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On the Choice of Functional Form in Stochastic Frontier Modeling 

 
Abstract 
This paper examines the effect of functional form specification on the estimation of technical 
efficiency using a panel data set of 125 olive-growing farms in Greece for the period 1987-93. 
The generalized quadratic Box-Cox transformation is used to test the relative performance of 
alternative, widely used, functional forms and to examine the effect of prior choice on final 
efficiency estimates. Other than the functional specifications nested within the Box-Cox 
transformation, the comparative analysis includes the minflex Laurent translog and generalized 
Leontief that possess desirable approximation properties. The results indicate that technical 
efficiency measures are very sensitive to the choice of functional specification. Perhaps most 
importantly, the choice of functional form affects the identification of the factors affecting 
individual performance - the sources of technical inefficiency. The analysis also shows that while 
specification searches do narrow down the set of feasible alternatives, the identification of the 
most appropriate functional specification might not always be (statistically) feasible.  

 
Keywords:  stochastic frontiers, functional specifications, Box-Cox transformation, technical 

efficiency, Greek olive oil. 
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1. Introduction 

The stochastic production frontier model, which was proposed independently by Aigner, Lovell 

and Schmidt and Meeusen and van den Broeck in 1977, has dominated the empirical literature of 

efficiency measurement. Within this framework, several alternative models for estimating 

productive efficiency have been progressively developed, extending the stochastic production 

frontier methodology to account for different theoretical issues in frontier modeling. 

Comparative studies to date have mainly focused on estimates of the degree of inefficiency in the 

samples under study within different production frontier model specifications (for detailed 

reviews of the theoretical and empirical work in this area see Coelli, Rao and Battese (1998), 

Greene (1999), and Kumbhakar and Lovell (2000)).  

Apart from the choice of the appropriate production frontier model however, an important 

issue that arises, which is not unique to efficiency studies, concerns the functional specification 

of the estimated frontier - the features of the technology employed. Interestingly, empirical 

applications for the measurement of efficiency have traditionally focused on a single ad hoc 

imposed functional specification, mostly translog and Cobb-Douglas.  
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The choice of the appropriate functional form is not a trivial matter however. It is well 

known that functional forms are both data and model specific, and differ in their convergence 

properties and their ability to approximate alternative technologies. Simply put, there is no 

functional form that dominates under all circumstances - the appropriate functional specification 

is case specific. If the empirical estimates are contaminated with the imposition of an 

inappropriate functional form, predicted responses arising from the model may be biased and 

inaccurate, posing serious problems for policy design and/or policy implications. Therefore, 

when there are no strong theoretical or prior empirical reasons in favor of a specific functional 

specification, the exploration of the sensitivity of the economic optima, including efficiency, to 

the choice of functional form becomes crucial. 

The objective of this study is to empirically evaluate the performance of different 

functional specifications in the estimation of technical efficiency for a panel data set of 125 

olive-growing farms in Greece. The paper explores the sensitivity of obtained efficiency 

estimates to the choice of functional specification while maintaining an identical data set and 

retaining the same assumptions about the underlying technology and the structure of farm 

efficiencies. The effects of the choice of functional form on the estimates of production structure 

(such as production elasticities, returns to scale, and technological change) and the determination 

of the factors influencing farm efficiency are also examined. The latter is particularly important 

since determining the sources of technical efficiency provides policy makers with insight on the 

causes of inefficiency and can suggest potential policies that enhance the productivity of the 

sector under study.   

The estimation of farm-specific technical efficiency is based on the stochastic frontier 

model of Battese and Coelli (1993; 1995). This stochastic frontier model allows for a more 

flexible intertemporal variation in efficiency ratings, and identifies the factors influencing the 

efficiency of sample participants directly from the estimated production frontier. The production 

frontiers utilized in this comparative study belong primarily to the generalized quadratic family 

of flexible functional forms. More specifically, technical efficiency measures obtained from the 

transcendental logarithmic, the generalized Leontief, the normalized quadratic, the squared-root 

quadratic, the non-homothetic constant elasticity of substitution (CES) and the Cobb-Douglas 

functional forms are analyzed and compared using the generalized quadratic Box-Cox 

transformation function that nests all these functional specifications (Appelbaum, 1979; Berndt 
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and Khaled, 1979). In addition to the above functional forms, the comparative analysis includes 

the minflex Laurent translog and generalized Leontief functional specifications due to their 

attractive properties in approximating the production technology (Barnett, 1983; 1985).  

The rest of the paper is organised as follows. Section 2 provides a review of studies on the 

effect of functional choice on efficiency measures derived from econometric frontier models. 

Section 3 presents the functional specification of the production frontiers used in the analysis. 

Section 4 outlines the stochastic production frontier model utilized for the measurement of 

technical efficiency. Section 5 provides data descriptions while empirical results are presented in 

Section 6. Section 7 summarizes and concludes the paper. 

 

2. Background 

To our knowledge, there are only few studies that examine the effect of functional choice on 

efficiency measures derived from econometric stochastic frontier models. Kopp and Smith 

(1980) compared efficiency estimates derived from the translog, the non-homothetic CES, and 

the Cobb-Douglas functional specifications using cross-sectional data from steam generating 

electric plants in the US. They found that plant level productive efficiency is less sensitive to the 

choice of functional form. Several years later, Gong and Sickles (1992) examined the relative 

performance of translog, CES-translog, and generalized Leontief functions under different model 

specifications using a Monte-Carlo simulation approach and panel data. Disagreeing with the 

earlier findings of Kopp and Smith (1980) they concluded that “the choice of functional form in 

stochastic frontier model appears to be crucial.”  

Zhu, Ellinger and Shumway (1995) applied the generalized quadratic Box-Cox  

transformation model to examine the relative performance of normalized quadratic, translog and 

generalized Leontief functions using cross-sectional data from rural US banks in the context of a 

stochastic cost frontier. In accordance with the earlier findings of Gong and Sickles (1992), Zhu, 

Ellinger and Shumway (1995) suggested that “the choice of inappropriate functional 

specification would substantially alter conclusions about both scale elasticities and 

inefficiencies.” Finally, Battese and Broca (1997) compared the translog and Cobb-Douglas 

functional forms using panel data from wheat farms in Pakistan. They also concluded that the 

final efficiency measures are sensitive to the choice of both functional specification and 

inefficiency effects model.  



 

 4 

When compared with Zhu, Ellinger and Shumway (1995) (who also utilized a generalized 

quadratic Box-Cox transformation), our study has four distinct features. First, it proceeds to the 

estimation of a production frontier and the subsequent measures of technical efficiency. Zhu, 

Ellinger and Shumway (1995) estimated a cost frontier assuming that any deviation from that 

frontier is due to technical inefficiency. However, this is questionable in the dual approach of 

estimation since such a specification assumes that individuals are allocativelly perfectly 

efficient.1 Second, the stochastic frontier model of Battese and Coelli (1993;1995) used in this 

paper does away with the need to impose restrictive assumptions regarding the inter- and intra-

farm variation in efficiency ratings.2 Third, the current study relies on a panel data set of 125 

olive-growing farms observed in seven consecutive years. Efficiency measures derived from 

cross-sectional data (i.e. a single production period) may be distorted by period specific 

abnormalities, which questions the accuracy of the estimates and, perhaps more importantly, the 

relevance of the analysis (Dawson, Lingard and Woodford, 1991). Finally, our comparative 

analysis includes two more flexible functional forms with desirable approximation properties 

(i.e. the minflex  translog and generalized Leontief) that are not nested within the generalized 

quadratic Box-Cox transformation.   

 

3. Functional Specifications 

Appelbaum (1979) and Berndt and Khaled (1979) generalized the application of the Box-Cox 

transformation function to allow for a variety of functional forms to be nested within this 

function and performed parametric tests to discriminate among them. Ever since, generalized 

quadratic Box-Cox models have been widely applied in problems of selecting among nested 

functional specifications in applied production analysis. The generalized quadratic Box-Cox 

model, assuming input-biased technical change, can be written as: 

 

  
(1) 

 
                                                             
1 The estimation of technical efficiency in the context of the production frontier is conditional on the input 

combination. Whether that combination is allocativelly efficient or not is a side issue, although an important one 
(Greene, 1993b), i.e. a technically efficient producer could still use an inappropriate (for given input prices) input 
mix.  

2 The model of Battese and Coelli (1993; 1995) was also used by Battese and Broca (1997). 
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where i=1, …, N represents cross sectional units; t=1, …, T denotes time; j,k=1, …, J are the 

applied inputs, and εit is a random error. The variables  and  are the Box-Cox 

transformations of output and inputs, respectively, defined as (Box and Cox, 1964): 

     and            (2) 

 
where δ  and λ  are the transformation parameters to be estimated. Under appropriate parametric 

restrictions for the values of δ  and λ , the generalized quadratic Box-Cox transformation yields 

the four locally flexible functional forms (i.e. translog, generalized Leontief, normalized 

quadratic, squared-root quadratic) as well as the non-homothetic CES and Cobb-Douglas 

specifications.  

More specifically, by utilizing l’Hôpital’s rule the power transformations are continuous 

around zero. Thus, for δ  = λ  = 0 the generalized quadratic Box-Cox becomes the non-

homothetic translog functional form: 

 

   

(3) 

 
It becomes the non-homothetic generalized Leontief when δ  = λ  = 0.5: 

 

   (4) 

 
The generalized quadratic Box-Cox results in the non-homothetic normalized quadratic when δ  

= 0.5 and λ  = 1: 
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(5) 

 
and becomes the squared-root quadratic when δ  = λ  =1:  

 

  

(6) 

 
All the above functional forms are second-order Taylor series expansions3 and provide 

equally plausible a priori approximations of a true but unknown production technology. 

However, all four functions maintain important restrictions in modeling production relationships. 

More specifically, the generalized Leontief, normalized quadratic and squared-root quadratic 

maintain quasi-homotheticity of the underlying technology even at the point of approximation. 

Even though the translog does not maintain this restriction, it is less separable flexible than the 

other three functional forms. Nevertheless, these functional specifications do satisfy the 

requirement of parametric parsimony since the number of free parameters is adequate for 

ensuring flexibility (for a detailed discussion on the properties of several functional 

specifications used in applied production analysis see Fuss, McFadden and Mundlak (1978), 

Griffin, Montgomery and Rister (1987) and Thompson (1988) among others). Since all 

parametric models display these features, there is no a priori reason to favor any one of them.  

Apart from these locally flexible functional specifications, the generalized quadratic Box-

Cox also nests the restrictive but widely applied non-homothetic CES and Cobb-Douglas. More 

specifically, the generalized quadratic Box-Cox production function in equation (1) becomes a 

non-homothetic CES function when the second-order parameters (αjk) equal zero ∀ j,k,, i.e., 

 
                                                             
3 The concept of linear-in-parameters functional forms and the property of second-order approximation at a point are 

due to Diewert (1971), who introduced the generalized linear and generalized Leontief forms. 
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(7) 

 
Finally, the familiar Cobb-Douglas functional form (or, equivalently, a strongly separable 

translog when input-biased technical change is maintained) is obtained either from the CES 

function when δ  = λ  = 0 (by utilizing l’Hôpital’s rule) or from the translog by setting 

.  

The selection of the appropriate functional form within the generalized quadratic Box-Cox 

transformation function can be based on nested hypothesis testing (i.e. likelihood ratio test). 

Whereas the alternative specifications can be tested by likelihood support against the generalized 

quadratic Box-Cox, they cannot be tested against each other however. This problem can be 

surmounted using the likelihood dominance criterion that ranks models based on their adjusted 

likelihood values (Pollak and Wales, 1991). Specifically, the likelihood dominance criterion 

assures an unambiguous ordering of the functional forms nested within the generalized quadratic 

Box-Cox no matter the number of estimated parameters in each model (Anderson et al., 1996).  

Recognizing certain deficiencies in the ability of Taylor-series expansion to generate 

flexible functional forms, Barnett (1983, 1985) utilized the Laurent-series expansion to provide 

more desirable approximations of the underlying production technology. The clear advantage of 

the Laurent-series expansion is the fact that its remainder term varies less over the interval of 

convergence for the same fixed order of expansion. A special case of a second-order Laurent 

series expansion that includes both the translog and generalized Leontief functional 

specifications is: 

 

  (8) 

 
Specifically, equation (8) becomes the minflex Laurent generalized Leontief when 

 while when ,  equation (8) generates the minflex Laurent 
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translog. Whereas both minflex Laurent translog and generalized Leontief are flexible functional 

forms they do not possess greater parametric freedom than is needed to attain local flexibility. 

Note that the specification in (8) is not nested within the generalized quadratic Box-Cox model, 

and the statistical discrimination among these non-nested models can be performed by means of 

non-nested hypothesis testing. In our case we use the PE test developed by MacKinnon, White 

and Davidson (1983).4 While the PE test follows the same analytical approach as the Andrews 

test (1971), it is based on a Gauss-Newton artificial regression (for details on non-nested 

hypothesis testing see Davidson and MacKinnon, 1993, pp. 505-507).  

 

4. Modeling Technical Efficiency  

Each functional specification presented in the previous section is used to estimate technical 

inefficiency by utilizing the stochastic production frontier model of Battese and Coelli (1993; 

1995). Technical inefficiency is expressed as a linear function of explanatory variables 

associated with farm specific characteristics (inefficiency effects) to allow for the investigation 

of inter-farm efficiency variation. In this formulation every farm in the sample faces its own 

frontier (given the current state of technology and the physical endowments of the farm) rather 

than a sample norm. In addition, modeling technical inefficiency as a function of farm specific 

characteristics allows for the consistent estimation of the stochastic frontier and the inefficiency 

effects model in a single stage (Reifschneider and Stevenson, 1991; Battese and Coelli, 1995).5  

Specifically, the model of Battese and Coelli (1993; 1995) in the presence of technical 

change and panel data has the following general form: 

 

         (9) 

 

where yit is the output of farm i (i=1,2, …, N) at time t (t=1, 2, …, T); xit is the corresponding 

matrix of J inputs; t is a time index that serves as a proxy for technical change; B is the vector of 

parameters to be estimated; and εit is the error term composed of two independent elements vit 

                                                             
4 We choose the PE test because of it is simple to compute and more importantly, it   has sufficient power for applied 

research. 
5 Other than simultaneously predicting and explaining technical inefficiency, this model formulation has two 

important advantages: (a) it identifies separately time-varying output-oriented technical efficiency and technical 
change as long as the inefficiency effects are stochastic and have a known distribution and; (b) it does not require 
that technical efficiencies follow a specific time pattern common to all farms in the sample.  
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and uit such that . The component vit is a symmetric identically and independently 

distributed (iid) error term that represents random variation in output due to factors outside the 

control of the farmer (weather, diseases etc.) as well as the effects of measurement errors, left-

out explanatory variables, and statistical noise.  

The component uit is a non-negative error term representing the stochastic shortfall of farm 

i’s output from its production frontier due to technical inefficiency. Thus, technical efficiency is 

defined in an output-expanding manner (Debreu-type) and reveals the maximum amount by 

which output can be increased using the same level of inputs.6 It is obtained by truncation of the 

normal distribution with mean  and variance , where zmit is the mth 

explanatory variable associated with technical inefficiencies of farm i over time and θ0 and θm 

are the unknown coefficients to be estimated.7   

The parameters of both the stochastic frontier and the inefficiency effects model can be 

consistently estimated by the maximum likelihood procedure. The likelihood function and 

estimation issues are explicitly discussed in Battese and Coelli (1993). The variance parameters 

of the likelihood function are estimated in terms of  and . Farm- and 

time-specific estimates of output-based technical efficiency are obtained using the expectation of 

uit (or function of uit, depending on whether the dependent variable is in level or in logs), 

conditional upon the observed value of εit.  

A  percent confidence interval for the predicted technical efficiencies can be 

determined as (Horrace and Schmidt, 1996, pp. 261-2):8 

 

      (10) 

                                                             
6 In a similar manner, an input-conserving measure of technical inefficiency (Shephard-type) is defined as the ratio 

of best practice input usage to actual usage, with output held constant (Kumbhakar and Lovell, 2000, p. 6). Färe 
and Lovell (1978) have shown that these two measures of technical inefficiency are equal only under constant 
returns to scale. Under decreasing (increasing) returns to scale the output-oriented measure is greater (less) than 
the input-oriented measure of technical inefficiency. Output-oriented measures of technical efficiency are seem 
more appropriate in agricultural frontier modeling, since input choices are made prior to farm production.  

7 Exclusion of the intercept parameter θ0 may result in biased estimates of θm since in such a case the shape of the 
distribution of the inefficiency effects is being unnecessarily restricted (see Battese and Coelli (1995)). 

8 These confidence intervals are based on monotonic transformations of the α/2 and  quantiles of the 
distribution . Since, however, these intervals are conditioned on known values of the parameters (ignoring 
therefore any variation in the parameter estimates used to construct them), they should be regarded as minimal 
width intervals (Greene, 1999, pp. 108). 
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where  

      (10a) 

and 

      (10b) 

 
are the lower and upper limits of the standard normal variable Z respectively. Obviously, the 

variables introduced to explain inter-farm efficiency differentials have an effect on the range of 

the confidence interval; they affect the variability of the conditional mean of uit which, in turn, 

influences the spread of the lower and upper limits of technical efficiency (Hjalmarsson 

Kumbhakar and Heshmati, 1996, p. 320). 

 

5. Data and Variables Definition 

The data used in this study were extracted from a survey undertaken by the Institute of 

Agricultural Economics and Rural Sociology in Greece. Our analysis focuses on a sample of 125 

olive-growing farms, located in the four most productive olive-growing regions of Greece 

(Peloponissos, Crete, Sterea Ellada and Aegean Islands). The sample was selected with respect to 

production area, the total number of farms within the area, the number of olive trees on the farm, 

the area of cultivated land, and the share of olive oil production in farm output. Observations 

were obtained on an annual basis for the period 1987-93. 

The dependent variable is annual olive-oil production measured in kilograms (kgs). The 

aggregate inputs included as explanatory variables are: (a) total labor, comprising hired 

(permanent and casual), family and contract labor which includes all farm activities such as 

plowing, fertilization, chemical spraying, harvesting, irrigation, pruning, transportation, 

administration and other services and is measured in working hours; (b) fertilizers, including 

nitrogenous, phosphate, potash, complex and others, measured in kgs; (c) other cost expenses, 

consisting of pesticides, fuel and electric power, irrigation taxes, depreciation,9 interest 

payments, fixed assets interest, taxes and other miscellaneous expenses, measured in Greek 

drachmas (GDR) (constant 1990 prices); and (d) land, including only the area devoted to olive-

tree cultivation, measured in stremmas (one stremma equals 0.1 ha). Summary statistics of these 

                                                             
9 The rate of depreciation applied to machinery was between 10 and 13% depending on the size of the farm, while 

for buildings and inventories it was 7% of the stock value. 
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variables are presented in Table 1. Aggregation over the various components of the above input 

categories was conducted using Divisia indices with cost shares serving as weights (Vogt and 

Barta, 1997, pp. 29-33). Finally, the explanatory variables in the inefficiency effects model 

include: (a) farmer’s age (in years) and age squared; (b) farmer’s formal education in years of 

schooling; (c) the existence of an improvement plan10 in the farm (1 = Yes, 0 = No); (d) farm’s 

location (1 = Less Favored Area, 0 = More Favored Area); (e) farm size in stremmas; and (f) a 

single time-trend that captures intertemporal variation in efficiency ratings.  

All data (except for the dummy variables) were normalized around the sample mean to 

define the point of approximation and wash out the effect of different units of measurement. The 

generalized quadratic Box-Cox model in equation (1) was estimated using the maximum 

likelihood method, after doing the necessary transformation in the dependent and independent 

variables using a bi-dimensional grid search around the 0-2 range for the values of δ and λ 

(Greene, 1993a, pp. 329-334). Since the employed data set was generated by an unknown 

technology the regularity conditions, apart from symmetry, were assumed rather than imposed.11  

 

6. Empirical Results 

Production Frontier Estimates 

The maximum likelihood12 estimates of the generalized quadratic Box-Cox, translog, generalized 

Leontief, normalized quadratic, squared-root quadratic, CES and Cobb-Douglas stochastic 

production frontier and inefficiency effects models are reported in Tables 2 and 3. The 

corresponding parameter estimates for minflex  translog and generalized Leontief frontier 

models are reported in Table 4. All functional forms satisfy monotonicity since, at the point of 

approximation, marginal products are positive and diminishing - all estimated first-order 

coefficients (αj) fall between zero and one. The bordered Hessian is positive semi-definite for all 

locally flexible functional specifications except for normalized quadratic and squared-root 

quadratic, indicating that these two models do not support concavity.  

                                                             
10 Within Reg. 1278/88, some farms in the sample were receiving financial aid from the Greek Ministry of 

Agriculture during the 1987-93 period to improve their infrastructure and introduce certain technological 
innovations like new tractors, genetically improved seeds etc.  

11 Symmetry restrictions do not affect the flexibility of any of the flexible functional forms examined. 
12 The maximum likelihood estimation of the model was carried out using the FRONTIER (version 4.1a) computer 

program, kindly provided by T.J. Coelli. 
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The ratio parameter, γ, is positive and significant at the 1% level in all models, implying 

that farm specific technical efficiency is important in explaining the total variability of output 

produced. The value of γ ranges from a minimum of 0.547 in normalized quadratic to a 

maximum of 0.879 in minflex  generalized Leontief models. The statistical significance of 

modeling farm effects within the stochastic frontier model is further examined using likelihood 

ratio tests (the results of statistical testing are presented in Table 5).13  

The null hypothesis that the traditional average response model adequately represents the 

structure of Greek olive-growing farms is rejected. This is true regardless of whether farm 

inefficiency effects are present or absent from the production frontier model.14 The hypothesis 

that inefficiency effects are not a linear function of the variables considered herein is rejected at 

the 5% level of significance. As well, the specification of the model in equation (9) cannot be 

reduced to neither Aigner, Lovell and Schmidt (1977) nor Stevenson’s (1980) formulations, as 

the null hypotheses of  and  (for m = 1,2,…,M), respectively, are rejected at 

5% level of significance. Finally, the hypothesis that technical inefficiency is time-invariant 

 is rejected for all but the square-root quadratic and the minflex model specifications. 

Hence, no sub-hypothesis of the stochastic frontier model is justified apart of the temporal 

patterns of technical inefficiencies in squared-root quadratic, minflex  translog and minflex  

generalized Leontief models.    

Several hypotheses concerning the structure of the underlying technology were also 

examined using likelihood ratio test. Both homogeneity and linear homogeneity (constant returns 

to scale) are rejected by all functional specifications at the 5% level of significance. Technical 

change is present in almost all models.  The hypothesis of zero technical change is not rejected at 

the 5% level of significance for the normalized quadratic and minflex generalized Leontief 

models (see table 5). There is no consistency regarding the nature of technical change. While the 

underlying technological change is characterized as Hicks-neutral according to translog, 

generalized Leontief and normalized quadratic models, this hypothesis is rejected under all other 

                                                             
13 The likelihood ratio test statistic is calculated as  where * denotes estimates from the 

unrestricted model. The test-statistic has asymptotic distribution that is chi-square or mixed chi-square with 
degrees of freedom equal to the number of restrictions (Coelli, 1995; Coelli and Battese, 1996). 

14 If the parameter γ equals zero the model reduces to a mean response function in which the variables in the 
inefficiency effects model (θm) are included directly in the production function. In this case the constant θ0 and the 
time parameter θT are not identified while the LR-test has a mixed chi-square distribution, the appropriate critical 
values of which are obtained from Kodde and Palm (1986, table 1).  
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functional specifications. The rate of technical change follows an increasing trend over time, 

with the time-pattern being model specific (Figure 2). 

Average estimates over farms and time of production elasticities, returns to scale (RTS), 

and the rate of technical change are presented in Table 6. Estimates of production elasticities 

indicate that land has contributed the most to olive-oil production, followed by labor, according 

to all functional specifications.15 However, the relative contributions of fertilizers and other 

capital inputs differ across models. Whereas point elasticity estimates in translog, normalized 

quadratic, CES and Cobb-Douglas are very close, the rest of the models generate significantly 

different average values. For instance, the land elasticity takes values between 0.509 and 0.913 in 

generalized quadratic Box-Cox and squared-root quadratic respectively, and labor elasticity 

varies between 0.124 in translog and 0.415 in squared-root quadratic.  

The time development of production elasticities is also similar across models. However, the 

estimated elasticities of scale show that the magnitude of production elasticities is model 

specific. Specifically, olive-growing farms in the sample exhibit, on average, decreasing returns 

to scale according to generalized quadratic Box-Cox, translog, CES, Cobb-Douglas and minflex  

generalized Leontief functional forms, and increasing returns according to generalized Leontief, 

normalized quadratic, squared-root quadratic and minflex  translog. The higher average value is 

1.488 in squared-root quadratic and the lower is 0.750 in translog. In addition, while the value of 

scale elasticities follows a decreasing trend according to all functional specifications, the time-

pattern differs among them (Figure 1).  

 

Technical Efficiency  

Mean technical efficiencies over farms and the corresponding confidence intervals for the 

alternative functional specifications are presented in Table 7. The results indicate a significant 

variation in estimated efficiency scores with the mean values ranging from 67.37% in squared-

root quadratic to 86.82% in normalized quadratic. Furthermore, the choice of functional form 

seems to have a significant effect on the confidence interval of technical efficiency estimates; the 

difference between the lower and upper bounds varies from 7.1 to 11.7% in generalized 

quadratic Box-Cox while in squared-root quadratic it takes values between 18.3 and 21.4%. 

                                                             
15 Since the land input also appears in the inefficiency effects model, the corresponding point elasticity estimates 

were computed using the formulas set forth by Huang and Liu (1994) and Battese and Broca (1997). 
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Regarding the average values over farms and time, the efficiency interval varies between 7.09 

and 21.07% in minflex  generalized Leontief and squared-root quadratic, respectively. On the 

other hand, there was no intertemporal pattern of the width of the confidence intervals present 

during the study period.  

The temporal patterns of technical efficiency ratings are also very sensitive to the choice of 

functional specification. Table 7 shows that while technical efficiencies in normalized quadratic 

model follow a decreasing trend over time, they are rather stable in generalized Leontief, Cobb-

Douglas, squared-root quadratic, minflex  translog and minflex  generalized Leontief, and 

increasing in CES model. For the generalized quadratic Box-Cox and translog models the 

corresponding pattern show a decreasing trend for the first three periods and then an increasing 

trend thereafter. These results are consistent with both Spearman’s correlation coefficients (Table 

9) and the corresponding coefficient estimates in the inefficiency effects model (i.e. θT in Table 

3). The differences in the estimated temporal patterns of technical efficiency can significantly 

affect the results in studies of total factor productivity growth.  

Another discrepancy between the different functional specifications relates to the frequency 

distribution of mean technical efficiencies over farms and time. As it is clearly shown in Table 8, 

translog and Cobb-Douglas models are characterized by increased variation among farms when 

compared to the other five models. More specifically, means technical efficiencies range from a 

minimum of 30.74% to a maximum of 97.54% in translog, and in Cobb-Douglas the 

corresponding estimates are 32.35 and 99.99%, respectively. On the other hand, the relevant 

range in normalized quadratic is considerably smaller, 67.42 and 98.91%. Put in a different way, 

while the results from the translog specification indicate that 16.8% of the farms are less than 

60% technically efficient, estimates derived from the CES, normalized quadratic and minflex  

translog models suggest that there is no farm in the sample operating below that level. In general, 

the frequency distribution of mean technical efficiencies is quite similar between normalized 

quadratic, minflex  translog and CES, and between translog and Cobb-Douglas models, while it 

differs between all other models. The Spearman’s correlation coefficients reported in Table 9 

further confirm this finding.  

Besides the differences in the frequency distribution of mean technical efficiencies, 

alternative functional specifications reveal significantly different efficiency rankings of 
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individual farms. Table 10 shows the discrepancy in the efficiency ranking of (the same) 20 

farms under the different functional specifications of the production frontier.  

Perhaps more importantly, the results indicate that the choice of functional form affects 

significantly the identification of sources of these efficiency differentials among producers - the 

relevant estimates of the inefficiency effects models reveal considerable differences between the 

alternative functional specifications (Table 3). According to all seven models, farmers’ education 

affects positively their efficiency levels though at a different rate, while the coefficient of age 

(age-squared) is negative (positive) in all but the minflex  translog model, supporting the 

hypothesis of decreasing returns to human capital. However, for the rest of the explanatory 

variables there are significant differences among models. More specifically, farm size seems to 

have a negative effect on farm efficiency based on generalized quadratic Box-Cox, translog, 

generalized Leontief, CES, Cobb-Douglas, minflex  translog and minflex  generalized Leontief 

models while the normalized quadratic and squared-root quadratic models indicate the opposite. 

Location in less-favored areas positively affects the efficiency of a farm in CES and Cobb-

Douglas models and negatively in all other models, while the existence of an improvement plan 

in the farm has a positive effect on efficiency in generalized quadratic Box-Cox, generalized 

Leontief, normalized quadratic, CES, Cobb-Douglas, minflex  translog and minflex  generalized 

Leontief models.  

 

 

Selection of Functional Form 

The empirical results presented in the previous section show that different functional 

specifications of the stochastic production frontier model result in different conclusions 

concerning both the production structure and the estimated technical (in)efficiencies of the 

production units. Since the empirical results are model specific, the question that naturally arises 

is what is the model formulation that fits the data the best. For the functional forms that are 

nested within the generalized quadratic Box-Cox transformation function, the relative statistical 

fitness can be determined relatively easily using the standard likelihood ratio (LR) test. 

Specifically, each functional form can be tested against the generalized form (generalized 

quadratic Box-Cox) using the estimated values of the likelihood function. Results of nested 

hypotheses testing are presented in Table 11. The likelihood ratio test statistic for all restricted 
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models is higher than the corresponding critical value of the chi-square distribution at the 95% 

significance level, indicating that all functional forms are rejected against the generalized 

quadratic Box-Cox function.  

After adjusting the logarithm of the likelihood function by the Jacobian transformation (see 

table 11), the likelihood dominance criterion suggests that the generalized quadratic Box-Cox is 

the preferred functional form followed by the translog, generalized Leontief, normalized 

quadratic and squared-root quadratic. Regarding the two non-flexible functional specifications, 

the CES is clearly preferred to the Cobb-Douglas. Pairwise comparisons between CES, Cobb-

Douglas and the flexible functional forms indicate that Cobb-Douglas is the least preferred 

functional form against translog, generalized Leontief, normalized quadratic but it outperforms 

squared-root quadratic (Pollak and Wales, 1991).  

The above statistical testing is only able to determine the best alternative model among the 

functional specifications that are nested within generalized quadratic Box-Cox however. To 

statistically examine the relative performance of generalized quadratic Box-Cox model against 

the family of minflex  flexible functional forms (minflex  translog and minflex  generalized 

Leontief) we used the PE test. Specifically, the PE test is used to conduct pairwise comparisons 

between the generalized quadratic Box-Cox, minflex  translog and minflex  generalized Leontief 

models. The relevant test statistics are also presented in Table 11.  

Interestingly, the results are inconclusive in choosing between these three functional 

specifications. While the PE test clearly favors the minflex  flexible functional forms over the 

generalized quadratic Box-Cox function,16 it provides no clear statistical evidence about the 

relative performance (fitness) of minflex  translog and minflex  generalized Leontief models – 

both functional specifications fit the data set comparably. The PE test statistic is lower than the 

corresponding critical value no matter the null hypothesis tested – both the null hypothesis that 

minflex  translog is the correct specification and the null hypothesis that minflex  generalized 

Leontief is the correct specification cannot be rejected by the current data set.  

The statistical infeasibility to determine the functional specification that approximates the 

underlying production technology more accurately is bothersome given that the (statistically 

indistinguishable) minflex  translog and minflex  generalized Leontief models reveal different 

                                                             
16 The superior performance of minflex  translog and minflex  generalized Leontief relative to generalized quadratic 

Box-Cox can be explained by the relatively larger regular regions of Laurent-series expansions compared to 
regular regions provided by Taylor-series expansions. 



 

 17 

conclusions concerning the production possibilities of olive-growing farms and the efficiency in 

the use of their resources17. One possible explanation for this counterintuitive finding is that, 

albeit both the minflex  translog and the minflex  generalized Leontief models fit the data equally 

well, they can have very different disturbance distributions. Since the technical efficiency 

predictor in (11) is conditioned upon specific distribution of the disturbances, different 

distributional assumptions can result in different technical efficiency measures. 

Lau (1986) and Thompson (1988) suggest that a choice among the various flexible 

functional specifications available for applied production analysis can be made on either 

theoretical or empirical grounds. The former refers to a priori restrictions regarding the algebraic 

form and the maintaining assumptions on the underlying production technology, while the latter 

refers to an ex post evaluation of functional specifications given the peculiarities of any 

particular empirical application. However, as Griffin, Montgomery and Rister (1987) point out, 

theoretical criteria could lead to contradictory conclusions about the choice between the currently 

available functional forms. On the other hand, our comparative analysis reveals that the 

empirical ex post evaluation does not always lead to the determination of “the superior” 

functional specification. Put in a different way, unless a more general composite model is 

developed, the search for the appropriate functional specification will always involve non-nested 

hypothesis testing which, however, entails the possibility of statistically indistinguishable results.  

The inability to achieve the “first best” should not be perceived as an anathema to 

specification searches. Since the efficiency estimates are sensitive to the choice of functional 

form, one should always attempt to statistically discriminate among the viable alternatives. 

Despite its drawbacks, in our case statistical testing did narrow down the set of suitable 

alternatives from eight to two functional specifications.  

The natural question that arises is then what is the best way to proceed in cases where the 

determination of the appropriate functional form is not statistically feasible. A potential solution 

can be borrowed from the time-series forecasting literature where many authors suggest that 

composite predictions quite often outperform any particular predictive model (see Coelli and 

Perelman (1999)). Palm and Zellner (1992, p. 699) argue that “in many cases a simple average of 

forecasts achieves a substantial reduction in variance and bias.” On this basis, when different 

functional specifications are statistically indistinguishable and give different predictions of 

                                                             
17 We would like to thank the associate editor for pointing out this issue.  
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technical efficiency and inference on its determinants, a composite measure can provide a 

solution reducing the bias of the obtained efficiency estimates.18   

 

7. Summary and Concluding Remarks 

In recent years several attempts have been made to measure technical efficiency in both 

developed and developing countries. Since policy recommendations could be drawn from such 

studies, the design of the employed methodology is of great importance. Although several 

studies have examined the impact of estimation techniques on final efficiency estimates, only a 

few can be pinpointed as dealing with the effect that the choice of functional specification has on 

these estimates.  

This paper utilizes recent advances in stochastic production frontier modeling and a panel 

data set of 125 olive growing farms in Greece during the period 1987-93 to examine the effect 

that the choice of functional form has on measures of farm efficiency. The relative performance 

of six popular functional specifications (i.e. translog, normalized quadratic, squared-root 

quadratic, generalized Leontief, non-homothetic CES, and Cobb-Douglas) was evaluated using 

the generalized quadratic Box-Cox transformation model. In addition, our comparative analysis 

included the minflex  translog and generalized Leontief flexible functional specifications due to 

their desirable approximation properties. 

The results show that estimates of both production structure and measures of farm 

efficiency are sensitive to the functional form used. The choice of functional specification 

significantly affects the measures obtained, implying that the selection of a particular parametric 

specification cannot be a matter of indifference. Not only are estimation results of overall 

inefficiency sensitive to functional choice, but different functional specifications also render 

significantly different conclusions regarding the potential sources of these inefficiencies. The 

latter is crucial for the design of policies aimed at improving the economic performance of the 

farms. 

To the extent that an empirical analysis seeks to be relevant, these results strongly reject the 

ad hoc imposition of a (any) functional specification and underline the importance of 

                                                             
18 Coelli and Perelman (1999) used a similar approach in analyzing technical efficiency estimates obtained from the 

non-parametric and parametric estimation of an output distance function. Specifically, they argued that since there 
is no a priori reason for choosing among these two techniques, one should construct geometric means of the 
obtained technical efficiency estimates for each data point.   
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specification searches. When estimation procedures and the data set are adequate, formal 

empirical hypotheses may be tested to help narrow the range of viable alternatives; that is, one 

may proceed with a general-to-specific modeling approach to determine the appropriate 

functional specification. When data and/or estimation/testing procedures are not adequate, a 

range of relevant alternative functional specifications should at least be explored to determine 

how sensitive empirical findings, such as efficiency, are to these specifications. The current 

study shows that the inappropriate choice of functional form could result in significantly biased 

efficiency estimates and misleading policy recommendations regarding efficiency improvements. 

Finally, a potential solution for cases where statistically indistinguishable functional 

specifications yield significantly different results could involve the construction of composite 

efficiency measures that reduce the bias of the final efficiency predictions.  
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Table 1. Summary Statistics of the Variables. 
 
Variable Mean Standard 

Deviation 
Min Max 

Output (Kgs) 1,212 1,047 50 9,897 

Labor (hours) 607 522 21 3,715 
Fertilizer (Kgs) 1,475 1,254 50 16,984 

Other Cost (GDR) 23,523 18,522 2,100 544,900 
Land (stremmas) 24 14 2 105 

Age (years) 55 17 26 74 
Education (years of schooling) 8 3 6 12 
 
Exchange rate 1US$ ≅ 387 GDR; 1 stremma equals 0.1 ha. 
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Table 4. Parameter Estimates of the Minflex Laurent Translog (MTL) and Minflex 
Generalized Leontief (MGL) Production Frontier and Inefficiency Effects Models. 
 

Variable MTL MGL 
Stochastic Production Frontier 
Constant 0.2682 (3.5151) 1.3796 (3.7236) 
Labour 0.2147 (5.4492) 0.1735 (3.3494) 
Fertilizers 0.1603 (1.7481) 0.0987 (2.0351) 
Other Cost 0.0446 (1.7698) 0.0541 (3.0914) 
Area 0.6378 (7.2313) 0.3867 (5.8502) 
LabXLab -0.0260 (4.9776) -0.0894 (0.9933) 
FertXFert 0.1133 (1.8727) 0.5583 (2.4158) 
CostXCost -0.0065 (3.0952) 0.0049 (0.1317) 
AreaXArea -0.1069 (2.4406) -0.1498 (0.4064) 
LabXFert -0.0787 (1.5931) -0.1211 (0.4408) 
Lab-1XFert-1 -0.0000 (0.8571) -0.0037 (1.4601) 
LabXCost 0.0443 (4.3010) 0.1641 (1.4770) 
Lab-1XCost-1 -0.0001 (0.8104) -0.0011 (1.5714) 
LabXArea 0.2039 (4.6553) 1.7231 (4.9245) 
Lab-1XArea-1 -0.0001 (0.4710) -0.0460 (1.7557) 
FertXCost -0.0495 (1.2103) 0.0816 (0.4780) 
Fert-1XCost-1 -0.0013 (1.8571) -0.0001 (4.7619) 
FertXArea 0.0761 (0.6315) 0.4211 (0.8624) 
Fert-1XArea-1 -0.0006 (0.6667) -0.0069 (1.9714) 
CostXArea 0.0183 (0.5562) -0.2011 (0.9393) 
Cost-1XArea-1 -0.0005 (1.6667) 0.0014 (1.5556) 
Time 0.0139 (1.8784) 0.0161 (1.5333) 
Time2 0.0280 (0.5611) 0.0284 (0.5420) 
LabXTime 0.0208 (0.6582) 0.0104 (3.2379) 
FertXTime -0.0866 (1.7637) -0.0288 (0.3051) 
CostXTime 0.0088 (0.3296) -0.0019 (0.0720) 
AreaXTime -0.0836 (1.8174) -0.0674 (1.4433) 
Inefficiency Effects Model 
Constant -0.4368 (1.5561) -0.3709 (2.3929) 
Time 0.0075 (0.1773) 0.0095 (0.8796) 
Age 0.0359 (3.1491) -0.0218 (2.7595) 
Age2 -0.0004 (3.2415) 0.0014 (1.8843) 
Education -0.0202 (2.5570) -0.0166 (1.8864) 
ImpPlan -0.2290 (2.2992) -0.1902 (3.0335) 
Location 0.0730 (1.5974) 0.0560 (1.4698) 
Size 0.0011 (0.7857) 0.0012 (0.9231) 
σ2 0.2541 (19.851) 0.2657 (19.115) 
γ 0.7325 (71.116) 0.8799 (59.937) 
LnL -464.145 -481.425 

In parentheses are the corresponding t-ratios. 
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Table 5. Model Specification Tests 
 

Null Hypothesis1 Calculated LR-Test CV 
 GQBC TL GL NQ SRQ CES C-D MTL MGL (α=0.05) 

2 
28.3 43.8 28.1 31.1 248 45.7 49.3 43.9 35.91 7.05 

2 58.3 62.2 55.9 57.6 88.3 72.3 76.4 55.3 62.3 16.3 

 34.6 43.6 39.7 32.0 65.9 49.2 67.3 45.7 51.7 15.5 
 31.2 37.9 28.5 24.6 59.2 41.3 58.1 41.0 40.3 14.1 

 7.7 8.2 5.4 6.2 3.5 9.2 8.5 2.3 2.4 3.84 

ZTC 16.2 13.2 15.0 11.4 13.7 12.8 17.1 13.2 11.9 12.6 
HNTC 12.3 9.1 8.3 7.2 14.3 9.8 15.6 11.9 8.9 9.49 

 
1 For every m=1, 2, …, 7. 
2 The corresponding critical values were obtained from Kodde and Palm (1986, table 1).  
   ZTC: zero technical change, HNTC: Hicks-neutral technical change.  

GQBC: generalized quadratic Box-Cox; TL: translog; GL: generalized Leontief; NQ: normalized quadratic, SRQ: 
squared-root quadratic; CES: constant elasticity of substitution; C-D: Cobb-Douglas; MTL: minflex  translog; 
MGL: minflex  generalized Leontief. 
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Table 6. Production Elasticities, Elasticities of Scale and Rate of Technical Change for Alternative 
Functional Forms (average values of the 1987-93 period). 

 
 GQBC TL GL NQ SRQ CES C-D MTL MGL 

Production Elasticities 

Labor 0.260 0.124 0.281 0.276 0.415 0.244 0.148 0.231 0.173 
 (0.025) (0.068) (0.101) (0.145) (0.278) (0.111) (0.012) (0.098) (0.064) 

Fertilizer 0.101 0.024 0.155 0.053 0.104 0.051 0.016 0.114 0.082 
 (0.041) (0.012) (0.077) (0.041) (0.084) (0.025) (0.011) (0.056) (0.022) 

Other 0.052 0.033 0.051 0.056 0.056 0.054 0.020 0.092 0.041 
 (0.021) (0.009) (0.038) (0.047) (0.051) (0.031) (0.006) (0.023) (0.019) 

Area 0.509 0.569 0.654 0.703 0.913 0.518 0.622 0.762 0.527 
 (0.162) (0.244) (0.283) (0.352) (0.407) (0.211) (0.092) (0.212) (0.103) 

RTS 0.922 0.750 1.141 1.088 1.488 0.867 0.807 1.119 0.823 
 (0.217) (0.321) (0.441) (0.302) (0.507) (0.372) (0.242) (0.321) (0.212) 

Technical Change 
Total 0.642 3.029 0.077 0.853 -1.335 -0.401 1.887 2.098 1.532 
 (0.217) (0.816) (0.033) (0.289) (0.857) (0.325) (0.523) (0.534) (0.653) 

Neutral 0.244 1.234 -0.612 -0.780 -3.493 -0.922 0.180 0.342 0.863 
 (0.107) (0.326) (0.214) (0.136) (0.847) (0.428) (0.082) (0.099) (0.342) 

Biased 0.398 1.795 0.689 1.633 2.157 0.522 1.706 1.756 0.669 
 (0.147) (0.298) (0.147) (0.458) (1.748) (0.396) (0.754) (0.532) (0.231) 

 
In parentheses are the corresponding standard errors.  
GQBC: generalized quadratic Box-Cox; TL: translog; GL: generalized Leontief; NQ: normalized quadratic, 
SRQ: squared-root quadratic; CES: constant elasticity of substitution; C-D: Cobb-Douglas; MTL: minflex  
translog; MGL: minflex  generalized Leontief. 
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Figure 1. Time Development of Returns to Scale for Alternative Functional Forms 
(average values over farms). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Time Development of Technical Change for Alternative Functional Forms 
(average values over farms). 
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Table 7. Confidence Intervals and Mean Technical Efficiency over Farms for the Alternative 
Functional Forms.  
 
Year  GQBC   TL   GL  

 L M U R L M U R L M U R 
1987 78.31 82.82 86.77 8.46 68.30 75.66 80.51 12.21 64.58 72.02 77.36 12.78 
1988 78.10 82.75 86.69 8.59 68.91 75.53 81.26 12.35 63.25 71.93 78.65 15.40 
1989 75.58 82.51 87.24 11.66 67.23 74.88 81.59 14.36 62.36 72.05 78.47 16.11 
1990 76.69 81.91 88.10 11.41 67.39 75.18 81.89 14.50 61.58 71.69 79.28 17.70 
1991 76.68 81.14 87.69 11.01 66.92 74.82 82.00 15.08 60.28 71.35 77.39 17.11 
1992 78.62 82.16 85.69 7.07 67.28 76.14 81.47 14.19 61.89 72.14 78.97 17.08 
1993 76.57 82.55 84.65 8.08 68.23 79.42 83.33 15.10 62.25 72.38 77.14 14.89 
Av 77.22 82.26 86.69 9.47 67.75 75.95 81.72 13.97 62.31 71.94 78.18 15.87 

Year  NQ   SRQ   CES  
 L M U R L M U R L M U R 

1987 79.45 87.69 95.32 14.87 53.87 67.15 75.25 20.38 71.25 75.90 80.36 9.11 
1988 78.98 87.40 94.68 14.70 54.25 67.38 74.58 19.33 70.25 76.36 81.36 11.11 
1989 80.24 87.18 96.57 15.33 54.69 67.48 73.97 18.28 69.89 76.81 82.3 12.41 
1990 79.06 86.69 97.36 17.30 52.95 67.38 74.99 21.04 70.25 77.03 81.98 11.73 
1991 78.86 86.11 96.68 16.82 53.87 67.18 76.25 21.38 71.33 77.29 82.35 11.02 
1992 78.25 86.39 97.57 18.32 54.36 67.49 75.36 20.00 72.63 78.70 83.36 10.73 
1993 77.36 86.30 95.35 16.99 55.20 67.54 76.25 20.05 72.02 79.13 85.69 13.67 
Av 78.89 86.82 96.22 17.33 54.17 67.37 75.24 21.07 71.09 77.32 82.49 11.40 

Year  C-D   MTL   MGL  
 L M U R L M U R L M U R 

1987 68.02 74.22 81.03 13.01 77.32 81.47 85.21 7.89 70.12 74.16 76.32 6.20 
1988 67.12 74.72 81.42 14.30 77.09 81.11 86.12 9.03 68.31 72.61 75.54 7.23 
1989 65.32 75.21 82.02 16.70 76.12 80.93 83.42 7.30 68.91 73.35 77.63 8.72 
1990 65.21 74.55 81.43 16.22 74.23 80.57 84.23 10.00 69.54 72.06 75.03 5.49 
1991 66.13 74.12 82.36 16.23 75.43 80.26 85.21 9.78 68.93 72.58 77.31 8.38 
1992 67.14 75.88 80.13 12.99 76.36 81.12 84.33 7.97 69.15 72.86 75.43 6.28 
1993 65.76 76.03 80.22 14.46 76.12 80.96 84.97 8.85 68.75 72.94 76.05 7.30 
Av 66.39 74.96 81.23 14.84 76.10 80.92 84.78 8.69 69.10 72.94 76.19 7.09 

 
L: lower bound; M: mean value; U: upper bound; R: range 
GQBC: generalized quadratic Box-Cox; TL: translog; GL: generalized Leontief; NQ: normalized quadratic, 
SRQ: squared-root quadratic; CES: constant elasticity of substitution; C-D: Cobb-Douglas; MTL: minflex  
translog; MGL: minflex  generalized Leontief. 
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Table 8. Frequency Distribution of Mean Technical Efficiencies over Farms and Time  
 

(%) GQBC TL GL NQ SRQ CES C-D MTL MGL 

20-30 0 0 0 0 0 0 0 0 0 
30-40 0 2 0 0 0 0 1 0 0 

40-50 0 8 0 0 0 0 6 0 0 
50-60 5 11 11 0 6 0 11 0 4 

60-70 15 17 56 5 97 23 14 14 49 
70-80 32 48 33 21 20 65 51 54 45 

80-90 59 35 11 49 2 26 39 31 22 
90-100 14 4 14 50 0 11 3 26 5 

Mean 82.26 75.95 71.94 96.22 67.37 77.32 75.73 80.92 72.94 
Min 54.63 30.74 55.68 67.42 55.42 63.50 32.35 63.92 56.26 

Max 94.18 97.54 93.29 98.91 84.80 98.11 99.99 99.27 91.05 
N 125 125 125 125 125 125 125 125 125 

 
GQBC: generalized quadratic Box-Cox; TL: translog; GL: generalized Leontief; NQ: normalized quadratic, 
SRQ: squared-root quadratic; CES: constant elasticity of substitution; C-D: Cobb-Douglas; MTL: minflex  
translog; MGL: minflex  generalized Leontief. 

 

Table 9. Spearman’s Correlation Coefficients of Efficiency Ratings (mean values over time above 
the diagonal and mean values over farms below the diagonal). 

 
 GQBC TL GL NQ SRQ CES C-D MTL MGL 

GQBC  0.536 0.429 0.750* -0.072 -0.536 0.282 0.898** 0.568 

TL 0.448  -0.786** 0.071 0.523 0.321 0.532 0.248 0.065 
GL 0.902* 0.654*  0.000 0.775** 0.393 0.813** 0.732 0.422 

NQ 0.866* -0.122 0.940*  -0.396** -0.893* -0.112 0.696 0.586 
SRQ -0.032 -0.003** -0.036 -0.246*  0.721 0.898* 0.413 -0.093 

CES 0.864* 0.423 0.957* 0.960* -0.136  0.498 -0.177 -0.309 
C-D -0.334 0.921* 0.754 0.651 0.007 0.041  0.375 -0.042 

MTL 0.566 0.618** 0.377 0.264 -0.082 0.789** 0.347  0.721 
MGL 0.259 0.301 0.649** 0.098 -0.175 0.133 0.265 0.522  

 

* significant at the 1% level; ** significant at the 5% level. 
GQBC: generalized quadratic Box-Cox; TL: translog; GL: generalized Leontief; NQ: normalized quadratic, 
SRQ: squared-root quadratic; CES: constant elasticity of substitution; C-D: Cobb-Douglas; MTL: minflex  
translog; MGL: minflex  generalized Leontief. 
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Table 10. Ranking of the Ten Most and Least Technical Efficient Farms According to 
GQBC Model. 

 
GQBC ΤL GL NQ SRQ CES C-D MTL MGL 

Ten most efficient farms 

1 5 1 1 52 1 1 1 9 
2 13 2 2 43 3 2 13 6 

3 4 15 3 85 2 6 4 22 
4 34 4 10 90 10 7 8 8 

5 44 5 6 31 9 8 6 13 
6 29 3 5 57 6 3 28 5 

7 31 10 14 64 20 10 16 17 
8 7 16 4 61 4 12 4 7 

9 3 18 7 53 7 9 9 16 
10 2 25 20 55 22 4 25 28 

Ten least efficient farms 
116 111 108 111 125 115 116 113 96 

117 115 122 122 111 118 117 120 117 
118 107 125 123 123 123 113 123 119 

119 122 118 113 10 113 123 117 112 
120 120 110 116 68 116 120 114 111 

121 125 88 68 89 70 125 60 92 
122 119 111 114 73 114 119 112 104 

123 123 107 118 121 93 122 102 110 
124 121 114 117 118 117 121 116 120 

125 124 105 112 46 103 124 101 115 
 
GQBC: generalized quadratic Box-Cox; TL: translog; GL: generalized Leontief; NQ: normalized 
quadratic, SRQ: squared-root quadratic; CES: constant elasticity of substitution; C-D: Cobb-
Douglas; MTL: minflex  translog; MGL: minflex  generalized Leontief. 
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Table 11. Nested and Non-Nested Hypotheses Testing for the Alternative Functional Forms.  
 

Functional Forms Transformation (δ, λ)  LR-Test1 

Nested hypotheses testing 
Generalized Box-Cox  (0.191, 0.559)   

Translog (0, 0)  189.34 
Generalized Leontief (0.5, 0.5)  286.42 

Normalized Quadratic (0.5, 1)  246.34 
Squared-Root Quadratic (1, 1)  1394.82 

CES (0.191, 0.559)  107.26 
Cobb-Douglas (0, 0)  368.32 

Non-nested hypotheses testing  
 PE-test2   

GQBC vs MTL 3.854    

MTL vs GQBC 0.932   
GQBC vs MGL 2.976   

MGL vs GQBC 1.123   
MTL vs MGL 0.782   
MGL vs MTL 0.564   
 

1 The critical value of the LR test statistic is obtained from the chi-square distribution with the number 
of restrictions equal to 2 . In the cases of CES and Cobb-Douglas functional forms, the 

number of restrictions is 12 since it is further assumed that αij=0 for all i,j .  
2 The PE-test is based on an artificial compound model to form a Gauss-Newton regression (GNR) for 

each pair of non-nested models. Then a usual t-test for the compound parameter of the GNR is used 
to validate the null hypothesis (MacKinnon, White and Davidson, 1983; Davidson and MacKinnon, 
1993, p. 507).  
GQBC: generalized quadratic Box-Cox; CES: constant elasticity of substitution; MTL: minflex  
translog; MGL: minflex  generalized Leontief. 

 


