 

the observed input vectors, respectively.   is independent of factor prices 

scaling and has a cost interpretation in the sense that  indicates the 

percentage reduction in cost if productive inefficiency is eliminated (Kopp, 1981).3  

Using Farrell’s decomposition of efficiency, , 

where  and  are respectively the 

Farrell-type, input-oriented measures of technical and allocative efficiency, 

,  and  is the technically efficient input vectors.  

Moreover,  and  are both independent of factor prices scaling 

and have an analogous cost interpretation (Kopp 1981). 
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 Following Bauer (1990), take the logarithm of each side of  

and totally differentiate it with respect to : 

 

           ,                      (1) 

 
where a dot over a variable or function indicates a time rate of change,   

, , and  

.  On the other hand, by taking the logarithm of  and totally 

differentiating with respect to  yields: 

 

                                                   .                                              (2) 

 
Substituting (2) into (1) and using the conventional Divisia index of TFP growth, 

, and  results in: 

 

         

          ,       (3) 

 
which is an output growth representation of the decomposition relationship developed 

by Bauer (1990). 

The first term in (3) captures the contribution of aggregate input growth on 

output changes over time (size effect).4  Output increases (decreases) are associated 

ceteris paribus with increases (decreases) in at least an input’s quantity.  The more 

essential an input is in the production process the higher its contribution is on the size 

effect.  The second term measures the relative contribution of scale economies on 

output growth (scale effect).  This term vanishes under constant returns to scale as 

, while it is positive (negative) under increasing (decreasing) returns to 

scale, as long as aggregate input increases, and vice versa.  The third term refers to the 

dual (primal) rate of technical change, which is positive under progressive technical 

change.  
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The fourth and the fifth terms in (3) are positive (negative) as technical and 

allocative efficiency increases (decreases) over time.  There is no a priori reason for 

both types of efficiency to increase or decrease simultaneously nor their relative 

contribution should be of equal importance for output growth.  More importantly, in 

output growth decomposition analysis what really matter is not the degree of 

efficiency itself, but rate of change over time.  That is, even at low levels of productive 

efficiency, output gains may be achieved by improving either technical or allocative 

efficiency or both.  It seems difficult though to achieve substantial output growth gains 

at very high levels of technical and/or allocative efficiency. 

The last term in (3) is the price adjustment effect.  The existence of this term is 

closely related to the definition of TFP, which is based on observed input and output 

quantities.  It indicates that the aggregate measure of inputs is biased in the presence of 

allocative inefficiency (Bauer, 1990). Under allocative efficiency, the price adjustment 

effect is equal to zero as .  Otherwise, its magnitude is inversely related 

to the degree of allocative efficiency.  The price adjustment effect is also equal to zero 

when input prices change at the same rate, since . 

To obtain quantitative measures of the terms in (3), Bravo-Ureta and Rieger’s 

(1991) approach is based on the estimation of a self-dual production frontier function 

and the resulting cost frontier.  Specifically, a Farrell-type, input-oriented measure of 

technical efficiency is derived by combining the estimated production frontier and the 

observed factor ratios at actual output levels, while a Farrell-type, input-oriented 

measure of productive efficiency is obtained by applying Shephard’s lemma on the 

resulting cost frontier.  Then, the input-oriented measure of allocative efficiency is 

derived by the ratio of productive to technical efficiency.  On the other hand, 

estimates of the rate of technical change and the scale effect are also obtained from 

the resulting cost frontier.     

Consider the following general stochastic production frontier function:  

 
                                            ,                                       (4) 

                     
where   represents its functional form, Qit is the observed output produced by the 

ith farm at year t, xjit is the quantity of the jth input used by the ith farm at year t,  is 

the vector of parameters to be estimated, and  is a stochastic composite 
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error term.  The vit depicts a symmetric and normally distributed error term (i.e., 

statistical noise), which represents those factors that cannot be controlled by farmers 

and left-out explanatory variables.  The uit is a one-side, non-negative, error term 

representing the stochastic shortfall of the ith farm output from its production frontier, 

due to the existence of technical inefficiency.  It is assumed that vit and uit are 

independently distributed from each other. 

  To obtain farm-specific estimates of the input-oriented measure of technical 

efficiency, computation of technically efficient input vector  is required.  This is 

derived by solving simultaneously the following system of equations for each farm in 

the sample: 

 
                                                                                             (5) 

 and  (j>1), 
 
where  is the maximum output that can be produced by the ith  farm given its 

production technology and input use (which is also equal to its observed output 

adjusted for the statistical noise), and kjit  is the ratio of observed inputs x1it and xjit at 

.5  Then, .  On the other hand, farm-specific estimates of the input-

oriented measure of productive efficiency are derived by using the resulting cost 

frontier, evaluated at . Given that  is self-dual there is a close form solution 

for the cost frontier.  Then, the productively efficient input vector, , is obtained by 

applying Shephard’s lemma. Finally, farm-specific estimates of allocative inefficiency 

are obtained by using Farrell decomposition . 

 The above results suggest that output- and input-oriented measures of technical 

efficiency may be obtained by using the duality between production and cost frontiers, 

not only in the case of constant returns to scale as shown by Fare and Primont (1996) 

but also, in the case of self-dual frontiers.  Both measures may be obtained from either 

representation of technology by simply estimating one of them (most probably the 

production frontier with a single-equation procedure) and using the degree of returns 

to scale.6  Hence, the opportunity cost of using the duality between production and 

cost frontiers in measuring efficiency may not be so severe as Fare and Primont (1996) 

initially suggested.  Self-dual frontier functions allow for variable returns to scale, but 

restrict input substitutability; the latter is more easily acceptable in empirical studies.     
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Empirical Model 
 
For the purposes of the present study, the underlying production frontier function is 

approximated by the quasi-translog functional form, proposed by Fan (1991), that is 

given as: 

 

                                                     (6) 

 
This may also be viewed as a translog specification without cross terms, i.e. a strongly 

separable-in-inputs translog production frontier function.  A closed form solution of 

the cost minimization problem subject to (6), assuming that all regularity conditions 

hold, yields the following dual cost function: 

 
                                            (7) 

 

where  for ,  

. 

Battese and Coelli (1995) suggested that the technical inefficiency effects, uit, 

in the stochastic production frontier model (4) could be replaced by a linear function 

of explanatory variables, reflecting farm-specific characteristics.  In this way and 

given the current state of technology and its physical endowments, every farm in the 

sample faces its own frontier and not a sample norm.  The technical inefficiency 

effects are assumed to be independent, non-negative, truncations (at zero) of normal 

distributions with unknown variance and mean.  Specifically,  

 

                                                  ,                                         (8) 

 
where  are farm and time specific explanatory variables (e.g., functions of farms 

and management characteristics) associated with technical inefficiencies;  and  

are parameters to be estimated;7 and  is a random variable with zero mean and 
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variance , defined by the truncation of the normal distribution such that 

.  The above specification (8) implies that the means, 

, of the  are different for different farms but the variances,  

are assumed to be the same.  

 The parameters of the stochastic production frontier model (6) and those of the 

technical inefficiency effects model (8) are estimated simultaneously by using the 

maximum likelihood method and the FRONTIER (version 4.1a) computer program 

developed by Coelli (1992).  The variance parameters of the likelihood function are 

estimated in terms of  and , where the -parameter has a 

value between zero and one.  The closer the estimated value of the -parameter to 

one is, the higher the probability of the technical inefficiency effect to be significant 

in the stochastic frontier model is, and thus the average response production function 

is not an adequate representation of the data. 

 Several hypotheses can be tested by using the generalized likelihood-ratio 

statistic, , where  and  denote the values of 

the likelihood function under the null  and the alternative  hypothesis, 

respectively.8  First, if  technical inefficiency effects are non-stochastic and (4) 

reduces to the average response function in which the explanatory variables in the 

technical inefficiency model are also included in the production function.  Second, if 

 for all m, the inefficiency effects are not present.  Consequently, each 

farm in the sample is operating on the frontier and thus, the systematic and random 

technical inefficiency effects are zero.  Third, if  for all m, the explanatory 

variables in the model for the technical inefficiency effects have zero coefficients.  In 

this case, farm-specific factors do not influence technical inefficiency and (5) reduces 

to Stevenson’s (1980) specification, where uit follow a truncated normal distribution.  

Fourth, if  the original Aigner et al. (1977) specification is obtained, 

where uit follow a half-normal distribution. 

 

Data Description 
 
The data used in this study were extracted from a survey undertaken by the Institute 

of Agricultural Economics and Rural Sociology of Greece.  Our analysis focuses on a 
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sample of 110 olive-growing farms, located in the four most productive regions of 

Greece (Peloponissos, Crete and Sterea Ellada).  Observations were obtained on 

annual basis for the period 1987-1993.  The sample was selected with respect to 

production area, the total number of farms within the area, the number of olive trees 

on the farm, the area of cultivated land and the share of olive oil production in farm 

output.  

 The dependent variable is the annual olive oil production measured in 

kilograms.  The aggregate inputs included as explanatory variables are: (a) total labor, 

comprising hired (permanent and casual), family and contract labor, measured in 

working hours.  It includes all farm activities such as plowing, fertilization, chemical 

spraying, harvesting, irrigation, pruning, transportation, administration and other 

services; (b) fertilizers, including nitrogenous, phosphate, potash, complex and others, 

measured in kilograms; (c) other cost expenses, consisting of pesticides, fuel and 

electric power, irrigation taxes, depreciation, interest payments, fixed assets interest, 

taxes and other miscellaneous expenses, measured in drachmas (constant 1990 

prices); (d) land, including only the share of farm’s land devoted to olive-tree 

cultivation measured in stremmas (one stremma equals 0.1 ha). 

 The following variables are included in the inefficiency effect model: first, 

farmer’s age and its square measured in years.  Second, farmer’s education measured 

in years of schooling.  Third, a dummy variable determining the location of olive-oil 

farms, which takes the value of one if the farm locates in less-favored area and zero 

otherwise.  Fourth, a dummy variable indicating the existence of an improvement 

plans taking place in the farm.  It takes the value of one if an improvement plan is in 

order and zero otherwise.  Fifth, a time trend to capture the temporal pattern of 

technical inefficiency.  

 

Empirical Results 
 
The estimated parameters of the stochastic quasi-translog production frontier function 

are presented in Table 1.  The estimated first-order parameters ( ) are having the 

anticipated (positive) sign and magnitude (being between zero and one), and the 

bordered Hessian matrix of the first and second-order partial derivatives is negative 

semi-definite indicating that regularity conditions hold at the point of approximation 

(i.e., sample mean).  That is, marginal products are positive and diminishing and the 
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production frontier is locally quasi-concave.  The estimated variance of the one-side 

error term is found to be  and that of the statistical noise .  The 

logarithm of the likelihood function indicates a satisfactory fit for the quasi-translog 

specification.  Finally, given (7), the corresponding cost frontier is: 

                                                      
  

          (9) 

  , 

 
where L stands for labour, F for fertiliser, O for other costs, and A for land. 

Hypotheses testing concerning model representation are reported on Table 2.9  It 

is evident that the traditional average production does not represent adequately the 

structure of olive-growing farms in the sample.  The null hypothesis that  is 

rejected at 5% level of significance indicating that the technical inefficiency effects 

are in fact stochastic, as it is also depicted from the statistical significance of the 

parameter.10  Thus, a significant part of output variability among farms is 

explained by the existing differences in the degree of technical inefficiency.  In 

addition, the hypothesis that the inefficiency effects are absents from the model (i.e., 

) is also rejected at 5% level of significance.  This indicates that the 

majority of farms in the sample operate below the technically efficient frontier.  

Finally, notice that specification (4) cannot be reduced neither to Aigner et al. (1977) 

nor to Stevenson’s (1980) model as the null hypothesis of  and  

, respectively, are rejected at 5% level of significance. 

As a result, the explanatory variables included in the inefficiency effect models 

have non-zero coefficients and contribute significantly to the explanation of technical 

efficiency differences in olive-growing farming.   The age of the farmer, as a proxy of 

experience and learning-by-doing, is one of the factors enhancing technical efficiency, 

while the negative sign of the squared term supports the notion of decreasing returns to 

experience (see Table 1).  Education has also a positive and significant role to play in 

determining efficiency differentials among olive-growing farmers in Greece.  

Schooling helps farmers to use production information efficiently, as a more educated 

farmer acquires more information and is able to produce more from a given input 

vector.   On the other hand, as was expected, the placement of farms in less favored 
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areas affect negatively their degree of technical efficiency, while the existence of 

improvement plan within the farm affect technical efficiency positively.   

The hypothesis that technical inefficiency is time-invariant is rejected as the 

null hypothesis of  is rejected at 5% level of significance (see Table 2).  This 

means that output growth has been affected by changes in the degree of technical 

efficiency over time.  During the period 1987-93, technical inefficiency tended to 

decrease over time as the estimated  parameters is negative (see Table 1).  Mean 

technical efficiency increased rather slowly from 76.6% in 1987 to 80.2% in 1993 (see 

Table 3), implying that its contribution into output growth would be relatively small.  

However, most farms in the sample (77-84%) have consistently achieved scores of 

technical efficiency greater than 70% during the period 1987-1983.  More importantly, 

this portion of farms increased over time.  This means that only a small portion of the 

farms in the sample faced severe technical inefficiency problems.  The estimated mean 

technical efficiency was found to be 78.6% during the period 1987-1993.  Thus, on 

average, a 21.4% decrease in total cost of production could have been achieved during 

the period, without altering the total volume of output, production technology and 

input usage.       

 Mean allocative efficiency was found to be 74.1% (see Table 3), implying that 

Greek olive-growing farms in the sample have achieved a relatively good allocation 

of existing resources.  But still, a 25.9% decrease in cost is feasible by a further re-

allocation of inputs for any given level of output and input prices.  The great majority 

of farmers in the sample (88-92%) have consistently achieved scores of allocative 

efficiency greater than 70% during the period 1987-1983.  Thus, it seems that olive-

growing farmers shown a satisfactory reaction and adjustment into market price 

signals.  Nevertheless, mean allocative efficiency is smaller than corresponding point 

estimate of technical efficiency, indicating that olive-growing farms did better in 

achieving the maximum attainable output for given inputs than in allocating existing 

resources.  However, the average rate of increase of allocative efficiency is greater 

than that of technical efficiency and thus, its relative contribution to output growth is 

expected to be relatively greater. 

 Mean productive efficiency was found to be around 59% (see Table 3).  This 

figure represents the ratio of minimum to actual cost of production and implies that 

significant cost savings (about 41%) may be achieved by improving both technical 
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and allocative efficiency.  Given the estimates of technical and allocative efficiency, it 

seems that productive inefficiency is almost equally due to technical and allocative 

inefficiency.  Productive efficiency increased over time from 56.2% in 1987 to 62.4% 

in 1993.  Nevertheless, only a very small portion of farms in the sample attended a 

score greater than 80%.  

The hypothesis of a linearly homogeneous production frontier is rejected at any 

level of significance (see Table 2) implying the existence of non-constant returns to 

scale.  As a result, the scale effect is a significant (in statistical grounds) source of 

output growth and it should be taken into account in (3).  According to the results on 

Table 3, production is characterized by decreasing returns to scale, which on average 

was 0.814 during the period 1987-93.  This implies that the contribution of the scale 

effect into output growth would be negative as far output increases and vice versa. 

  The decomposition analysis results for analyzing Greek olive-growing farms’ 

output growth during the period 1987-1993 are given on Table 3.  Those presented in 

the first column are based on (3).  An average annual rate of 6.68% is observed for 

output growth.  Our empirical findings suggest that most of output growth (56.5%) in 

olive-oil production is due to input increase.  Only a portion of 33.1% is attributed to 

productivity growth, which grew with an average annual rate of 2.28%.  These imply 

that during the period under consideration Greek olive-growing farmers have chosen 

the most expensive way to expand production, namely the increase of input use.   

Thus, substantial output increases may still be achieved ceteris paribus by improving 

TFP; this has important policy implications as far as sources of productivity growth 

are identified.   

 Technical change was found to be the main element of total factor productivity 

growth in Greek olive-growing farms, accounting for about 22.8%.  The average 

annual rate of technical change is found to be 1.57% and its largest portion was caused 

by the biased rather than the autonomous counterpart.  The scale effect, on the other 

hand, is negative as olive-growing farms in Greece exhibited decreasing returns to 

scale and aggregate input increased over time. On average, diseconomies of scale 

slowed down annual output growth by a rate of 7.6%, and TFP by almost 23%.  These 

rather significant figures would have been omitted if constant returns to scale were 

falsely assumed.  In such a case, TFP and output growth would have been over-

estimated.   
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 Both technical and allocative inefficiencies have enhanced TFP and output 

growth during the period 1987-1993.  The relative contribution of each one depends 

on their rate of change over time rather than their absolute magnitude.  As shown in 

Table 3, the relative contribution of the allocative efficiency effect on output growth 

(11%) is greater than that of the technical efficiency (8.6%) as the average rate of 

increase of the former was found to be greater than that of the latter.  Thus, productive 

efficiency accounts for 19.6% of average annual output growth among olive-growing 

farms in Greece.  Moreover, the contribution of productive efficiency on TFP growth 

is comparable with that of technical change.  

The price adjustment effect was found to have a very small impact on TFP and 

output growth.  On average, the price adjustment effect accounted for 1.7% of output 

change.  However, given the existence of allocative inefficiency, its impact cannot be 

neglected in obtaining an accurate measure of TFP growth rate.  After accounting for 

all theoretically proposed sources of TFP growth and for the size effect, a 10.5% of 

observed output growth remained unexplained.  Nevertheless, the unexplained portion 

of output growth is smaller than the unexplained residual obtained by using Ahmad 

and Bravo-Ureta’s (1995) approach (see Table 3), which does not account for the 

scale and the allocative inefficiency effects.11 

The results of the present study indicate that the contribution of the allocative 

efficiency and the scale effect into output growth cannot by any means be negligible as 

3.4% of annual output are attributed to their combined effect.  If, for any reason, these 

two effects were not incorporated into output growth decomposition analysis, as in 

Ahmad and Bravo-Ureta (1995), the contribution of TFP would be under-estimated.12  

The corresponding figures are reported in column II on Table 3: the estimated average 

annual rate of TFP growth decreases from 2.28% to 2.14%.  If, however, the rate of 

technical change was calculated residually, as in Fan (1991), the contribution of TFP 

would be over-estimated.  In this case the estimated rate of technical change would be 

3% instead of 1.57%, and the average annual rate of TFP growth would be 3.59% (see 

column III on Table 3).  The latter accounts for 52.2% of output growth.  Finally, if 

the allocative efficiency and the scale effects were not incorporated in decomposition 

analysis, and the size effect was measured residually, as in Kalirajan et al. (1995), then 

the relative contribution of input growth would be overestimated (see column IV on 

Table 3). 
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Concluding Remarks 
 
This paper proposes an alternative methodology for decomposing observed output growth 

by integrating Bauer’s (1990) and Bravo-Ureta and Rieger’s (1991) approaches.  Within 

this framework, output growth is decomposed into input growth, technical change, scale 

economies, technical and allocative efficiency, and a price adjustment effect by relying 

on the econometric estimation of a self-dual production frontier.  This methodology is 

applied to a panel data set for olive-growing farms in Greece during the period 1987-

1993.  Empirical findings indicate that both the scale and the allocative efficiency effects, 

which have not been analyzed in previous studies, have a significant role in explaining 

output growth; it is found that, on average, they have caused a 7.6% slowdown and a 

11% enhancement, respectively.  Thus, there may be significant differences in TFP 

growth by not accounting simultaneously for these two effects. 

 Despite any errors that may arise by not accounting for the allocative inefficiency 

and scale effects when parametrically measuring TFP growth, misconceptions also arise 

about the potential sources of TFP and output growth.  This incomplete identification of 

sources of TFP growth, both in terms of the factors that affect its evolution over time and 

their relative contribution, poses some concerns about the efficacy of various measures 

used by policy makers to enhance productivity.  In the case of olive-growing farmers in 

Greece, for example, a quite significant source of output growth is excluded from the 

development policy agenda when the effect of allocative inefficiency is not taken into 

consideration in decomposition analysis. 
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Table 1: Maximum Likelihood Estimates of the Production Frontier Function for Olive-

Growing Farms in Greece, 1987-1993. 

 

Parameter Estimate Standard Error Parameter Estimate Standard Error 

Stochastic Frontier      

 0.505 0.064  -0.007 0.016 

 0.110 0.017  -0.013 0.009 

 0.024 0.014  -0.060 0.040 

 0.010 0.007  0.055 0.038 

 0.650 0.046  0.026 0.014 

 0.001 0.020    

Inefficiency Model     

 -6.947 5.155  1.461 0.710 

 0.274 0.206  0.902 0.688 

 -0.003 0.002  -0.747 0.333 

 -0.334 0.239    

 0.860 0.087  1.163 0.667 

          Ln(θ)=-546.578 

 

Note: L refers to labor, F to fertilizer, O to other cost, and A to land.  
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Table 2: Model Specification Tests 
 

Hypothesis Statistic Critical Value (α=0.05) 

 37.82  

  49.33  

  41.72  

  35.20  

 9.10  

  15.07  

  12.29  

  17.1  

 21.42  

 



 18 

Table 3: Measures of Efficiency and Returns to Scale for Greek Olive Growing Farms, 

1987-1993. 

 
 1987 1988 1989 1990 1991 1992 1993 1987-1993 
    Technical Efficiency   

<20 0 0 0 0 0 0 0 0 
20-30 0 0 0 0 0 0 0 0 
30-40 2 0 1 1 1 0 1 0 
40-50 5 5 1 1 1 1 1 0 
50-60 5 3 6 4 4 5 7 0 
60-70 13 13 10 12 13 14 8 8 
70-80 32 33 32 37 37 34 29 55 
80-90 49 54 57 46 45 46 53 47 
>90 4 2 3 9 9 10 11 0 

Mean 76.6 77.5 78.2 78.8 79.2 79.8 80.2 78.6 
    Allocative Efficiency   

<20 0 0 0 0 0 0 0 0 
20-30 0 0 0 0 0 0 0 0 
30-40 4 0 1 1 1 0 1 0 
40-50 3 6 2 2 2 1 1 0 
50-60 6 6 8 8 6 9 8 1 
60-70 21 20 19 20 23 17 15 20 
70-80 53 48 41 50 43 45 41 75 
80-90 23 30 38 25 29 34 35 14 
>90 0 0 1 4 6 4 9 0 

Mean 71.6 72.8 74.6 73.7 74.5 75.4 76.2 74.1 
    Productive Efficiency   

<20 5 2 1 1 2 0 1 0 
20-30 3 5 3 4 3 2 4 0 
30-40 6 7 8 8 4 8 7 1 
40-50 15 14 14 10 17 14 9 8 
50-60 29 26 24 34 31 28 24 46 
60-70 37 35 36 27 21 24 28 49 
70-80 15 21 21 19 22 25 28 6 
80-90 0 0 2 7 9 7 1 0 
>90 0 0 1 0 1 2 8 0 

Mean 56.2 57.3 59.1 59.1 60.1 61.1 62.4 59.3 
    Returns to Scale   

 0.838 0.824 0.816 0.811 0.806 0.803 0.800 0.814 
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Table 4: Decomposition of Output Growth for Greek Olive-Growing Farms, 1987-1993  
 
 

 (I)1 (II) (III) (IV) 
Output Growth2 6.88    
 (100.0)    
Aggregate Input Growth 3.89   4.54 
 (56.5)   (68.0) 
    of which Labor  0.82    
                  Fertilizer 1.22    
                  Other Cost 0.38    
                  Land 1.48    
Total Factor Productivity Growth 2.28 2.16 3.59 2.16 
 (33.1) (31.4) (52.2) (32.0) 
    of which Rate of Technical Change 1.57 1.57 3.00 1.57 
 (22.8) (22.8) (43.6) (22.8) 
                   Autonomous part 0.66    
                   Biased part 0.91    
         Scale Effect -0.52    
 (-7.6)    
         Change in Technical Efficiency 0.59 0.59 0.59 0.59 
 (8.6) (8.6) (8.6) (8.6) 
         Change in Allocative Efficiency 0.76    
 (11.0)    
         Price Adjustment Effect -0.12    
 (-1.7)    
Unexplained Residual 0.72 0.83   
 (10.5) (12.1)   

 

Notes: 1 Each column in table presents the estimates obtained from (I) present formulation; (II) 
Ahmad and Bravo-Ureta (1995); (III) Fan (1991); (IV) Kalirajanet al. (1996). 

2 Numbers in parentheses are percentages.  
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Endnotes 
                                                             
1 This approach has been used previously by Bravo-Ureta and Evenson (1994), Xu 

and Jeffrey (1998), and Sharma et al. (1999) to measure allocative efficiency from the 

econometric estimation of a production frontier. 
2  Fare and Lovell (1978) have shown that are equal under constant returns to scale, 

while the output-oriented measure is greater (less) than the input-oriented measure 

under decreasing (increasing) returns to scale. 
3    That is, scaling all factor prices equally or each factor price individually will have 

no effect on the input-oriented measure of inefficiency.  This property of input-

oriented measures is due to their radial nature and it will be proved important in panel 

data studies where there are no price data for individual producers.  Apparently, it 

allows the use of regional, or even national, price data to be used in estimating 

efficiency measures, without altering the final outcome.   
4 Aggregate input growth is measured as a Divisia index; this follows directly from the 

standard definition of total factor productivity.  The fact that actual (observed) factor 

cost shares are used as weights of individual input growth gives rise to the sixth term 

in both (3). 
5  Specification in (4) ensures the stochastic nature of the production frontier and 

distinguishes Bravo-Ureta and Riger’s (1991) from Kopp and Diewert’s (1982) 

deterministic approach.  Another distinguished feature between them is that the 

former is based on the estimation of a production (primal) frontier while the latter on 

a dual (cost) frontier.  As a result, the input-based measure of allocative inefficiency is 

obtained residually in the former case (i.e., by using Farrell decomposition), while the 

input-based measure of technical inefficiency is calculated residually in the latter 

case. 
6  The assumption of expected profit maximization, which allows the single-equation 

estimation of the production frontier (Zellner et al., 1966), implies cost minimization 

for risk-neutral producers under price uncertainty (Batra and Ullah, 1974).  
7 Biased estimates of  parameters may be obtained by not including an intercept 

parameter  in the mean, , and in such a case the shape of the distribution of the 

inefficiency effects is unnecessarily restricted (Battese and Coelli, 1995). 
8  If the given null hypothesis is true, the generalized likelihood-ratio statistic has 

approximately a  distribution, except the case where the null hypothesis involves 
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also .  Then, the assumptotic distribution of  is a mixed  (Coelli, 1995) and 

the appropriate critical values are obtained from Kodde and Palm (1986). 
9  All hypotheses testing is conducted in terms of the estimated production frontier 

function and the results reported in Table 1.  Given the self-duality of the estimated 

production frontier, all product structure tests are equivalent in terms of information 

provided  each time, regardless of the function used to conduct these tests.   
10  Notice that the probability of the technical inefficiency effect to be significant in 

the stochastic frontier model is high since the estimated value of the -parameter is 

close to one (see Table 1).   
11  A similar comparison with Fan (1991) or Kalirajan et al. (1996) and Kalirajan and 

Shand (1997) approaches is not possible as technical change and the size effect are 

respectively calculated in a residual manner. 
12  It should be kept in mind that these comparison results are data specific and do not 

consist affirmative generalizations.  This holds for all results related with comparison 

with previous studies. 


