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Abstract

We present a new model for analyzing compositional data with structural zeros. Inspired by Butler

and Glasbey (2008) who suggested a model in the presence of zero values in the data we propose a

model that treats the zero values in a different manner. Instead of projecting every zero value to-

wards a vertex, we project them onto their corresponding edge and fit a zero-censored multivariate

model.
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1 Introduction

Structural (and rounded) zeros are sometimes met in compositional data. The term structural refers

to values which are truly zeros, for instance the percentage of money a family spends on smoking

or alcohol. Rounded zeros on the other hand are very small values in some components which were

rounded to zero. In geology for example the instrument which measures the composition of the

elements has a detection limit. Values below that limit are not detected. This has two possible

explanations; either the element is completely absent or had a value smaller than the detection

limit of the instrument.

Ever since 1982 (Aitchison, 1982), the most widely used approach for compositional data analysis

is the log-ratio approach. The nature of the logs though gives rise to a mathematical problem,

the log of zero is undefined. This problem was dealt with simple imputation techniques such as

imputation by a small value (Aitchison, 2003), or with substitution of the zero by a fraction of

the detection limit (Palarea Albaladejo et al., 2005), or via the EM algorithm (Palarea-Albaladejo

et al., 2007). If the zeros present are indeed rounded down only because the detection limit of

the instrument was not that low, then these approaches can be used. However, even in this case,

the true value could be lower than estimated. (Scealy and Welsh, 2011a) showed an example of

the problem when these approaches are adopted. The smaller the imputed value is, the higher the

magnitude of the log-ratio transformed values are. If on the other hand the value is a true zero

(not rounded), then any imputation technique is clearly not correct.

(Butler and Glasbey, 2008) proposed a latent Gaussian model for modelling zero values. They

used a multivariate normal distribution in Rd to model the data. When a point was outside

the simplex they projected it orthogonally onto the faces and vertices of the simplex. However
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this approach has the problem of sometimes assigning too much probability on the vertices and

sometimes more than is necessary. Furthermore, the higher the dimensionality of the simplex,

finding the correct regions to project the points lying outside the simplex becomes more difficult.

Maximum likelihood estimation becomes more difficult also, but with the use of MCMC methods

they managed to tackle the estimation problems. We propose a different model for handling zero

values, which is inspired though from that model (Butler and Glasbey, 2008). Instead of using

an orthogonal projection for the points lying outside the simplex we move them along the line

connecting the points with the center of the simplex.

In this section we will discuss the issue of structural zeros, that is when the value observed is

actually zero and is not due to a rounding error. We will suggest a new method for modelling

structural zeros based on the multivariate normal distribution. It is a different projection than the

one suggested by Butler and Glasbey (2008). Since the simplex has the form of a triangle (when

D = 3), it seems that the projection of the points lying outside the simplex should be projected onto

the boundaries of the simplex following a similar idea to the folded model (Tsagris and Stewart,

2020).

2 The α-transformation

2.1 The stay-in-the-simplex version of the α-transformation

The power transformation defined by Aitchison (2003) we saw earlier in Section ?? is

u = {ui}i=1,...,D =

{
xαi∑D
j=1 x

α
j

}
i=1,...,D

. (1)

We shall call (1) the stay-in-the-simplex version of the α-transformation. Note that the map (1)

is degenerate due to the constraints
∑D

i=1 xi = 1 and
∑D

i=1 ui = 1. In order to make (1) non-

degenerate we consider the version of (1) as follows

ui

{
(xj)

d
j=1

}
=

xαi∑d
j=1 x

α
j +

(
1−

∑d
j=1 xj

)α i = 1, . . . , d. (2)

The (2) is presented to highlight that in fact we have d = D − 1 and not D variables. Thus,

the Jacobian of (1) or (2) is not singular. The Jacobian of the stay-in-the-simplex version of the

α-transformation (1) is equal to (Tsagris and Stewart, 2020)

|J| = αd
D∏
i=1

xα−1
i∑D
j=1 x

α
j

. (3)
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2.2 The α-transformation

A centred and scaled version of (1) is defined as

Bα (x) = H
1

α
(Du− 1D) , (4)

where u is defined in (1), 1D is the D-dimensional vector of 1s and H is the Helmert sub-matrix

(Tsagris et al., 2011; Tsagris and Stewart, 2020). Note that (4) is simply a linear transformation

of (1) and so any inference made on either of them should be the same. The Jacobian of the

α-transformation (4) is equal to (Tsagris and Stewart, 2020)

|Jα| = Dd+ 1
2

D∏
i=1

xα−1
i∑D
j=1 x

α
j

.

3 The zero-censored model

We will try to fit a multivariate normal distribution on the simplex which comprises of two com-

ponents, one component for the data which lie inside the simplex and a second component for the

points lying on the faces. A key (possibly restrictive for some datasets) feature of the model is

that we assign zero probability on the vertices. At first, we will use the α-transformation, with

α = 1, in order to escape the unit sum constraint. So in effect we center the simplex and multiply

it by D, the number of components and then multiply from the left with the Helmert sub-matrix

to remove the unit sum constraint. Then similarly to Butler and Glasbey (2008) we can write the

log-likelihood as

ℓ =

n1∑
i=1

log g (yi) +

n∑
i=1

log |J |+
n2∑
i=1

log

∫ ∞

kj

fi (yi) dyj , (5)

where y = B1 (x) the α-transformation with α = 1, with x ∈ Sd, g (.) is the density of the

multivariate normal for the data lying inside the simplex, fi (.) is the density of the i-th point lying

outside the simplex given that it is in a line going through the origin. The n1 is the number of

points lying inside the interior of the simplex and n2 denotes the number of points on the faces of

the simplex. The line integral refers to the i-th observation lying on the face the simplex for which

the integral is calculated along the j-th component, with j ∈ [1, ..., D], where D is the number of

components. Finally, |J | is the Jacobian determinant of the α-transformation with α = 1.

The rationale is similar to the Butler and Glasbey (2008) model. We assume there is a latent

multivariate normal distribution but we have observed the compositional data only. Zero values of

compositional data imply that the values of the latent distribution were outside the simplex. An

advantage of this model over the one suggested by Butler and Glasbey (2008) is that the likelihood

is tractable for any number of dimensions.

The limitation of our suggested model is that can handle compositional vectors with zero values

in only one of their components. We will need to calculate the line integral of this component in the
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multivariate density from that point to infinity. Therefore, the log-likelihood consists of the density

inside the interior of the simplex and the density on the faces, thus assigning zero probability on

the vertices (and to the edges when D > 3). We will express (5) in a more convenient way as

ℓ = −n1

2
log |2πΣΣΣ| − 1

2

n1∑
i=1

(yi −µµµ)T ΣΣΣ−1 (yi −µµµ)

+

n2∑
i=1

log

∫ ∞

c1

fi (z) dz1 +
(
nd+

n

2

)
logD, (6)

where n = n1 + n2 is the full sample size. The vector inside the integral has changed from yi to

zi with z = By, where c1 and B will be explained below in the Gram-Schmidt process. In order

to calculate the line integral we will first perform a rotation towards one arbitrary direction. For

convenience reasons we chose the first direction, the X-axis for instance in the two dimensions as

seen in Figure 1. The rotation takes place by multiplying the vector with the zero component (after

the α-transformation) by an orthonormal matrix. The matrix is calculated via the Gram-Schmidt

orthonormalization process (Strang, 1988).

3.1 Gram-Schmidt orthonormalization process

The process in mathematical terms is described as follows. Suppose we have a vector v in Rd and

we want to rotate it to the line defined by the unit vector w = (1, 0, . . . , 0)T , with w in Rd. We

have to find an orthonormal basis first using the Gram-Schmidt orthonormalization process. Let

us denote the projection operation of a vector v onto u by

proju (v) =
⟨v,u⟩
⟨u,u⟩

u.

Then the following operations will take place

u1 = v1 and e1 =
u1

∥u1∥ ,

u2 = v2 −proju1 (v2) and e2 =
u2

∥u2∥ ,

u3 = v3 −proju1 (v3) −proju2 (v3) and e3 =
u2

∥u2∥ ,
...

...

ud = vd −
∑d−1

i=1 projui (vd) and ed = u2
∥u2∥ ,

where ⟨·⟩ denotes the inner product of two vectors. Denote the matrix of the orthonormalized

vectors e by

B = [e1, . . . , ed] .

Then all we have to do to get c is c = Bw and the first element of the vector c is the term c1 we

saw in (6).
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Since the integral of (6) is with respect to the first variable of the multivariate normal we can

use the conditional normal to write (6) in a more attractive form as

ℓ = −n1

2
log |2πΣΣΣ| − 1

2

n1∑
i=1

(yi −µµµ)T ΣΣΣ−1 (yi −µµµ) +
(
nd+

n

2

)
logD

+

n2∑
i=1

log

[
fi (z−1;µµµiz∗ ,ΣΣΣiz∗)

∫ ∞

c1i

fi
(
z1i|z−1;µi,con, σ

2
i,con

)
dz1i

]
, (7)

where z−1 means all elements except from the first one. fi (z−1;µµµ
∗
z,ΣΣΣ

∗
z) is the density of the

multivariate normal with parameters (µµµ∗
z,ΣΣΣ

∗
z) calculated at z−1 and fi

(
z1i|z−1;µi,con, σ

2
i,con

)
is the

density of the conditional univariate normal with parameters
(
µi,con, σ

2
i,con

)
calculated at z1i. The

conditional distribution of a multivariate normal is still a normal (Mardia et al., 1979) and the

following relationships hold true

(X1,X2) ∼ Nd

(
(µµµ1,µµµ2)

T ,ΣΣΣ
)
, then X1

∣∣X2 ∼ Nd

(
E
(
X1

∣∣X2

)
, V
(
X1

∣∣X2

))
where

E
(
X1

∣∣X2

)
= µµµ1 +ΣΣΣ12ΣΣΣ

−1
22 (X2 −µµµ2) and V

(
X1

∣∣X2

)
= ΣΣΣ11 −ΣΣΣ12ΣΣΣ

−1
22 ΣΣΣ21

Hence, using these relationships we can calculate the parameters of the normal density appearing

inside the integral of (7). Thus, we have the following relationships

µµµiz = Biµµµ and Σiz = BiΣBT
i ,

where the index i is used to indicate the i-th observation and Bi means the rotation matrix (calcu-

lated from the Gram-Schmidt orthonormalization process) for the i-th observation. The rotation

matrix rotates the vector yi to the line defined by the unit vector v = (1, 0, ..., 0)T . Now,

µµµiz∗ = µµµiz,−1 and Σiz∗ = Σiz[−1,−1]

and

µi,con = µµµiz,1 −ΣΣΣiz[1, ]ΣΣΣiz[−1,−1]−1µµµiz,−1

and σ2
i,con = ΣΣΣiz[1, 1]−ΣΣΣiz[1, ]ΣΣΣiz[−1,−1]−1ΣΣΣiz[1, ]

T ,

where ΣΣΣ[−1,−1] means the matrix ΣΣΣ without the first element and ΣΣΣ[1, ] indicates the first row of

the matrix ΣΣΣ.

The rationale is to multiply each vector by the rotation matrix Bi and rotate the data onto the
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first axis, thus the new vector is denoted by ci = (c1i, 0 . . . , 0). Thus (7) can be written as

ℓ =
n1

2
log |2πΣΣΣ| − 0.5

n1∑
i=1

(yi −µµµ)T ΣΣΣ (yi −µµµ)

+

n2∑
i=1

log fi (0;µµµiz∗ΣΣΣiz∗) +

n2∑
i=1

log

[
1− Φ

(
c1i − µi,con

σi,con

)]
, (8)

where Φ (.) is the cumulative distribution of a standard normal random variable. The final form of

the log-likelihood (8) is the form maximized numerically. The index i in each of the parameters (for

the compositions which contained one zero value) indicates that each composition with one zero

value had to be projected onto the face and thus its contribution to the parameters is different.

Figure 1 shows a graphical example of the rotation in R2. The red line integral is calculated

through a normal distribution whose parameters are rotated via the Gram-Schmidt orthonormal-

ization process in the same way the black line was rotated to the red line. This is one example of a

composition with a zero value in one of its components. In the sample, we have to sum all of these

cases.

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

X axis

Y
 a

x
is

A

G

Figure 1: Ternary diagram showing the zero projection. We want to evaluate the line integral of
the multivariate normal distribution from A to ∞ along the black line. For this reason we rotate
the point onto the X-Axis and find the integral from G to ∞.
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3.2 Example 1. Simulated data

Figure 2 shows a simulated example of the zero-censored model. Data of size 500 were generated

from the following multivariate normal

N2

(
(0.625, 0.821) ,

(
0.149 −0.200

−0.200 1.523

))
.

When an observation fell outside the simplex it was ”pulled” to the boundary, moving along the

line connecting the point with the center of the simple, via the technique described in Tsagris and

Stewart (2020). There were 197 such cases in the data. We applied the zero-censored model to

the data by maximizing the log-likelihood (7). We estimated 194 zeros (194 compositional vectors

having one element with a zero value). We generated 500 vectors from a multivariate normal and

counted the number of vectors that fell outside the simplex. The estimated parameters of this

normal distribution, used in this random vector generation, were

µ̂µµ = (0.656, 0.788) and S =

(
0.129 −0.132

−0.132 1.477

)
.

Figure 2 shows the ternary plot of the data along with the contours of the zero-censored model

calculated from the estimated parameters.
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0
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3

Figure 2: Ternary diagram where the green crosses indicate the points which lie on the boundaries
of the simplex. The contour plots of the normal based on the estimated parameters are shown.

A key thing we have to mention about Figure 2 is that the contour lines look vertical but have
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in fact a negative slope. This is not seen because of the scaling of the ternary plot. The range of

values of the x-axis is larger than the range of the simulated values in the first variable and thus

the contour lines do not depict the negative slope they should.

3.3 Example 2. Time budget data

We will illustrate the performance of the zero-censored model using real data (Härdle and Hlávka,

2007). There are 28 individuals and for each person information about the time allocation in 10

activities is known. The individuals are identified according to gender, country where they live,

professional activity, and matrimonial status. We are not interested in their categorization but

in the amount of time each person spent on 10 categories of activities over 100 days (the total is

100× 24 = 2400 hours fixed for every row) in 1976. The special feature of these data is that they

contain some zero values. Some activities have zero allocation, for instance one woman did not

spend even an hour on transportation linked to professional activity and four women did not spend

any hour on occupation linked to children. This means that we have five compositions which have

one zero in one component only.

The estimated parameters are

µ̂µµ = (1.075,−0.030, 0.860, 0.3830.367, 0.222,−2.417, 0.568,−0.465) and

Σ̂ΣΣ =



0.289 0.574 0.109 0.076 0.019 0.035 0.038 0.008 0.030

0.574 1.240 0.200 0.119 0.020 0.063 0.069 −0.020 0.002

0.109 0.200 0.050 0.035 0.013 0.020 0.019 0.015 0.019

0.076 0.119 0.035 0.037 0.013 0.009 0.013 0.015 0.027

0.019 0.020 0.013 0.013 0.008 0.007 0.008 0.010 0.014

0.035 0.063 0.020 0.009 0.007 0.020 0.018 0.010 0.010

0.038 0.069 0.019 0.013 0.008 0.018 0.021 0.005 0.019

0.008 −0.020 0.015 0.015 0.010 0.010 0.005 0.029 0.003

0.030 0.002 0.019 0.027 0.014 0.010 0.019 0.003 0.079


.

3.4 Diagnostics for the zero-censored model

We have performed a similar goodness of fit diagnostic to the one Butler and Glasbey (2008)

performed. We generated data from the fitted multivariate normal model and estimated the number

of zeros in each component. For the first example with the simulated data we had 197 out of

500 vectors with one zero element, 171, 6 and 20 zeros in the first, second and third component

respectively. The corresponding percentages are (0.342, 0.012, 0.040). We estimated the percentages

of the zero values in each component to be (0.347, 0.008, 0.040) respectively based on 10, 000, 000

simulated observations. We repeated the same procedure for the real data in the second example

and the results are presented in Table 1.

From Table 1 we see that there is evidence to support the hypothesis that the fit of the model
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Table 1: Observed and estimated number of zeros for every component

Components prof tran hous kids shop pers eat slee tele leis

Observed
number of zeros 0 1 0 4 0 0 0 0 0 0

Estimated
number of zeros 0.593 0.547 2.106 2.151 0.002 0.000 0.000 0.000 0.137 0.000

is not to be rejected. We could also use the χ2 test statistic as a discrepancy measure between the

estimated and the observed frequencies and a p-value could be calculated via simulations or via the

χ2 distribution.

4 Conclusions

We developed a parametric zero-censored model for compositional data with zero values. The use

of another multivariate model, such as the multivariate skew normal distribution (Azzalini and

Valle, 1996) could also be utilized but the difficulty with this distribution is that more parameters

need to be estimated, thus making the estimation procedure more difficult. This of course does not

exclude the possibility of using this model.

The zero-censored model attacks the problem of zeros from a different perspective than the one

Butler and Glasbey (2008) suggested. The data are projected on to the faces of the simplex using a

non-orthogonal 1 : 1 projection in contrast to the orthogonal Butler and Glasbey (2008) proposed.

The advantage over Butler and Glasbey’s approach is that it is not difficult to project the data

onto the edges regardless of the dimension. Both models however share the same problem, that

of estimating the parameters of the normal distribution which becomes harder as the dimension

increases. Both the zero-censored model (8) and the Butler and Glasbey’s model avoid the use

of the log-ratio methodology or imputation of the zero values. A limitation of the zero-censored

model is that it only allows for one zero per compositional vector. For instance if we have D = 3

or D = 10 components, only one zero should be present in each vector.

A further question when modelling compositional data by using either the proposed zero-

censored model or the Butler and Glasbey (2008) model, is how to include covariates. Scealy

and Welsh (2011b) defined an alternative model based on the Kent distribution which offers the

possibility for regression and handling zeros conveniently, at the cost of computational complexity.
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