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Abstract

In many sectors technological conditions of firm production require the use of specific inputs that

are at the same time hazardous for firm workers, i.e., health-damaging inputs. Safety rules on

the application of these health damaging inputs are not always followed due to lack of knowledge

on the adverse long-run health effects and improper firm management. This in turn implies that

firms suffer from important productivity losses due to deterioration of their human capital. In

this paper, we develop a primal decomposition framework to analyze the effects of human capital

on individual productivity growth rates while considering the adverse effects of health-damaging

inputs. Workers’ health indices are estimated using the recently developed generalized propensity

score (GPS) methods with continuous treatments (Hirano and Imbens, 2004). The approach is

implemented in a unique dataset of greenhouse producers in Western Crete, Greece that combines

individual worker health with production data.
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1 Introduction

Since the seminal papers of Schultz (1961) and Becker (1962), a vast literature emerged analyzing

the role of human capital on productivity growth rate. Using Griliches (1963, 1964) and Mincer

(1974) theoretical developments, empirical research at a micro level concluded that indeed im-

provements in human capital account for significant gains in observed productivity rates among

individual firms (e.g., Bartel and Lichtenberg,1987; Katz and Murphy, 1992). At the same time

studies based on the endogenous growth model of Lucas (1988) and Romer (1986) attributed signif-

icant productivity improvements to human capital accumulation for a broad set of countries around

the world (e.g., Hall and Jones, 1999; Bils and Klenow, 2000). A common ground throughout this

literature, is that human capital is mainly determined by two factors: worker’s educational level

and health status. The intuition behind this assertion is simple. Formal or informal education

decreases the marginal cost of acquiring production related information and the benefit of such

information improves the allocative ability of firm workers. On the other hand, improved health

status enhance workers’ (skilled and unskilled) productivity by increasing their physical capacities,

such as strength and endurance, as well as their mental capacities, such as cognitive functioning

and reasoning ability.

Another common feature of these empirical studies, is that they all assume that workers’ health

status is determined exogenously. Regardless the choice of variables used to proxy individual

health status, this is assumed to be independent of working environment and production decisions

made within the firm. The majority of empirical work commonly hypothesizes a strong relationship

between nutritional intakes and wages to examine the effects of health on labor productivity mainly

in rural areas in both developed and developing countries (Bliss and Stern, 1978; Deolalikar, 1988;

Croppenstedt and Muller, 2000). A set of wage function estimates provides solid evidence that

higher nutrition leads to increased productivity rates. This nutrition-productivity hypothesis is

further confirmed by production function approaches using instrumental variables to correct for

simultaneous equation bias (Strauss, 1986). Using different proxies for workers’ health status,

more recent micro-level research verifies the positive relationship between health variables and

productivity for both skilled and unskilled workers (Strauss and Thomas, 1998; Schultz, 2002).

However, empirical evidence worldwide rather suggests the opposite. In many sectors (if not all)

workers’ health status is not irrelevant to the workplace conditions and individual firm decisions.

Evidence from medical studies indicates that health impairments account for 12-28 per cent produc-

tivity losses in construction sector (Meerding et al., 2005), while the relative figure in Information

and Communications Technology (ICT) industry is 15 per cent (Hagberg et al., 2002). Further,

according to the International Labour Organization (ILO), every year 160 billion workers suffer

globally from illnesses due to work-related causes, while the relative total cost of these diseases
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accounts for approximately 4 per cent of world’s GDP. According to a recent study by Eurostat

(2010), about 8.6 per cent of the workers in the EU-27 face at least one work-related health problem

in a period of 12 months, while the total time of lost work due to work-specific health impairments

is approximately 367 million calendar days. There are two ways that workplace conditions are

affecting workers’ health status. First, the nature of working activities involved in firm production

(e.g., construction sector) and second, the technological conditions that require the use of specific

inputs that are at the same time hazardous for firm workers. Ensuring strict safety standards in

a construction site (such as the height of handrails, shoring of trenches, and safe handling proce-

dures) may reduce the adverse effects in workers health status from a potential accident. This is

an instantaneous decision made by the firm (mostly imposed by the regulatory framework) and it’s

impact on individual productivity rates depends on the incidence of work accidents in the future.

In terms of productivity improvements though, it is more important to analyze workers’ health

status when firms utilize specific inputs in their production process that are at the same time

(directly or indirectly) harmful for individual workers, i.e., health-damaging inputs. This type of

inputs entails a trade-off between firm production and workers’ health status. This is particularly

acute for hazards that do not have an immediate and recognizable effect. For instance pesticides

materials in crop production, chemical substances in many manufacturing sectors, plastic or paint

manufacturing, are all cases where health-damaging inputs are extensively used by firms posing

serious health risks for their employees. In these sectors, workers seldom have perfect information

about the health implications of their jobs and the use of this specific type of inputs. For many

hazards, the true probabilities of being killed or getting ill are not known by anyone. Due to

the retarded state of occupational medicine, even the underlying medical ramifications of different

exposures to aspects of the workplace such as radiation, noise, high temperatures, and chemical

vapors are little understood. This uncertainty is compounded by uncertainty with regard to the

characteristics of the work situation, for example, the concentration of asbestos fibers in the air.

Hence, in many instances safety application rules are not always followed by individual workers

due either to improper firm management or lack of individual knowledge. Although the social cost

of such health impairments might not be of the interest of the firms, the associated reductions in

effective labor do matter for them since such reductions are accompanied by lower productivity

rates. Hence, measuring the indirect effect of health-damaging inputs, through human capital de-

terioration, may indirectly enforce safety standards in working environments. If these productivity

losses are important for individual firms, then indeed improving workers’ knowledge or applying

more effective management practices would result to significant gains for them.

Along these lines, this paper contributes to the relevant literature by suggesting a theoreti-

cally consistent framework to analyze both the direct and the indirect effect of health-damaging
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inputs on total factor productivity growth. The decomposition framework is based on a primal

approach requiring no assumptions about the structure of labor markets. It is applied to a panel

of greenhouse producers from Western Crete, Greece observed during the 2003-07 cropping period.

Due to the extensive use of chemical pesticides, farming is a particularly interesting example for

measuring the adverse effects of health-damaging inputs on individual productivity rates. For mea-

suring employees’ health status, individual health indices are estimated using recently developed

generalized propensity score (GPS) methods in a continuous treatment setting (Hirano and Im-

bens, 2004). To our knowledge this is the first attempt to construct an index of workers’ health

status that is endogenously determined, enabling the analysis of both direct and indirect effects of

health damaging inputs on individual total factor productivity growth rates. Our empirical results

may contribute to the ongoing debate for improving working conditions and reducing work-specific

health impairments in many sectors.

The next section develops a primal decomposition framework taking into account the dual effect

of health-damaging inputs on productivity growth rates. Section 3 presents the empirical setting

developing at the same time a theoretically consistent index for measuring workers’ health status

by using the generalized propensity score method. Next section 4 presents the empirical results of

our case study discussing their policy implications. Finally, the last section concludes the paper.

2 Human Capital and TFP Growth

According to the relevant literature, effective labor input may be defined through the following

general function (e.g., Griliches, 1963; Bliss and Stern, 1978; Strauss, 1986; Deolalikar, 1988):

le = le (l, ε, h) (1)

where l ∈ <+ stands for actual labor hours devoted to firm production, ε ∈ <+ and h ∈ <+ denote

workers’ educational level and health status, respectively, and le (l, ε, h) : <3
+ → <+ is a continuous

and twice differentiable concave function, non-decreasing in h and ε, representing effective labor

hours utilized in firm production.

Assuming that the only source of impairment in workers’ health is the use of hazardous inputs

in the production process, then actual workers’ health status is given by:

h = h(z) (2)

where z ∈ <+ is the amount of hazardous input utilized in production and, h (z) is a continuous

and twice differentiable convex function, non-increasing in z representing workers’ actual health
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status.

Under this general setup, we can describe the firm’s technology in period t from the following

closed, non-empty production possibilities set:

T (t) =
{

(x, l, z, ε, y) : y = f (x, le, z, t) , le = le (l, ε, h) , h = h (z)
}

(3)

where y ∈ <+ is the realized firm output, x ∈ <J+ is a vector of the j non-labor variable inputs,

and f (x, le, z, t) : <j+3
+ → <+, is a continuous and, strictly increasing, twice differentiable concave

production function, representing maximal output from variable inputs, effective labor, and health

damaging input use given worker’s education.

Taking logarithms of both sides of the production function, y = f (x, le, z, t), totally differenti-

ating with respect to t and, using relations (1) and (2), yields:

ẏ =
∂ ln f

∂t
+
∑
j

∂ ln f

∂ lnxj
ẋj +

∂ ln f

∂ ln le

[
∂ ln le

∂ ln l
l̇ +

∂ ln le

∂ ln ε
ε̇+

∂ ln le

∂ lnh

∂ lnh

∂ ln z
ż

]
+
∂ ln f

∂ ln z
ż

or in elasticity form

ẏ = TC +
∑
j

exj ẋj + el l̇ + eεε̇+ edż + ehehz ż (4)

where a dot over a variable indicates its time rate of change, TC =
∂ ln f

∂t
is the primal rate of

technical change, exj =
∂ ln f

∂ lnxj
and el =

∂ ln f

∂ ln le
∂ ln le

∂ ln l
are the output elasticities of the non-labor

and labor inputs, respectively, eε =
∂ ln f

∂ ln le
∂ ln le

∂ ln ε
is the output elasticity of workers’ educational

level and, ed =
∂ ln f

∂ ln z
and ez = ehehz are the direct and indirect output elasticities of the health

damaging input, respectively. The latter is the product between the output elasticity with respect

to workers’ health status, eh =
∂ ln f

∂ ln le
∂ ln le

∂ lnh
and the health elasticity with respect to the hazardous

input utilized in production, ehz =
∂ lnh

∂ ln z
.

Following Chan and Mountain (1983), it can be shown that the cost shares can be related to the

scale elasticity as follows: sxj =
exj
E

, sl =
el

E
, and sz =

ez

E
where E =

∑
j
exj + el + ez. Plugging these

relations into the conventional Divisia index of TFP growth (i.e., TFP = ẏ −
∑
j
sxj ẋj − sl l̇ − sz ż)

and substituting it into (4) results, after slightly rearranging terms, in:

˙TFP = TC + eεε̇+

(
E − 1

E

)∑
j

exj ẋj + el l̇ + ez ż + ehehz ż

 (5)

Under the assumptions made on firms’ production technology, the above formula shows that cal-
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culated TFP growth is a biased measure of technical change captured by the first term in (5). The

most familiar source of this bias in human capital literature emerges from how changes in worker’s

educational level affect output growth. Intertemporal changes in the educational level cause changes

in observed output due to changes in effective labor units and not due to the traditional scale con-

cerns. In this instance measured TFP growth will conflate the amount of technological progress

occurring with output changes caused by intertemporal changes in the educational level of firm

workers. Apart of the effect of education, measured TFP growth contains a scale component that

must be disentangled from observed growth in variable, labor and health damaging inputs. In

expression (5), the scale component of the technology is captured by the third term.

Scale bias is not present if returns to scale are one (i.e.,
∑
j
exj + el + ez = 1) or if variable

factors of production, labor hours worked on firm and health damaging inputs do not change over

time. Scale bias is positive (negative) under increasing (decreasing) returns to scale as long as

inputs increase over time and vice versa. The first term of the scale bias reflects the impact of

non-labor inputs (
∑
j
exj ẋj), the second that of labor hours devoted in firm production (el l̇) and,

the last two the direct (ez ż) and indirect (ehehz ż) effect of the hazardous input on individual

productivity rates. The indirect effect reflects productivity changes caused by the impact of the

hazardous input on worker’s health. Given the monotonicity properties of the health function in

(2), increases in the hazardous input use, cause impairment in worker’s health reducing effective

labor units. These decreases in effective labor emanating from higher levels of the hazardous input

contribute in turn negatively (positively) to TFP growth under increasing (decreasing) returns to

scale. Nevertheless, under constant returns to scale, changes in the hazardous input use will still

affect health and consequently the effectiveness of labor inputs but the later will have no impact

on observed productivity rates.

3 Empirical Illustration: Chemical Pesticides

Due to the extensive use of chemical pesticides, the agricultural sector is a particularly interesting

example for measuring the effects of health damaging inputs on individual productivity growth

rates through their impact on farm workers’ health. Exposure to chemical pesticides is one of the

most important occupational risks in both developed and developing countries (Konradsen et al.,

2003; Coronado et al., 2004). The World Health Organization (WHO) and the UN Environment

Programme estimate that each year 3 million farm workers in agriculture experience severe poisoning

from pesticides (WHO, 2004). Chemical pesticides are vital in farming practices due to their damage

preventing nature. Pesticides are used extensively in crop production under conventional farming

practices since they mitigate damage and reduce output losses caused by the presence of harmful
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pests. Hence, unlike conventional inputs which enhance directly the volume of produced output,

pesticides application reduce the pest incidence which in turn affects the level of realized farm

output (Saha et al., 1997; Chambers et al., 2010).

However, chemical pesticides besides preventing crop damage are at the same time hazardous for

farm workers. Both anecdotal evidence and available data worldwide indicate that pesticide use in

various farming activities has often been associated with significant health problems (Jeyaratnam,

1990; Cowan and Gunby, 1996). Low education levels of the rural population, lack of information

and training on pesticide safety, poor spraying technology, and inadequate personal protection

during pesticide application have been reported to play a major role in pesticide intoxication.

As a result, farm workers exposed systematically to hazardous ingredients over the past decades

experienced significantly higher rates of illnesses compared with workers in any other sector of the

economy (Coye, 1985). These distinct characteristics make the empirical analysis of farm production

particularly interesting.

Our empirical illustration involves a data set of Greek farmers cultivating vegetables in green-

houses. The survey was undertaken within the context of the Research Program TEAMPEST

financed by the European Commission.1 Specifically, our dataset includes 50 small-scale green-

house farms randomly selected from the Chania region in the Western part of the island of Crete,

Greece. In this specific area of Crete vegetable cultivation under greenhouses is flourishing in the

last twenty years. The survey covers five cropping seasons from 2003 to 2007 resulting in a bal-

anced panel dataset of 250 total observations. Crop protection in greenhouses became strongly

chemically oriented since the early 60’s. The micro-climate inside greenhouses is excellent for fast

reproduction of pests and diseases demanding high spray frequencies. This implies that pesticide

applicators (farmers or farm workers) are heavily exposed in this type of farming activities, insofar

as applications are more frequent than in open-air fields, environmental conditions are extreme

(high temperature and relative humidity), and ventilation is poor in partially-closed spaces.

The survey contains farm-level information on three different pesticide ingredients used against

the greenhouse whitefly Trialeurodes Vaporariorum (Westwood). The greenhouse whitefly has been

focused on as a major harmful pest responsible for about 80% of the total damage in greenhouse

production. Adults and immature flies are phloem feeders and reduce productivity of plants. Fur-

thermore, they produce large amounts of honeydew on the leaf reducing plants’ photosynthesis.

Under greenhouse conditions whiteflies can multiply quickly many generations increasing dramat-

ically crop damage. All identified types of pesticide materials were found to belong in the second

1The TEAMPEST project (Theoretical Developments and Empirical Measurement of the External Costs
of Pesticides) was financed within the EU 7th Framework Programme under Theme 2 on Food, Agricul-
ture and Fisheries, and Biotechnology. More information on the TEAMPEST project can be found in
http://www.eng.auth.gr/mattas/teampest.htm
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category of the most hazardous pesticides according to the WHO classification containing highly

toxic ingredients such as propetamphos, sodium cyanide, fluoroacetamide, carbofuran, and methomyl.

Information on pesticide use consists of data on expenditures and quantities used in litres. We use

these data to construct an aggregate pesticides input quantity index using Tornqvist procedures

with cost shares of each ingredient to total pesticides expenditures being the relevant weights.

Greenhouse whitefly population levels are measured using chemical traps installed approximately

every 250 squared meters. The number of whiteflies captured in the traps were then used to extrap-

olate the average number of whiteflies per greenhouse farm.2 Summary statistics of the variables

are presented in Table 2.

Prior to the definition of farm workers’ health index, we first need to distinguish among var-

ious farm working activities. Given that the health damaging effect of chemical pesticides arises

through the labor input, improper measurement of farm labor may result in biases in estimated

productivity growth rates. Thus, we distinguish the two major types of work activities involved

in farm production: i) field labor including working hours devoted to field tasks (e.g., harvesting,

spraying, fertilisation, irrigation), and, ii) management labor including the hours devoted to su-

pervision and organizational activities. According to Bliss and Stern (1978) and Strauss (1986)

these two distinct types of farm labor inputs are not perfect substitutes having a different impact

on productivity growth. Human capital increases field workers’ physical ability to engage in work

at the field increasing their skills and their physical strength and endurance. On the other hand,

such increases enhance managers’ organizational and supervision capabilities in a different manner,

increasing their mental and reasoning abilities. Hence, the distinction among the two types of farm

labor will improve our estimates on the adverse productivity effects of pesticide application among

greenhouse farmers.

3.1 Farm Workers’ Health Index

According to Strauss and Thomas (1998) there are two major problems in defining an appropriate

health index for farm workers. First, unlike educational level, health status is a fundamental

multidimensional concept. Different dimensions of health are having different impact on individual

productivity rates and these effects may significantly vary over time. Respiratory problems have

different and rather short-run effects on productivity compared with many chronic diseases. Second,

many health indicators are measured with errors that are systematically related with individual

farm or market characteristics and farmers behavior. For instance, the body mass index-BMI

2Adult fly populations are typically monitored using yellow sticky traps (McPhail traps) that are baited with
sex pheromone and ammonium bicarbonate. The sex pheromone is attractive to male flies while the ammonium
bicarbonate is primarily attractive to females. Both sexes are attracted to the trap’s yellow color. Thus, the population
numbers used in our empirical analysis are not biased with respect to fly gender and can be expected to reflect, as
closely as possible, the actual pest situation in each greenhouse.
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(weight measured in kilograms divided by height squared measured in meters) used frequently in

the relevant literature, has been found by Strauss and Thomas (1996) to be structurally related

with individual income. Weil (2007), trying to overcome these problems, proposed three conditions

that an ”ideal” health indicator should satisfy in any empirical setting: first, it should be related

with aspects of farmer’s health that are relevant in productivity measurement; second, it should

have a structural relationship of the returns to these health characteristics and; third, data for the

construction of the indicator are indeed available (and free of systematic measurement errors).

Along this line of argument, we follow the same approach with Antle and Pingali (1994) who

also analyzed empirically the adverse effects of pesticides on farmers’ health. In this context the

proposed index overcomes the theoretical problems underlined by Strauss and Thomas (1998) and

at the same time satisfies the Weil’s (2007) “ideal” conditions. Using WHO definitions we first

identify the five most serious pesticide-related diseases that arise from organophosphate compounds

and 2,4-D that exist in all types of pesticide materials utilized by greenhouse farmers in Western

Crete. These include eye, dermal, respiratory, neurological and, kidney problems that together

with their associated specific clinical symptoms are linked directly with exposure to those chemical

compounds.3 These specific health problems capture different dimensions of health status, while

at the same time are directly or indirectly structurally related with individual productivity levels

(Pingali et al., 1993). In particular, pesticide application results in chronic eye irritation problems

and diminished vision. On the other hand, dermal contamination takes place during application

and mixing resulting to chronic dermal disorders. Bronchial asthma is the most common chronic

lung abnormality due to long-term pesticide exposure. Organophosphate compounds and 2,4-D

are known neurotoxicants associated with sensory loss and diminished reflexes. Finally, circulating

toxins through human body due to pesticide materials lead to significant kidney abnormalities.

Greenhouse farmers were surveyed periodically by a team of experts consisting of a specialist

doctor, an agronomist and two economists. The team examined in detail the medical and social

security records of all farm workers4 (including the owner) during the 2003-07 period in order

to obtain accurate information on the above list of health problems and their associated clinical

symptoms. These records include personal prescription books as well as medical records kept at

the University of Crete Hospital. This disease-oriented construction of farm workers’ health index

3Obviously this is not an exhaustible list. Pesticides are also responsible for non-specific illnesses that affect farm
workers’ general health status (e.g., a simple flu may be related to weak immune efficiency due to pesticides use).
However, it is not possible to identify all these minor clinical symptoms in constructing a general index for health
status. We can reasonably assume though that these effects are closely related with the above list of pesticide-related
diseases and therefore measurement errors are kept random. In addition, we do not take into account cancer incidences
and reproductive problems. These are associated with very long-term effects and difficult to assign to pesticide use
in our sample survey.

4Farms in the sample used to occupy permanent field workers which facilitates the identification of health infor-
mation. In cases of past-employed field workers, the survey team contacted via telephone the potential respondents
in order to arrange personal interviews.

9



lessens significantly the potential biases arising from systematic measurement errors. Farm workers

and farm owners belong to a rather homogenous rural population having all access to the National

Health System enjoying the same health-related benefits. Hence, they do not have incentives

to over- or under-report morbidity rates and illnesses. The survey also contains information on

the medical cost of treatment for each disease together with the associated work days lost for

each farm worker. Both information were gathered from the personal prescription books. All five

pesticide-related diseases were found to account for approximately 75% of the total health incidences

recorded. Table 1 presents summary statistics of the pesticide-related health problems suffered by

farm managers and field workers together with their associated medical and impairment costs.

Over the five-year period, 486 cases of illnesses were recorded among Cretan greenhouse farms.

The most common types of health problems were the respiratory problems (325 cases), followed by

dermal (77 cases) and eye problems (53 cases). Incidences of neurological and kidney problems were

also observed but in a lesser extent constituting together only the 6.4 per cent of the total number of

incidences recorded. The frequency distribution of the recorded incidences for the five categories of

health problems was quite similar for farm managers and field workers. Nevertheless, the relative

impairment cost was found to vary significantly across the two labor types. In particular, field

workers suffered from each disease for about 10.8 days on average before they fully recover, while

the average recovery period for farm managers was substantially shorter, 8.3 days.5 For more than

half of these days, both field workers and farm managers abstained totally from working activities

while during the remaining recovery days, they were involved in work tasks but their effectiveness

was lower by 52.3 and 54.0 per cent, respectively.6 The average medical cost of treatment was

approximately 253 and 134 Euros for field workers and farm managers, respectively. In total, the

medical cost from pesticide-related health problems was 94,396 Euros over the period while the

total time of work lost was approximately 2,621 days.

In order to combine all these information into a single index of health status we use the sum

of the annual direct and indirect costs concerning pesticide-related health problems as a proxy

of individual worker’s health impairment. Direct costs include the medical costs of treatment,

while the indirect costs involve the opportunity cost from the work days lost including the value of

work loss due to lower efficiency. These indirect costs were calculated using the average wage for

field workers in Western Crete. Based on these assumptions, the health index was defined as the

logarithm of the reciprocal of health impairment cost and it was constructed on an annual basis

for the manager (i.e., farm owner) and every field worker in the farm. Since each farm employs

5As Schultz and Tansel (1997) noted, this difference between farm workers and farm manager may arise due to
differences in their opportunity cost of time.

6The reported reductions in efficiency reflect farm workers’ personal perceptions, since this variable could not be
directly retrieved from their medical records.
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more than one field workers (including family members) an aggregate health index of field labor

was constructed as the weighted sum of all individual health indices with field labor time shares

used as the relevant weights.

3.2 Pesticide Intensity and Health Index

Once an appropriate health index for farm workers has been defined, the problem still remains of

how to measure the effect of pesticide use on the health index. In an ideal situation a researcher

would like to have data on the health status for the same individual at different levels of treatment

or pesticide use, i.e., data on all potential outcomes. Unfortunately, the only available data is based

on observed outcomes and only the health status for a single level of pesticide use is observed for

each individual when collecting survey data. A potential problem that may arise in this case is that

the amount of pesticides used by each farm in the sample has not been randomly assigned to each

farm. The fact that the assignment of pesticide levels is not random implies that farms applying

different levels of pesticides may systematically differ from one another for reasons other than the

level of pesticide use. Therefore observed differences in the health status corresponding to different

levels of pesticide use could depend on baseline characteristics that affect pesticide use and not so

much on the level of pesticide itself.

The study undertaken by Antle and Pingali (1994) relates the health impairment index to

the number of applications and some demographic variables without taking into account that the

assignment of farmers to different levels of the number of applications is not random. On the other

hand, Antle et al., (1998) partially correct the problem of non random assignment by using data

both from framers and from a referent group not exposed to pesticides where both groups are

matched by age and education. However their health index depends on other covariates related

to farmers’ intelligence for which no matching was performed. Baseline characteristics affecting

the choice of pesticide level could be related to demographic characteristics such as the education

level as well as to structural characteristics such as the pest incidence or the quality of spraying

equipment. In addition, the amount of pesticides is likely to be correlated with background baseline

variables and the potential status of the individual’s health habits (e.g., smoking or drinking). In

order to adjust for such differences, a key assumption is that treatment assignment is independent

of the outcomes given the covariates or in the present case that conditional on observed covariates

V the level of pesticides z is independent of the potential health status (weak unconfoundedness

assumption) and is given by,

h(z) ⊥Z|V for all z ∈ Z

Under the unconfoundedness assumption, propensity score methods can be used to remove any

potential bias arising from differences in the observed characteristics between workers. Following
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Hirano and Imbens (2004) and Bia and Mattei (2012) we employ in our empirical analysis the

recently developed generalized propensity score method in a continuous treatment setting. The

weak unconfoundedness assumption adjusting for differences in covariates removes all biases in

comparisons by pesticide application levels. In other words, this assumption implies that the

baseline covariates which affect both the health and the likelihood of applying pesticides are all

observed while the remaining ones are perfectly correlated with the observed ones. Combined

with this assumption, the propensity score defined as the conditional density of the actual level of

pesticides can be used to eliminate any bias arising from differences in the covariates and hence, to

approximate the true health damaging effect of pesticides.

The approximation of farm workers’ health index is done in two-steps. In the first step, the

conditional distribution of the pesticide application intensity is estimated given a set of covariates

assumed to affect application rates. Following Hirano and Imbens (2004) and Bia and Mattei

(2012), the logarithmic transformation of pesticides application intensity, zit, is used to reduce the

skewness of the variable. The logarithm of the pesticide variable is then assumed to have a normal

distribution conditional on the covariates, as follows:

ln zit | Vit ∼ N
(
δ
′
Vit, σ

2
)

(6)

where i is used to index farms, t indicates the time period, Vit is a vector of covariates, δ is a vector

of parameters to be estimated and σ2 is the variance of the conditional density of the logarithm

of pesticide application rates. The model in (6) is estimated using standard maximum likelihood

technique and the estimated generalized propensity score-GPS is obtained from:

r̂it =
1√

2πσ̂2
exp

[
− 1

2σ̂2

[
ln zit − δ̂

′
Vit

]2
]

(7)

where σ̂2 and δ̂ indicate the estimated parameters.

Using these generalized propensity scores, we estimate in the second step farm workers’ actual

health index. Specifically, the conditional expectation of the health index is expressed as a quadratic

function of the form:

E [lnhit | zit, r̂it] = α0 + αzzit + αzzz
2
it + αrr̂it + αrrr̂

2
it + αzrzitr̂it (8)

where hit = H−1
it is the farm workers’ health index defined as the reciprocal of health impairment

cost, zit are the pesticide application intensity rates, r̂it are the estimated GPS scores obtained

from (7) and, α’s are the parameters to be estimated by simple OLS.

Using the estimated parameters, the average health index is computed for each level of pesticide
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application intensity rate utilized by surveyed farms during all time periods in order to obtain a

farm- and time-varying estimate of farm workers’ health index from:

E [lnh(z̄)] =
1

NT

N∑
i=1

T∑
t=1

(
α̂0 +

[
α̂z̄ + α̂zz z̄

]
z̄ +

[
α̂r + α̂zrz̄ + α̂rrr̂it (z̄,Vit)

]
r̂it (z̄,Vit)

)
(9)

Intensity in pesticides use was proxied by the ratio of applied pesticides measured in litres

divided by the size of cultivated land measured in stremma (one stremma equals 0.1 ha). Con-

cerning farm manager, three demographic and four general health and pesticide-related covariates

were used for the estimation of individual health indices. These include age measured in years,

experience defined as the number of years involved in greenhouse cultivation and, educational level

proxied by years of formal education and participation in training seminars.7 All of these variables

affect individual farmer’s awareness and behavior on health issues and therefore pesticide appli-

cation intensity. The remaining five covariates considered were manager’s smoking, and drinking

habits, pest population and, the stock of spraying equipment. The first two variables reflect his/her

health habits, while pest population and spraying equipment is assumed to influence pesticide ap-

plication intensity. Smoking habits were proxied as the average number of cigarettes smoked per

day multiplied by the tar milligrams contained, while drinking habits were proxied by the average

consumption of alcohol per week measured in units of alcohol (Stampfer, et al., 1993).8 Finally, the

stock of spraying equipment was computed using the perpetual-inventory method as described by

Ball et al., (1993) and data on depreciation rates obtained from the Greek Ministry of Agriculture

for different farming equipment.

Five of these covariates were also used in the econometric estimation of field workers’ health

index. Specifically, manager’s age, education and experience together with pest population and the

stock of spraying equipment were included in (6) when estimated for field workers. Farm manager

usually makes all farm decisions and thus, his/her level of awareness affects directly pesticide

application intensity that depends on pest incidence and available spraying equipment on farm. The

remaining covariates include field workers’ age, education, and smoking or drinking habits measured

as described before. Field workers’ characteristics and health habits are likely to affect pesticide

intensity as field workers are responsible to apply manager’s decisions. These four covariates were

7As Griliches (1963) pointed out the use of specific or more elegant variables than educational level does not alter
significantly the econometric results as all these variables are highly correlated with years of schooling. Concerning
training seminars, extension agents from the local Agricultural Experimental Stations run for many years a continuous
scheme of training seminars for both farmers and farm workers in greenhouses. These training seminars are crucial
as they enhance significantly their abilities particularly in intensive farming practices like greenhouses. To aggregate
both variables into a single education index we assume that one month participation in training seminars corresponds
to one year of formal schooling.

8One unit of alcohol equals approximately 8 gms of ethanol which corresponds to half pint of beer or a small glass
of wine.
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calculated at aggregate level for each farm as a weighting sum using field labor time shares as the

relevant weights. Summary statistics of all these variables are also presented in Table 2.

3.3 Farm Production Model

For the effective labor function in (1) we adopt Griliches (1963) multiplicative separable specification

that presumes perfect substitutability between actual labor hours and human capital variables (i.e.,

health and education).9 In logarithmic form, the effective labor functions for both types of farm

labor input have the following form:

lnF e = lnF + ln ĥF (z) + ln εF and lnM e = lnM + ln ĥM (z) + ln εM (10)

where i is used to index farm, t indicates the time periods and, ĥFit(z) and ĥMit (z) are field workers’

and farm manager’s health indices obtained from the econometric estimation of (8) and relation

(9).

Next, we need to take into account the asymmetric role of pesticides in farm production which

is the only health damaging input considered.10 According to the damage control literature (e.g.,

Lichtenberg and Zilberman, 1986; Chambers and Lichtenberg, 1994; Fox and Weersink, 1995), the

impact of pesticides on farm production involves a two-stage process which consists of the effect of

pesticides on pest infestation and the subsequent effect of the remaining pests on output. Thus,

farm production function can be written as:

yit = f
(
xit, F

e
it,M

e
it, t;β

)(
1− g (bit;λ)

)
exp (vit) (11)

with

g (bit;λ) = 1− exp (−λbit) (12)

bit = brit
[
1− φ (zit;β

z)
]

(13)

φ (zit;β
z) = 1− exp (−βzzit) (14)

where β, βz and λ are the parameters to be estimated and, vpit ∼ N
(
0, σ2

v

)
is a normally distributed

error term representing the omitted explanatory variables and measurement errors in the dependent

variable. g(bit;λ) : <+ → [0, 1] is a non-decreasing and concave pest damage function measuring the

proportion of farm output loss for any given level of pest incidence (density). If the damage agent is

9Bliss and Strauss (1986) and Deolalikar (1988) relaxed the assumption of perfect substitutability in the same
methodological framework. The validity of this assumption can be examined using formal statistical testing also
suggested by Griliches (1963, 1964).

10If the damage-control nature of pesticides is not considered in modeling production technology, then the estimated
marginal product of pesticides tends to be upward biased (Lichtenberg and Zilberman, 1986).
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absent, bit = 0, then realised output equals effective output. If, however, the level of damage agent

incidence tends to infinity, bit →∞, then realised output approaches a minimum level which reflects

the maximum destructive capacity of damage agents. On the other hand, pest incidence depends on

the initial level of pest population, br, and the proportion of the damage agent that is not controlled

for a given level of treatment, that is, bit = brit
(
1 − φ (zit;β

z)
)
, where φ(zit;β

z) : <+ → [0, 1] is a

non-decreasing and concave pest control function measuring the proportion of pest eradication. If

φ(zit;β
z) = 0, pesticides have no effect on damage agent incidence and the level of damage agent

affecting farm production is equal to its initial population, bit = br. If, however, φ(zit;β
z) = 1,

there is a complete eradication of the damage agent and realized and effective output coincide.

Assuming a translog specification for the production function in (11) and using relations (12)

through (14), our empirical model turns into the following:

ln yit = β0
i +

∑
j

βxj lnxjit + βF lnF eit + βM lnM e
it + t

[
βt + 0.5βttt+

∑
j

βxjt lnxjit + βFt lnF eit

+ βMt lnM e
it

]
+ 0.5

[∑
j

∑
ρ

βxxjρ lnxjit lnxρit + βFF (lnF eit)
2 + βMM (lnM e

it)
2 (15)

+ βFM lnF eit lnM e
it +

∑
j

βxFj lnxjit lnF eit +
∑
j

βxMj lnxjit lnM e
it

]
− λbrit exp (−βzzit) + vit

where lnF e and lnM e are defined in (10).

Using (15), all terms appearing in the decomposition formula in (5) can now be identified. First,

the primal rate of technical change is calculated from:

TC = βt + βttt+
∑
j

βxjt lnxjit + βFt lnF eit + βMt lnM e
it (16)

Griliches (1963) augmentation scheme in (10) implies that the elasticity of effective labor with

respect to labor hours utilized and human capital variables equals to one. Keeping this in mind,

the elasticities necessary for the calculation of all terms appearing in relation (5) are obtained from:

exjit = βxj + βxjtt+ 0.5

(∑
ρ

βxxρj lnxρit + βxFj lnF eit + βxMj lnM e
it

)

eFit = βF + βFt t+ 0.5

βFF lnF eit + βFM lnM e
it +

∑
j

βxFj lnxjit


eMit = βM + βMt t+ 0.5

βMM lnM e
it + βFM lnF eit +

∑
j

βxMj lnxjit


edit = βzλbritzit exp (−βzzit)
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ezit = eFite
hz
F + eMit e

hz
M

where exjit is the output elasticity of non-labor inputs, eFit is the output elasticity of field working

hours, eMit is the output elasticity of management working hours, edit is the direct output elasticity of

pesticides (i.e., the damage control effect of pesticide materials), ezit is the indirect output elasticity

of pesticides through changes in effective labor hours and, ehzF , ehzM are the health elasticities of

pesticides use for both types of labor which are obtained from (9) as:

ehzF =
1

NT

N∑
i=1

T∑
t=1

(
α̂Fz + 2α̂Fzz z̄ + α̂Fr

∂r̂Fit (·)
∂z̄

+ 2α̂Frrr̂
F
it

∂r̂Fit (·)
∂z̄

+ α̂Fzrr̂
F
it + α̂Fzrz̄

∂r̂Fit (·)
∂z̄

)
z̄

ehzM =
1

NT

N∑
i=1

T∑
t=1

(
α̂Mz + 2α̂Mzz z̄ + α̂Mr

∂r̂Mit (·)
∂z̄

+ 2α̂Mrr r̂
M
it

∂r̂Mit (·)
∂z̄

+ α̂Mzr r̂
M
it + α̂Mzr z̄

∂r̂Mit (·)
∂z̄

)
z̄

where
∂r̂it (z̄,Vit)

∂z̄
is the partial derivative of equation (7) with respect to pesticides intensity, z̄

for each type of farm labor. Again health elasticities are estimated for each level of pesticides

application intensity, z̄, utilized by farms during the cropping periods. In that respect, the health

elasticities of pesticides are farm- and time-varying as long as the level of pesticides application

intensity varies across farms and years as well.

For the empirical approximation of farm technology, we consider one output and three variable

inputs together with labor inputs and chemical pesticides. Greenhouse farmers produce four dif-

ferent kinds of vegetables, namely, tomatoes, cucumbers, peppers and aubergines. Different crops

(including quantities sold off the farm and quantities consumed by the farm household during the

crop year) were aggregated into a single aggregate Tornqvist output index with the revenue shares

of each crop defining the relevant weights. The three non-labor variable inputs are land, fertil-

izers and, other intermediate inputs. Land input includes the value of the total acreage (rented

or owned) under greenhouses measured in Euros. Concerning fertilizers, farmers use a mixture of

nitrate, phosphorous, and potassium ingredients. These different fertilizers were aggregated again

into a single Tornqvist fertilizer index with the cost shares of each type of fertilizer defining the

relevant weights. Finally, intermediate inputs consist of goods and materials used during the crop

year, whether purchased off-farm or withdrawn from beginning inventories. These include seeds,

fuel and electric power, storage expenses, and irrigation water also measured in Euros.

Management labor was defined as the total working hours devoted by the manager (i.e., farm

owner) to supervision and organizational activities. Field labor, on the other hand, is measured as

the total hours devoted to field activities such as harvesting, planting, fertilization and pesticide

application. It includes both farm owner, family members and hired workers with either permanent
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or seasonal occupation.11 The education variable, for both types of labor, includes years of formal

schooling and informal training on farming practices (as defined in section 3.2). For field workers

a single education index was constructed using Tornqvist procedures with working hours shares of

each farm worker (farm owner, family members, hired workers) as the relevant weights.

All monetary variables were converted into 2000 constant prices. Finally, prior to econometric

estimation, and to avoid problems associated with units of measurement, all variables were con-

verted into indices, with the basis of normalization being the representative greenhouse farm. The

representative farm was the one with smallest deviation of all variables from the sample means.

Summary statistics of all variables are presented in Table 2.

4 Empirical Results

Health Index

First, the conditional distribution of pesticides application intensity is estimated given the covariates

for each type of labor using the ML estimation procedure. The estimation results reported in

Table 3 indicate that manager’s education and experience along with pest population and stock of

spraying equipment are significant determinants of treatment, i.e., pesticides intensity. As expected,

manager’s education and experience are both negatively related with the level of pesticides applied

per unit of land. Additionally, higher pest population increases pesticides intensity while better

spraying equipment reduces the level of pesticides applied per stremma. Innovative equipments

enable effective spraying methods, such as, target spray applications, which minimize pesticide

waste resulting in this way in lower pesticide intenstity rates. On the other hand, field workers’

education does not exhibit any significant association with pesticides intensity which is expected

given that farm production decisions including pesticides application rates are made by the farm

manager. Similar results are also found for the health-related covariates i.e., age, smoking, drinking.

These covariates used for matching purposes are assumed to be determinants of potential outcomes

(i.e., potential health indexes) rather than determinants of treatment levels. The ML estimates

presented here are used next to compute the GPS for both field workers and farm manager.

Before proceeding with the estimation of the continuous dose response function (i.e. average

health index), the effectiveness of the specification of the propensity score in (8) was examined

by testing the balancing properties of covariates before and after adjusting for the estimated GPS.

Specifically, the range of pesticides intensity measured in litres per stremma is divided into three in-

tervals, (0, 0.27], (0.27, 0.50] and, (0.50, 1.33] which represent light-, medium- and intensive-pesticide

11Our analysis is simplified by assuming that family and hired field labor are perfect substitutes implying that
returns to farm and off-farm work are equal under competitive labor markets. Given the structure of local labor
markets this assumption is realistic.
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user groups, respectively. The first and second groups include 92 and 73 observations and the third

group 85 observations. Next, a conventional two-sided t-test was performed for each one of the

covariates to examine whether the mean in one of the three treatment groups was different from

the mean of the other two groups combined. The test was repeated before and after adjusting for

the estimated GPS for both field workers’ and farm manager’s vector of covariates. The results

indicate that adjusting for GPS improves significantly the models as balancing property is found

to be satisfied at the 10 per cent level. Table 4 reports the balance properties of covariates after

adjusting for GPS. For all three groups in both models, adjusted mean differences are found sta-

tistically insignificant at the 10 per cent level providing evidence in favor of the effectiveness of the

GPS specification adopted.

As an additional check for the balancing property, the Bayes Factor Test for equality of means

was performed for all covariates in the two models. The Bayes factor test statistics for unadjusted

and GPS-adjusted mean differences are reported in table 5. The values of the Bayes factor can be

interpreted as the odds in favor of the equality of the means and therefore of the balancing property.

The results indicate that the GPS improves the balance in both models providing strong support

for the choice of the GPS specification. In particualr, regarding field workers’ covariates, 12 Bayes

factors are found less than one and 3 less than 0.01 before adjusting for the GPS while after the

adjustment all of them are well above unity. Similar results hold for farm managers’ covariates. In

particular, prior to adjustment, 9 out of 21 Bayes factors are less than one whereas after adjusting

for the GPS again all Bayes factors are found to exceed unity. This increasing trend characterizes

all Bayes factors after the adjustment since for all covariates in both models unadjusted Bayes

factors were found to be lower than the corresponding GDP-adjusted ones.

Given the t-test and Bayes factor results, the GPS was used to remove the bias arising from

systematic differences in covariates. The OLS parameter estimates of the conditional expectation of

health status in (8) are reported in Table 6. Based on these estimates, the average potential health

index at each level of pesticide intensity was calculated for field workers and farm managers in our

sample using equation (9). Figure 1 illustrates the estimated dose response functions (i.e., average

health indexes) at each level of pesticide application per unit of land. As is apparent in the Figure,

the estimated average health index declines for both types of labor as pesticide intensity rises. For

low application levels, increases in the pesticides intensity lead to serious health impairments while

for higher levels the corresponding effects are substantially lessened. The estimated average health

index for field workers almost equals the corresponding health index of farm managers for low

application rates. Nevertheless, as pesticide intensity rises, field workers’ health deteriorates with

a faster pace resulting in a constantly lower health index for field workers. These findings are more

apparent in Figure 2 presenting the average marginal effects of pesticides application intensity.
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Farm Production

Prior to the econometric estimation of the translog production function and the empirical approxi-

mation of farm production technology, we examined the hypothesis of the multiplicative separable

specification for the effective labor function. Using Griliches (1964) approach, the estimated health

index and education level were included as separate inputs in the production function along with

actual labor hours for both field workers and farm manager. Then, a simple t-test was employed

to examine whether the coefficients of labor input and human capital variables were equal for

both types of farm labor. The results failed to identify statistically significant differences in the

coefficients implying perfect substitutability between labor inputs and human capital variables as

Griliches approach implies. This finding suggests that the adopted functional specification for ef-

fective labor function is a statistically accepted approximation of the true relations in our sample

of greenhouse farms.

Farm production model in (15) was estimated using the standard fixed effect estimation pro-

cedure. Because of the nonlinearity imposed by our damage-control specification in the use of

pesticides materials, the model was estimated using a grid search procedure around the 0-2 range

for the values of the βz parameter. All parameter estimates are presented in Table 7 along with

their corresponding standard errors. The estimated parameters were found to be statistically sig-

nificant at least at the 10 per cent significance level. All input coefficients have the anticipated

magnitude and sign and the majority of them are statistically significant at least at the 10 per

cent level. Concavity of the production technology with respect to non-labor, labor and damage

preventive inputs is satisfied at the point of normalization. Hence, marginal products of non-labor,

labor and damage-control inputs are positive and diminishing.

Three additional hypotheses concerning farm production structure were statistically examined

using the generalized LR-test statistic. First, the assumptions of zero (i.e., βt = βtt = βxjt =βFt =

βMt = 0) and Hicks-neutral technical change (i.e., βxjt =βFt = βMt = 0) were statistically tested by

imposing the corresponding parameter restrictions in (15). Both hypotheses were rejected by the

LR-test indicating that technical change was present during the cropping periods in our sample

contributing to TFP growth rates. Annual rate of technical change was estimated to be 0.9561

per cent driven mainly from neutral shifts of the production technology. Regarding technological

biases, technical change is found to be labour-saving, land-using and neutral with respect to the

remaining two variable inputs (fertilisers and intermediate inputs) as the relevant parameters are

found to be statistically insignificant. Finally, the assumption of constant returns to scale was also

tested and rejected by the LR-test. For the whole period under consideration, returns to scale

were found to be increasing (1.0957 on the average) implying that greenhouse farmers operate at

a sub-optimal scale. In any case, the scale effect is present and constitutes an important source of
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TFP growth.

Using the parameter estimates of the translog production function, crop output elasticities

along with their corresponding standard errors, computed using block resampling techniques, are

presented in Table 8. On average, both labor inputs (field workers and farm manager) together

with land have the greater impact on farm’s crop production. Labor elasticity is 0.3356 (0.2065 for

field workers and 0.1291 for farm manager), whereas that for land input is 0.4039. On contrary,

the overall output elasticity of pesticide materials is substantially lower, 0.0863. This low point

estimate for pesticides is mainly due to their high negative indirect impact on the effective labor

units rather than the result of their damage-control effect on production. Assuming that chemical

pesticides have no impact on workers’ health, an increase in pesticides use by 1 per cent would

increase, ceteris paribus, crop output by 0.2369 per cent. This difference underlines the importance

of the adverse health effects of pesticides on output production which are not negligible.

To investigate the patterns of the direct effect of pesticides on production, two measures of out-

put damage were computed for each level of pesticides use. These measures are: the actual damage

measured as the percentage damage in crop production for any given level of pesticides use and the

potential damage measured as the percentage damage that would have occurred in crop production

assuming zero pesticide use. Table 9 presents the two computed measures calculated at sample

means as well as at pesticide-quartiles means. As it was expected, actual damage follows a decreas-

ing pattern over pesticide-quartiles. Farms in the first quartile realize significantly greater output

losses due to pest infestation (14.19 per cent) compared with intense pesticide users in the fourth

quartile (5.40 per cent). On average, farms in the sample experienced a 10.14 per cent reduction in

the attainable output because of the uncontrolled pest population. On the other hand, potential

damage estimates exhibit positive patterns across pesticide-quartiles implying higher potential out-

put losses for heavier pesticide applicators. Farms who would potentially experience more serious

output losses are actually those who realized the lower ones as a result of their production decision

to apply higher pesticide levels. In particular, assuming zero use of pesticides, the additional per-

centage damage for farms in the first and fourth quartile is estimated at 5.09 per cent and 17.63

per cent, respectively, while the corresponding figure for all farms is 9.90 per cent.

TFP Growth

The empirical results concerning the decomposition of TFP changes based on equation (5) are

reported in Table 10. The average annual productivity growth rate is found to be 1.4167 per cent

during the 2003-07 cropping periods. The greatest part of that growth is due to technical change

(67.48 per cent) and to a lesser extent due to the presence of scale economies and aggregate variable

input growth (24.69 per cent). Increases in educational level account for the remaining 7.83 per
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cent of observed TFP growth constituting the third most important contributor to productivity

rates. Neutral technological innovations are the driving force of TFP growth among greenhouse

farms as they account for the 58.44 per cent of the observed productivity changes.

The average education effect is 0.1109 per cent over the period analyzed including the overall

impact of changes in both field workers’ and farm manager’s educational levels on productivity

growth. Increases in field workers’ education account for the 4.12 per cent of observed productivity

changes whereas the corresponding figure for farm managers is quite similar, 3.71 per cent. The

later is due to the increasing participation of farm managers in training seminars over the last years

which probably reflects their perspectives about the long-term benefits of learning. On contrary,

improvements in field workers’ educational level is attributable mainly to changes in the composi-

tion of hired field workers rather than increases in informal education revealing the farm owners’

willingness to hire more educated workers over time.

The average contribution of non-labor variable inputs is 0.1170 per cent accounting for the

8.26 per cent of observed productivity growth rates. Intermediate inputs (4.49 per cent) have the

highest contribution due to the gradual intensification of greenhouse production over years. Land

input changes account only for the 1.83 per cent of observed TFP growth as changes in the total

acreage due mainly to crop sharing contracts among farmers have been limited during the period

analyzed. Increases in field working hours account for the 6.01 per cent of TFP growth, whereas the

corresponding figure for farm managers is considerably lower, 3.22 per cent. Operation at a sub-

optimal scale for greenhouse farms induced intensification of farm production, increasing variable

input use (for both labor and non-labor inputs) which was translated into significant productivity

improvements during the five cropping periods analyzed.

The overall effect of pesticide materials accounts for the 7.20 per cent increase in observed pro-

ductivity growth rate (0.1021 per cent). This includes both the direct damage control effect through

eradication of harmful pests in crop production and the indirect effect through the deterioration

of farm workers health index. Specifically, the direct damage effect is 0.2630 per cent as the use

of pesticide materials was increased under increasing returns to scale in crop production. Farm

intensification and the associated increase in pesticide application rates resulted in TFP gains as

farm size is lower than that maximizing ray average productivity. Nevertheless this significant pos-

itive effect has been lessened from the adverse effects that pesticides materials had on farm workers

health index. Deterioration of field workers’ health index account for the 8.82 per cent decline in

annual TFP growth rates, whereas the corresponding figure for farm owners is only 2.54 per cent.

In total, adverse health effects of pesticides materials account for the 11.36 per cent of TFP

slowdown during the whole period analyzed. Although productivity gains from the associated

reductions in crop damage due to pesticides utilization slightly exceed the productivity losses caused
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from impairments in workers health, still the adverse health effects are indeed significant and

it should be taken into consideration in analyzing productivity growth rates in the presence of

health damaging inputs. If farmers applied pesticides taking all precautionary measures, then the

associated gains would have been higher resulting to improved productivity rates.

5 Concluding Remarks

In this paper, we developed a theoretical consistent decomposition framework to analyze the dual

effects of health-damaging inputs on total factor productivity growth. Unlike previous studies,

the proposed methodology allows the constructed workers’ health indices to be affected by the

working environment and not determined exogenously by nutritional intakes. The decomposition

framework was based on a primal approach requiring no assumptions about the structure of labor

markets. The empirical illustration involves a panel data set of greenhouse farms from Western

Crete, Greece covering the 2003-07 cropping periods. Greenhouse farming provides a good example

for the analysis of the dual role of health-damaging inputs on productivity growth rates as pesticide

materials are used extensively for many years. The dataset is unique including detailed information

concerning pesticide-related health problems recovery days and health impairment costs.

For proxying workers’ health status, we estimated individual health indices using the recently

developed generalized propensity score methods in a continuous treatment setting suggested by

Hirano and Imbens (2004). This empirical approach allows to take into account the potential biases

arising from differences in farm workers’ characteristics. Empirical results suggest that chemical

pesticides are vital for greenhouse production. Potential crop losses would have been 21.04 per cent

on the average if chemical pesticides were not utilized. At the same time pesticides account on

average for 14.8 days lost from work and to a 53.2 per cent reduction in farm workers effectiveness.

Average annual rate of TFP growth was 1.0027 per cent during the analyzed period. The

greatest part of that growth is due to technical change (78.23 per cent) and to a lesser extent due

to the presence of scale economies (24.28 per cent). Work-related health problems due to the use of

chemical pesticides were found to account for 12.92 per cent productivity losses during the period

under consideration. This figure, besides being case specific, underlines that health-damaging inputs

have indeed a significant impact on observed productivity growth rates and it should be taken into

account in empirical analysis. Farms and farm workers should realize that important gains can be

achieved under more efficient management practices and improving individual perceptions about

the long-term effects of chemical substances.
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Tables and Figures

Table 1: Pesticide-Related Health Problems and their Associated Economic and
Medical Cost (Average Values)

Health No of Recovery Days of Effectiveness Treatment
Problem Cases Days Absence Change (%) Cost (in e)

Field Workers
Eye 33 10.8 6.0 -52.8 241
Dermal 50 11.5 6.3 -54.0 256
Respiratory 193 10.4 5.9 -52.1 238
Neurological 10 11.7 8.0 -43.3 400
Kidney 9 14.3 7.2 -55.0 428

All problems 295 10.8 6.1 -52.3 253

Farm Managers

Eye 20 8.6 3.9 -58.0 135
Dermal 27 7.7 4.1 -54.1 106
Respiratory 132 8.3 4.4 -53.8 132
Neurological 4 12.5 6.5 -49.9 443
Kidney 8 8.4 4.8 -50.1 104

All problems 191 8.3 4.4 -54.0 134
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Table 2: Summary Statistics of the Variables

Variable Mean Min Max Std.Dev.

Health Index Data
Field Workers:

Log of Health Impairment 4.41 0.00 7.37 2.28
Age (years) 47.97 25.11 72.00 10.10
Education (years) 9.48 4.25 17.54 2.72
Smoking (tar units) 15.57 0.00 42.49 11.22
Drinking (alcohol units) 18.70 0.00 44.69 12.27

Farm Manager:
Log of Health Impairment 4.31 0.00 7.24 2.45
Age (years) 50.88 26.00 72.00 10.87
Education (years) 9.36 6.00 17.25 2.76
Experience (years) 19.82 2.00 40.00 7.45
Smoking (tar units) 16.15 0.00 50.00 12.43
Drinking (alcohol units) 17.94 0.00 39.19 12.22

Farm Production Data
Output (euros) 42,556 9,111 222,360 31,937
Land (euros) 46,048 12,844 264,982 44,163
Fertilizers (euros) 2,621 468 11,129 2,005
Intermediate Inputs (euros) 5,778 600 15,450 3,059
Management Labor (hours) 508 40 1,580 291
Field Labor (hours) 4,286 423 21,599 4,861
Pesticides (litres) 2.71 0.62 12.41 1.90
Pest Population (pests per m2) 1.28 0.45 3.01 0.54
Spraying Equipment (euros) 193 148 284 19

Table 3: ML Estimates of Conditional Distribution of Pesticides Application

Variable Estimate St.Error Variable Estimate St.Error

Field Workers Farm Manager

Constant 0.6269 0.5937 Constant 0.6931 0.5881
Field Workers Age 0.0849 0.3542 Manager Age 0.5313 0.3167
Field Workers Education 0.1446 0.1953 Manager Education -0.3239 0.1694∗

Field Workers Smoking -0.0127 0.0741 Manager Experience -0.4494 0.1738∗∗

Field Workers Drinking 0.0581 0.0957 Manager Smoking -0.0177 0.0702
Manager Age 0.4308 0.4267 Manager Drinking 0.0343 0.0852
Manager Education -0.4291 0.2156∗∗ Pest Population 0.2399 0.1019∗∗

Manager Experience -0.4498 0.1746∗∗ Spraying Equipment -0.9268 0.4550∗∗

Pest Population 0.2436 0.1020∗∗ -
Spraying Equipment -0.9162 0.4360∗∗ -

Log Likelihood -246.2790 -246.5913
∗ and ∗∗ indicate statistical significance at the 10 and 5 per cent level, respectively.
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Table 4: Balancing Properties Tests given the Generalized Propensity Score

Variable Treatment Intervals (litres/stremma)
(0, 0.27] (0.27, 0.50] (0.50, 1.33]

MD St.Error MD St.Error MD St.Error

Covariates-Field Workers
Field Workers Age 0.0098 0.0280 -0.0268 0.0314 0.0007 0.0286
Field Workers Education 0.0433 0.0335 0.0072 0.0436 0.0290 0.0353
Field Workers Smoking -0.0342 0.0964 -0.0648 0.1104 0.0035 0.0985
Field Workers Drinking -0.0227 0.0876 -0.0400 0.1009 0.0105 0.0892
Manager Age -0.0015 0.0273 -0.0366 0.0316 0.0106 0.0285
Manager Education -0.0003 0.0337 0.0219 0.0443 0.0138 0.0335
Manager Experience -0.0011 0.0454 -0.0401 0.0572 -0.0057 0.0498
Pest Population 0.0077 0.0457 -0.0200 0.0636 -0.0033 0.0442
Spraying Equipment -0.0037 0.0127 -0.0072 0.0152 0.0081 0.0131

Covariates-Farm Manager

Manager Age -0.0045 0.0265 -0.0152 0.0296 0.0095 0.0275
Manager Education -0.0012 0.0322 0.0116 0.0413 0.0017 0.0332
Manager Experience -0.0148 0.0445 -0.0160 0.0539 -0.0013 0.0479
Manager Smoking 0.0165 0.0993 -0.0087 0.1117 -0.0098 0.1009
Manager Drinking 0.0150 0.0897 -0.0155 0.0982 -0.0017 0.0885
Pest Population 0.0277 0.0445 -0.0473 0.0607 -0.0314 0.0443
Spraying Equipment -0.0011 0.0123 -0.0078 0.0145 0.0161 0.0126

Note: MD stands for mean difference.

Figure 1: Estimated Average Potential Health Index and Pesticide Application
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Table 5: Bayes Factor Statistics for Equality of Means

Variable Treatment Intervals (litres/stremma)
(0, 0.27] (0.27, 0.50] (0.50, 1.33]

Ad BF UAd BF Ad BF UAd BF Ad BF UAd BF

Covariates-Field Workers
Field Workers Age 4.4455 3.1374 3.2368 2.6457 4.6744 3.8938
Field Workers Education 2.1246 1.2364 4.5171 2.4642 3.3796 2.1012
Field Workers Smoking 4.4399 4.0938 3.8742 3.1102 4.6732 4.0985
Field Workers Drinking 4.5671 3.2783 4.2446 3.9898 4.6445 2.2892
Manager Age 4.7093 2.1423 2.4134 1.27537 4.3772 2.4285
Manager Education 4.7163 0.3564 4.0602 0.5546 4.3125 0.4335
Manager Experience 4.7155 0.9643 3.6202 0.7762 4.6471 0.6498
Pest Population 4.6588 0.0004 4.3706 0.0018 4.6637 0.0002
Spraying Equipment 4.5208 0.2162 4.1171 0.3152 3.8887 0.3131

Covariates-Farm Manager

Manager Age 4.6508 4.0265 4.0407 3.7296 4.4152 4.1275
Manager Education 4.7114 0.9322 4.4078 0.6413 4.6699 0.7332
Manager Experience 4.6981 1.0445 3.9802 1.3539 4.6740 1.0479
Manager Smoking 4.6588 2.9993 4.5651 4.1117 4.6547 3.5009
Manager Drinking 4.6586 3.9897 4.5269 2.2982 4.6748 3.9885
Pest Population 3.9172 0.0025 3.4446 0.0067 3.6721 0.0143
Spraying Equipment 4.6981 0.5123 3.9994 0.4145 2.3072 0.1126

Note: UAd BF and Ad BF stand for unadjusted and GPS-adjusted Bayes Factor, respectively.

Table 6: Parameter Estimates of Conditional Health Index

Parameter Estimate St.Error Parameter Estimate St.Error

Field Workers Farm Manager

αF0 0.0594 0.1401 αM0 0.0127 0.0458
αFz -0.6107 0.2096∗∗ αMz -0.1253 0.0735∗

αFr -1.6477 0.7149∗∗ αMr -0.5698 0.2355∗∗

αFzz 0.1025 0.0586∗ αMzz 0.0134 0.0205
αFrr 1.6029 0.8732∗ αMrr 0.6265 0.2908∗∗

αFzr 0.2008 0.3046 αMzr 0.0182 0.1052

R2 0.3161 0.2719

F and M stand for field workers and farm manager, respectively, z for pesticides
and r for propensity score. ∗ and ∗∗ indicate statistical significance at the 10 and 5
per cent level, respectively.
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Figure 2: Average Marginal Effect of Pesticides on Health Index
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Table 7: Parameter Estimates of the Translog Production Function

Parameter Estimate St.Error Parameter Estimate StError

β0 0.1124 0.4149 βxxII -0.0775 0.0547
βxA 0.4468 0.1939∗∗ βxxAC 0.0979 0.1340
βxC 0.0943 0.0542∗ βxxAI 0.1998 0.1219∗

βxI 0.1347 0.0647∗∗ βxxCI -0.1690 0.0815∗∗

βF 0.1656 0.0681∗∗ βFF 0.1257 0.0497∗∗

βM 0.0577 0.0330∗ βMM 0.0495 0.0316
βt 0.0719 0.0217∗∗ βFM 0.0182 0.0452
βtt 0.1107 0.0197∗∗ βxFA -0.0168 0.0945
βxAt 0.0313 0.0169∗ βxMA -0.0301 0.0760
βxCt -0.1370 0.1408 βxFC -0.0047 0.0777
βxIt -0.1710 0.1244 βxMC 0.1363 0.0446∗∗

βFt -0.1637 0.0356∗∗ βxFI 0.1114 0.1008
βMt -0.1872 0.1016∗ βxMI 0.0838 0.0530∗

βxxAA 0.1113 0.3143 λ 0.2414 0.1481∗

βxxCC 0.0239 0.0761 βz 0.9138 0.5118∗

R̄2 0.8385

A refers to land, I to intermediate inputs, C to fertilizers use, F to field workers
working hours, M to farm manager working hours, z to pesticides and t to time.
Asymptotic errors were computed using block re-sampling techniques (Politis and
Romano, 1994). ∗ and ∗∗ indicate statistical significance at the 10 and 5 per cent
level, respectively.
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Table 8: Output Elasticities and Returns to Scale

Output Elasticity Value St.Error Output Elasticity Value St.Error

Non-Labor Inputs 0.6738 0.2924∗∗ Pesticides 0.0863 0.0311∗∗

Land 0.4039 0.1226∗∗ Direct 0.2369 0.1214∗∗

Fertilizers 0.1272 0.0361∗∗ Indirect -0.1506 0.0501∗∗

Intermediate Inputs 0.1427 0.0625∗∗ Field Workers -0.1199 0.0453∗∗

Labor Inputs 0.3356 0.1514∗∗ Farm Manager -0.0307 0.0162∗

Field Workers 0.2065 0.0826∗∗

Farm Manager 0.1291 0.0702∗ Returns to Scale 1.0957 0.3146∗∗

Standard errors were obtained using block resampling techniques (Politis and Romano, 1994). ∗ and
∗∗ indicate statistical significance at the 10 and 5 per cent level, respectively.

Table 9: Output Damage Measures (Average Values per Quartile)

Pesticide Use Quartiles Mean
in % 1st 2nd 3rd 4th Values

Actual Crop Damage (z 6= 0) 14.19 11.65 9.36 5.40 10.14
Potential Crop Damage (z = 0) 19.28 20.33 21.49 23.03 21.04

Table 10: Decomposition of TFP Growth (Average Annual
Values for the 2003-07 period)

Components Rate of Change Percentage

TFP Growth 1.4167 (100.00)
Technical Change: 0.9561 (67.48)

Neutral TC 0.8279 (58.44)
Biased TC 0.1282 (9.04)

Education Effect 0.1109 (7.83)
Field Workers 0.0584 (4.12)
Farm Manager 0.0525 (3.71)

Scale Effect: 0.3498 (24.69)
Non-labor Inputs 0.1170 (8.26)

Land 0.0259 (1.83)
Fertilizers 0.0275 (1.94)
Intermediate Inputs 0.0636 (4.49)

Labor Input 0.1308 (9.23)
Field Workers 0.0852 (6.01)
Farm Manager 0.0456 (3.22)

Pesticides 0.1021 (7.20)
Direct 0.2630 (18.56)
Indirect -0.1609 (-11.36)

Field Workers -0.1249 (-8.82)
Farm Manager -0.0360 (-2.54)
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