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Abstract

Discriminant analysis for spherical data, or directional data in general, has not been extensively

studied, and most papers focus on one distribution, the von Mises-Fisher. In this work, we study

more distributions, escaping the rotational symmetry bound of the aforementioned distribution

and also include a non parametric classifier, the k-NN algorithm. We draw important conclu-

sions based on extensive simulation studies and real data empirical evaluations. The conclusions

are bidirectional. When the parametric assumptions are met, maximum likelihood discriminant

analysis using the Kent or the ESAG distribution is advised. This was the conclusion based on

the simulation studies. If these conditions are not met, as is the case usually with real data, the

k-NN algorithm should be used. This was supported by the real data analysis where the k-NN

algorithm superseded maximum likelihood discriminant analysis.

Keywords: spherical data, rotationally non symmetric, classification

1 Introduction

Directional data, i.e. unit vectors, are multivariate data constrained to to have unit norm and

hence live on a p-dimensional sphere. Their sample space, denoted by Sp−1, is given by

Sp−1 =
{
Y ∈ Rp, YTY = 1

}
Such data arise in many different fields, such as biology (Paterson et al., 2017), zoology (Amson

et al., 2017), ecology (Vanni et al., 2017), geophysics (Rutkowska et al., 2018) and transportation

(Laha and Putatunda, 2018) to name a few.

Clustering (unsupervised learning) is the task of discovering groups of observations. In the

case of directional data researchers have addressed this problem by either using hierarchical

clustering (Lund, 1999) the k-Means algorithm (Hornik et al., 2012) or model based clustering

with the von Mises-Fisher (Banerjee et al., 2005) or the Kent distribution (Peel et al., 2001).

More recently, Amayri and Bouguila (2013) included the task of feature selection into model

based clustering using, mixtures of von Mises-Fisher distributions.

With discriminant analysis (supervised learning, or classification) on the other hand, the

group of each observation is known and unlike clustering, the literature is far less populated.

Both (Morris and Laycock, 1974) and (Figueiredo, 2009) performed supervised learning and

conducted simulation studies using the von Mises-Fisher distribution. Examples of classification

with directional data can be found in many scientific fields. For example, classification of

the wind direction according to the year’s season (Mardia and Jupp, 2000). Classifying the
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constitutes measurements of magnetic remanence in rock specimens, after each specimen had

been partially thermally demagnetised to the same stage (Fisher et al., 1993). Separating

between the longest axis and shortest axis orientations of tabular stones measured on a slope

at Windy Hills, Scotland (Fisher et al., 1993).

The drawback of the aforementioned papers is that they attack the problem with limited

stepping stones. In most papers, applied or not, the von Mises-Fisher distribution is used,

perhaps due to its convenient form and easiness to work with. The von Mises-Fisher tough

assumes independent variables, whereas the Kent distribution has elliptical contours, allowing

for correlation between the variables. Yet, there are more spherical distributions than just these

two and more algorithms than simple maximum likelihood discriminant analysis. However, no

one, to the best of our knowledge, has studied supervised learning for directional (or even

spherical) data using more than one distribution or even more algorithms.

In this paper we focus on discriminant analysis with spherical data expanding the work of

Figueiredo (2009), by including three more distributions, the Independent Angular Gaussian,

or projected normal, (Mardia and Jupp, 2000), the Kent distribution (Kent, 1982), and the

Elliptically Symmetric Angular Gaussian distribution (Paine et al., 2018). In addition, the,

non parametric, k-NN algorithm (Cover and Hart, 1967) coupled with the cosine distance is

put in the testbed for comparison. Our goal is to provide evidence as to which distribution

is more suitable and whether the k-NN algorithm should be employed for supervised learning

with spherical data.

The next section of the paper contains some preliminaries regarding discriminant analysis;

a) the spherical distributions we will examine and their maximum likelihood estimation of their

parameters and b) the standard k-NN algorithm and a variant of it are described. Section

3 contains extensive simulation studies followed by real data analysis presented in Section 4.

Finally, Section 5 concludes the paper.

2 Discriminant analysis with spherical data

Discriminant analysis is the task of constructing discriminating, separating, or allocation rules

or boundaries between groups of observations. The difference with clustering is that the label

of each observation, or the group to which each observation belongs is known. Therefore, one

should be able to predict the label of a new observation based on the available data.

2.1 Maximum likelihood discriminant analysis

The first algorithm we will use is maximum likelihood discriminant analysis. For each group of

observations, the same family of distributions is assumed and we estimate its parameters using

maximum likelihood estimation. For each group, the density of a new observation is computed

and the observation is allocated at the group with the highest density value.

Since we work with spherical data, we will present, below, without loss of generality, the

distributions to be used, in their spherical parametrizations and how their parameters are

estimated.
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2.1.1 The von Mises-Fisher distribution

The density of the von Mises-Fisher distribution on S2 is given by (Mardia and Jupp, 2000)

f (y;γγγ, κ) =
κ

2π (eκ − e−κ)
eκγγγ

Ty, (1)

where κ ≥ 0 (concentration parameter) and γγγ ∈ S2 is the mean direction.

The corresponding log-likelihood is given by

` = n log
κ

2π
− n log

(
eκ − e−κ

)
+ κ

n∑
i=1

γγγTyi

and maximum likelihood estimation of the parameters does not require numerical optimization.

The estimated mean direction is available in closed form given by

γ̂γγ =
ȳ

‖ ȳ ‖
,

where ȳ = n−1 (
∑n

i=1 y1i,
∑n

i=1 y2i,
∑n

i=1 y3i)
T and ‖ · ‖ denotes the Euclidean norm on R3.

The concentration parameter is independent of the mean direction and requires a truncated

Newton-Raphson algorithm1 (Sra, 2012).

κ̂(t) = κ̂(t−1) −
A3

(
κ̂(t−1)

)
− R̄

1−
[
A3

(
κ̂(t−1)

)]2 − 2
κ̂(t−1)A3

(
κ̂(t−1)

) , (2)

where

A3

(
κ̂(t−1)

)
=

I3/2 (κ̂)

I3/2−1 (κ̂)
,

where Iν (κ̂) is the modified Bessel function of the first kind2 (Abramowitz and Stegun, 1970)

and R̄ =
‖
∑n

i=1 yi‖
n is the mean resultant length. Similarly to Sra (2012) we will set in in (2) the

starting value equal to κ̂(0) =
R̄(p−R̄2)

1−R̄2 .

2.1.2 The Isotropic Angular Gaussian distribution

The density of the Angular Gaussian (AG) distribution is (Mardia and Jupp, 2000)

f (y;µµµ,V) =
1

2π|V |1/2 (yTV−1y)3/2
× exp

{
1

2

[(
yTV−1µµµ

)2
(yTV−1y)

−
(
µµµTV−1µµµ

)]}

×M2

[(
yTV−1µµµ

)2
(yTV−1y)

]
, (3)

where M2(α) = (1+α2)Φ(α)+αφ(α) with Φ(.) and φ(.) denoting the cumulative and probability

density functions, respectively, of the standard normal distribution. µµµ ∈ R3 is the mean vector

1The iterative solution in (2) is the general solution. For the spherical case, the Newton-Raphson obviously

has a simpler solution.
2The modified Bessel function in R gives us the option to scale it exponentially. This is useful because when

large numbers are plugged into the Bessel function, R needs the exponential scaling to calculate the ratio of the

two Bessel functions and avoid numerical overflow.
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and V is a positive definite matrix. When V = I3, the identity matrix in the three dimensions

we end up with the Isotropic Angular Gaussian (IAG), or projected normal, distribution

f(y;µµµ) =
1

2π
exp

[
1

2

{(
yTµµµ

)2 −µµµTµµµ}]M2

(
yTµµµ

)
(4)

` = −n log (2π) +
1

2

n∑
i=1

(
yTi µµµ

)2 − n

2

(
µµµTµµµ

)
+

n∑
i=1

M2

[(
yTi µµµ

)2]
(5)

Estimating the vector µµµ requires numerical optimization of the corresponding log-likelihood (5)

and Newton-Raphson can be employed

µµµt+1 = µµµt −H−1J,

where the first derivative (J) and the Hessian matrix (H) can be expressed as

J =
∂`

∂µµµ
=

n∑
i=1

(
yTi µµµ

)
yTi − nµµµT +

n∑
i=1

g′i (µµµ)

gi (µµµ)

H =
∂2`

∂µµµ∂µµµT
=

n∑
i=1

yiy
T
i − nI3 +

n∑
i=1

g′i (µµµ) gi (µµµ)− [g′i (µµµ)]2

g2
i (µµµ)

,

where

g′i (µµµ) = 2
(
yTi µµµ

)
Φ
(
yTi µµµ

)
yTi + 2φ

(
yTi µµµ

)
yTi and

g′′i (µµµ) = 2yiy
T
i Φ
(
yTi µµµ

)
,

2.1.3 The Kent distribution

The density of the Fisher-Bingham distribution (Kume and Wood, 2005) is given by

f (y;γγγ, κ,A) =
1

C (κ,A)
exp

(
κyTµµµ− yTAy

)
, (6)

where A = AT and C (κ,A) is a normalising constant which, in the general case, does not have

a useful closed-form expression (Kume and Wood, 2005). The Fisher-Bingham distribution (6)

has 8 free parameters, 3 more than necessary.

The FB5 or Kent distribution (Kent, 1982)

f (y;γγγ, κ, β) =
1

C (κ, β)
exp

{
κααα1y + β

[
(ααα2y)2 − (ααα3y)2

]}
, (7)

where β is the ovalness parameter, k is the concentration parameter, and ααα1 (or γγγ), ααα2 and ααα3

are the mean direction, major and minor axis respectively. The angle of rotation ψ between the

mean direction and the major axis is the fifth parameter of the Kent distribution.

The normalizing constant C (κ, β) has a closed form in the spherical case, given by Kent

(1982). In higher dimensions though, approximations have been suggested (Kume and Wood,

2005; Kume et al., 2013) and only recently exact calculation of this constant was achieved

(Kume and Sei, 2018). To ensure ensure correct behaviour (uni-modality) of the density, the

necessary condition is |β| < κ/2.
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Its corresponding log-likelihood is

` = −nC (γγγ, κ, β) + κ
n∑
i=1

γγγTyi + β

[
n∑
i=1

(
αααT2 yi

)2 − n∑
i=1

(
αααT3 yi

)2]
. (8)

To estimate the orthogonal matrix A we will use the moment estimation (Kent, 1982). By

choosing an orthogonal matrix H to rotate the mean vector ȳ to the north polar axis (1, 0, 0)T ,

H can be written as

H =

 cos θ − sin θ 0

sin θ cosφ cos θ cosφ − sinφ

sin θ sinφ cos θ sinφ − cosφ

 ,
where θ and φ are the polar co-ordinates of ȳ. Let B = HTSH, where S = n−1

∑
yiy

T
i . We

then choose a rotation K about the north pole to diagonalize BL, where

BL =

[
b22 b23

b32 b33

]

is the lower 2×2 sub-matrix of B, with eigenvalues l1 > l2. If we choose ψ such that tan (2ψ) =

2b23/ (b22 − b33), ensuring that ‖ ȳ ‖> 0 and l1 > l2 then we can take

K =

 1 0 0

0 cosψ − sinψ

0 sinψ cosψ

 .
The moment estimate of A is given by Ã = HK. As for the parameters κ and β we maximize

(7) with respect to these two parameters using the command optim in R.

2.1.4 The ESAG distribution

The Elliptically Symmetric Angular Gaussian (ESAG) distribution was recently defined (Paine

et al., 2018) is a non rotationally symmetric distribution

f (y;µµµ,V) =
1

2π (yTV−1y)3/2
× exp

{
1

2

[ (
yTµµµ

)2
(yTV−1y)

−
(
µµµTµµµ

)]}
×M2

[ (
yTµµµ

)2
(yTV−1y)

]
. (9)

The log-likelihood of (9) is given by

` = −n log (2π)− 3

2

n∑
i=1

log
(
yTi V

−1yi
)

+
1

2

n∑
i=1

(
yTi µµµ

)2(
yTi V

−1yi
) − n

2

(
µµµTµµµ

)
+

n∑
i=1

M2

[ (
yTi µµµ

)2(
yTi V

−1yi
)] . (10)

ESAG (9) was derived from AG (3) as a result of two conditions, a) Vµµµ = µµµ and b) |V| = 1.

The largest eigenvalue of the positive definite matrix V is 1 due to the first condition. The

other eigenvalues are 0 < ρ1 ≤ ρ2, and hence V−1 can be written as

V−1 = ξdξ
T
d +

d−1∑
j=1

ξjξ
T
j /ρj , (11)
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where ξ1, . . . , ξd−1 and ξd = µ/‖µ‖ is a set of mutually orthogonal unit vectors. The second

condition implies
∏d−1
j=1 ρj = 1. Once the 3 parameters in µµµ are fixed, then from the two

conditions there is 1 remaining degree of freedom for the eigenvalues of V , and 1 degree of

freedom for its unit eigenvectors. The total number of free parameters is thus 5, just like in

Kent distribution (7), the same as for the trivariate normal in a tangent space R2 to the sphere.

A more convenient parameterisation for the covariance matrix V exists, such that V has

2 free parameters. Let us define the two unit vectors ξ̃1 and ξ̃2 which are orthogonal to each

other and to the mean direction ξ3 = µµµ/‖µµµ‖:

ξ̃1 =
(
−µ2

0, µ1µ2, µ1µ3

)T
/(µ0‖µµµ‖) and

ξ̃2 = (0,−µ3, µ2)T /µ0, (12)

where µ0 = (µ2
2 +µ2

3)1/2; then ξ̃1 and ξ̃2 in (12) are smooth functions of µµµ except at µ2 = µ3 = 0,

where there is indeterminacy. To enable the axes of symmetry, ξ1 and ξ2, to be an arbitrary

rotation of ξ̃1 and ξ̃2, we can define

ξ1 = cosψ ξ̃1 + sinψ ξ̃2

ξ2 = − sinψ ξ̃1 + cosψ ξ̃2,
(13)

where ψ ∈ (0, π] is the angle of rotation. Substituting ξ1 and ξ2 from (13) into (11), and putting

ρ1 = ρ and ρ2 = 1/ρ where ρ ∈ (0, 1], gives the parameterisation

V−1 =
(
ρ−1 cos2 ψ + ρ sin2 ψ

)
ξ̃1ξ̃1 +

(
ρ−1 sin2 ψ + ρ cos2 ψ

)
ξ̃2ξ̃

T
2

+
1

2
(ρ−1 − ρ) sin 2ψ

(
ξ̃1ξ̃
>
2 + ξ̃2ξ̃1

)
+ ξ3ξ

>
3 . (14)

To overcome the disadvantage that ρ and ψ are restricted, Paine et al. (2018) used the unre-

stricted parameters γ1 and γ2

γ1 = 2−1(ρ−1 − ρ) cos 2ψ and γ2 = 2−1(ρ−1 − ρ) sin 2ψ.

Then V−1 in (14) becomes

V−1 = I3 + γ1

(
ξ̃1ξ̃

T
1 − ξ̃2ξ̃

T
2

)
+ γ2

(
ξ̃1ξ̃

T
2 + ξ̃2ξ̃

T
1

)
+
{

(γ2
1 + γ2

2 + 1)1/2 − 1
}(

ξ̃1ξ̃
T
1 + ξ̃2ξ̃

T
2

)
.

Unfortunately, the derivatives of (10) are not available and MLE of the ESAG distribution

is implemented using a numerical optimizer, such as the Nelder-Mead algorithm (Nelder and

Mead, 1965), available in R via the command optim.

2.2 The maximum likelihood discriminant boundaries

The general rule is to allocate the new observation x in the group whose log-likelihood value

has the highest value. The rule in our case with two groups is to

Allocate x to group 1 iff `1(x) > `2(x). (15)

The rule (15) translates into
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• For the von Mises-Fisher allocate x to group 1 iff

log
κ1

κ2
− log

eκ1 − e−κ1
eκ2 − e−κ2

+
(
κ1γγγ

T
1 − κ2γγγ

T
2

)
x > 0.

• For the IAG allocate x to group 1 iff

1

2

(
xTµµµ1

)2 − 1

2

(
xTµµµ2

)2 − 1

2

(
µµµT1µµµ1

)
+

1

2

(
µµµT2µµµ2

)
+M2

[(
xTµµµ1

)2]−M2

[(
xTµµµ2

)2]
> 0.

• For the Kent allocate x to group 1 iff

−C (γγγ1, κ1, β1) + C (γγγ2, κ2, β2) +
(
κ1γγγ

T
1 − κ2γγγ

T
2

)
x

+β1

[(
ααα1T

2 x
)2 − (ααα1T

3 x
)2]− β2

[(
ααα2T

2 x
)2 − (ααα2T

3 x
)2]

> 0.

• And for the ESAG allocate x to group 1 iff

−3

2
log

(
xTV−1

1 x
)(

xTV−1
2 x

) +
1

2

(
xTµµµ1

)2(
xTV−1

1 x
) − 1

2

(
xTµµµ2

)2(
xTV−1

2 x
) − 1

2

(
µµµT1µµµ1

)
+

1

2

(
µµµT2µµµ2

)
+M2

[ (
xTµµµ1

)2(
xTV−1

1 x
)]−M2

[ (
xTµµµ2

)2(
xTV−1

2 x
)] > 0.

Looking at the above inequalities it is straightforward to simplify them by assuming equal

concentration parameters (see Figueiredo (2009) for example) and or ovalness parameters etc. In

the case of the von Mises-Fisher for example, that would be the analogue of a linear discriminant

analysis model in R3. But, the von Mises-Fisher is already restrictive; there is no reason to

further restrict the boundary. More generally, parametric discriminant analysis puts constrains

on the shape of the data which might be unrealistic as well, but this is a discussion which we

will engage later.

2.3 Characteristics of the above densities

The von Mises-Fisher and IAG distributions are both rotationally symmetric about their mean

direction µµµ. This is the analogue of a bivariate normal in R2 with isotropic or spherical co-

variance matrix. Their contour plot would consists of many concentric circles as presented in

Figure 1(a). The Kent and ESAG distributions on the other hand allows for elliptical contours

(see Figure 1(b) and 1(c)), overcoming the restraining rotational symmetry assumption. They

can be seen as the analogue of a bivariate normal distribution, with some restrictions on the

covariance matrix.

The IAG distribution is very similar to the von Mises-Fisher distribution (Watson, 1983) and

they share common properties, for example the concentration parameter of the von Mises-Fisher

distribution is roughly similar to the norm of the mean vector of the IAG, κ ≈‖ µµµ ‖, with their
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main difference lying in their construction. The von Mises-Fisher is a multivariate normal with

a covariance matrix equal to the identity matrix conditioned to lie on the unit (hyper-)sphere,

Y ∼ vMF (γγγ, κ) ≡ N3

(
µµµ, I3|YTY = 1

)
whereas the IAG is a multivariate normal projected on

the (hyper-)sphere Y ∼ IAG(µµµ), where Y = X
‖X‖ and X ∼ N3 (µµµ, I3).

The von Mises-Fisher (1) comes the Kent distribution (7) with β = 0, vMF (γγγ, κ) ≡
Kent (γγγ, κ, 0). The IAG (4) distribution corresponds to V = I3 ⇔ (γ1, γ2)T = (0, 0)T , IAG (µµµ) ≡
ESAG (µµµ, I3)

The Kent distribution is a special case of the Fisher-Bingham distribution (Bingham, 1974).

Instead of 8 parameters, it has 5 (hence the name FB5). The 5th parameter is the angle of

rotation ψ between the mean direction and the major axis. The ESAG distribution, similarly

to the Kent, comes from the more general AG distribution (3) with proper constraints on the

covariance matrix (Paine et al., 2018). The proximity between the Kent and the ESAG can be

graphically seen in the contour plots in Figure 1(c).

Maximum likelihood estimation of the above densities is publicly available in the R package

Directional (?) which we will utilize in our simulation studies.

2.4 The k-NN algorithm

The k-NN (k Nearest Neighbours) algorithm is an intuitive classifier that assumes no parametric

model. It involves determining the k observations in the training sample that are closest, by some

choice of distance measures, to the new test observation, then allocating the test observation

to the group most common amongst these k ”nearest neighbours”. Ties caused by two or more

groups jointly being most common can be broken by allocating uniformly at random amongst

the tied groups (the strategy we use in our simulation studies or else by using a secondary

tie-breaking criterion. This is the standard k-NN. n this work we also used a variant of this

which calculates the distances of the k ”nearest neighbours” of the test observation from each

group and allocates it to the group with the smallest average distance. This is the non-standard

k-NN and is computationally more expensive, but might lead to better performance.

Performance of k-NN depends of the choice of k: small k allows for classification boundaries

which are flexible but which have a tendency to overfit, with the opposites true when k is large.

It also depends on the choice of distance measure. Since we are dealing with directional data

we shall use the cosine distance (or cosine similarity)

D (Xi,Xj) = cos−1
(
XT
i Xj

)
. (16)

When the angle between the two vectors is 0, the (16), their inner product is 1 and the arc

of the cosine is 0◦. The maximum value of (16) is achieved when the the angle between the two

vectors is 180◦, their inner product is -1 and the hence the arc of the cosine is π/2.

3 Simulation studies

We have conducted extensive simulation studies so as to produce useful and helpful conclusions,

but also to get better insights into the behaviour of the two classification algorithms with

spherical data. We examined the case of two groups only, compensating for the many situations
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Figure 1: Contour plots of the von Mises-Fisher, the Kent and a comparison of the Kent with

the ESAG distribution.

and cases to be examined. In specific, we examined many different combinations of sample

sizes n = (50, 100, 150, 200, 300, 500, 1000), concentration parameter values κ = (0, 5, 10, 15, 20),

ovalness parameter values β = (0, 2, 4, 6, 8) and angles between the mean directions of the two

samples φ = (0◦, 10◦, 20◦, 30◦, 40◦, 50◦, 60◦). Our goal is to cover many situations which can

arise in practice.

3.1 Monte Carlo estimation of the true miss-classification error

Evaluating the true (theoretical) miss-classification error is difficult even in the multivariate case,

where many methods exist (Ganeshanandam and Krzanowski, 1990). In the spherical case, its

computation is more complicated. This is why we will rely on Monte Carlo to empirically

evaluate the true error. Since we have two groups only, its computation is easier. The error

consists of two elements, wrongly classifying an observation to one group when in fact it belongs
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to the other group

P (E) = P (y is classified to G2 | y belongs to G1) + P (y is classified to G1 | y belongs to G2)

= P (G2|G1) + P (G1|G2)

To empirically estimate this quantity we will simulate 10, 000, 000 values from one group and

compute the proportion of values were classified in the other group

P̂ (E) =

∑n
i=1 I [`2 (yi) > `1 (yi) | `1]

10, 000, 000
+

∑n
i=1 I [`1 (yi) > `2 (yi) | `2]

10, 000, 000
,

where I(.) is the indicator function and `j (yi), j = 1, 2 denotes the likelihood value of group j

calculated at yi.

3.2 Predictive performance estimation

We conducted a 10-fold cross-validation using stratified random sampling ensuring that the

group allocation was similar for each of the 10 folds. The estimated predictive performance of

each algorithm was estimated using the percentage of correct classification, in order to compare

with the empirical miss-classification error3.

In each fold, both versions of the k-NN algorithm (the standard and the non standard)

were tested using a range of k values. The estimated predictive performance of the best k is

optimistically biased (the performance of the chosen model is overestimated) and a bootstrap-

based bias correction method was applied Tsamardinos et al. (2018).

The predicted values produced by all methods across all k folds are collected in a matrix P

of dimensions n×M , where n is the number of samples and M the number of trained models.

We sample with replacement a fraction of rows (or predictions) from P and denote them by

in-sample values. On average, the newly created set will be comprised by 63.2% of the original

individuals Efron and Tibshirani (1994). The non re-sampled values (rows) can be termed

out-of-sample values. The performance of each algorithm in the in-sample values is calculated

and the model (or configuration) with the optimal performance is selected, followed by the

calculation of performance in the out-of-sample values. This process is repeated B = 1000

times and the average performance is returned.

The only computational overhead is with the repetitive re-sampling and calculation of the

predictive performance, i.e. no model is fitted nor trained. A possible drawback is that the final

estimated performance usually underestimates the true performance, but this negative bias is

smaller than the optimistic uncorrected performance.

3.3 Spherical plots of the Kent simulated data

Figure 2 presents simulated data of some cases examined in the simulation studies. Simulated

data from the Kent distribution are plotted on the sphere. These can be used as guides as to

what to expect from the simulation studies.

3An alternative measure would be the area under the curve (AUC) (Hand and Till, 2001). The benefit of AUC

over the percentage of correct classification is that AUC is independent of the group allocation and provides a

better view of the discriminative power of an algorithm. A drawback of AUC is that its theoretical value when

assuming a parametric model cannot be computed.
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When the ovalness parameter (β) is equal to 0 or even equal to 2, the shape of the data

is similar. This indicates, that a von Mises-Fisher or the IAG distribution would not differ

from the Kent or the ESAG distribution. As we move to higher ovalness values (β ≥ 4), the

difference between the rotational symmetric and the rotational non symmetric distributions

appears. The elliptical shape of the data is apparent; this is the point where Kent and ESAG

will start outperforming the von Mises-Fisher and the IAG distributions.

3.4 Results of the simulation studies

3.4.1 Simulated data from the Kent (γγγ, κ, 0) (≡ von Mises-Fisher) distribution

Figures 3 and 4 present the results of the estimated predictive performance for all methods for

the 4 different values of concentration parameter and the 6 different angles. When the angle

between the two group mean directions is 0◦ all methods have good performance, their predicted

percentage of correct classification moves about 50%. For all other angles, and regardless of the

concentration values, maximum likelihood discriminant analysis has outperformed the k-NN

algorithm. The difference can be deemed negligible in some cases (≈ 0.05%), whereas in other

cases it is substantial (≈ 4%).

3.4.2 Simulated data from the Kent (γγγ, κ, 2) distribution

3.4.3 Simulated data from the Kent (γγγ, κ, 4) distribution

3.4.4 Simulated data from the Kent (γγγ, κ, 6) distribution

3.4.5 Simulated data from the Kent (γγγ, κ, 8) distribution

4 Real data analysis

In order to have a better and more realistic image of the discriminant analysis we also compared

the above methods using real spherical data4. We managed to form 20 pairs of groups, hoping

to obtain evidence and insight on how discriminant analysis performs with real data. Below we

list the data and provide some information about them.

• Paleomagnetic (Wood, 1982): A set of 33 estimates of a previous magnetic pole position

(Table 2 in (Schmidt, 1976)) obtained using palaeomagnetic techniques. Each estimate is

associated with a different site, the 33 sites being spread over a large area of Tasmania.

Following (Figueiredo, 2009) we will use the same labels for these data. The first group

contains the observations (9, 10, 11, 12, 14, 16, 23, 24, 30).

• Ordovician (Fisher et al., 1993): Two groups of 50 measurements each, of L1
0 axes

(intersections between cleavage and bedding planes of F, folds) in Ordovician turbidites,

collected in the same sub-domain.

• Stones (Fisher et al., 1993): 202 measurements of the longest axis (101) and shortest axis

(101) orientations of tabular stones on a slope at Windy Hills, Scotland.

4All datasets are available upon request from the corresponding author.
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• Magnetic (Fisher et al., 1993): Measurements of magnetic remanence in specimens of

Mesozoic Dolerite from Prospect, New South Wales, after successive partial demagnetisa-

tion stages (200◦ and 35O◦) for each of 62 specimens as part of an experiment to determine

the blocking temperature spectrum of components of magnetisation.

• Vectorcardiogram (Downs et al., 1971): The data are derived from vectorcardiogram

measurements of the electrical activity of the heart of children of different ages (2-10 and

11-19 years old) and genders. The vectorcardiogram involves three leads being connected

to the torso produce a time-dependent vector that traces approximately closed curves, each

representing a heartbeat cycle, in R3. Sometimes used as a summary for clinical diagnosis

is a unit vector defined as the directional component of the vector at a particular extremum

across the cycles. The data comprise such unit-vectors derived from data for two different

lead placement systems, the Frank system and for the McFee system for each of 98 children

of different ages and gender. We will examine both systems independently using the age

groups and the gender groups. These combinations produce 4 pairs of datasets in total.

• Judgments (Fisher et al., 1993): In a sociological study of the attitudes of 48 individ-

uals to 16 different occupations, judgments were made according to 4 different criteria

(Earnings, Social Status, Reward, Social Usefulness), giving rise to 4 samples (each of 48

multivariate measurements). From so-called external analysis of the occupational judg-

ments, each multivariate measurement was reduced to a (spherical) unit vector, yielding

the 4 samples of unit vectors. Eeach response was transformed to a unit vector according

to 4 different criteria (Earnings, Social Status, Reward, Social Usefulness).

Table 1 presents the p-values of the rotational symmetry hypothesis test for each group

of observations. The p-values were produced by using Rivest’s (Rivest, 1986) test for the von

Mises-Fisher versus the Kent and the log-likelihood ratio test for the IAG versus the ESAG.

To estimate the predictive performance of each method, we repeated the 10-fold CV protocol

50 times, on each real dataset 5 for reducing the variability of the estimation.

5 Conclusions

We compared maximum likelihood and the k-NN algorithm in the context of discriminant

analysis. The first method employed 4 distributions, 2 with rotational symmetry and 2 without

this assumption. Our extensive simulation studies and the empirical evaluation studies allowed

us to draw multiple conclusions.

In the simulation studies, when comparing parametric discriminant analysis to the non

parametric k-NN algorithm, the former always produced better results than the latter. This

pattern was observed regardless of the concentration and the ovalness values. With regards to

the distributions, when the rotational symmetry holds true, all distributions produced similar

results. When the assumption did not hold, the Kent and ESAG distributions performed better

5The exception is with the paleomagnetic dataset, for which the leave-one-out CV (LOOCV) was implemented

due to its small sample size.
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Dataset von Mises-Fisher Vs Kent IAG Vs ESAG

Paleomagnetic group 1 0.656 0.632

Paleomagnetic group 2 0.109 0.096

Ordovician group 1 0.106 0.139

Ordovician group 2 0.379 0.466

Stones group 1 0.267 0.634

Stones group 2 0.20×10−25 0.610×10−28

Magnetic group 1 0.188×10−12 0.511×10−27

Magnetic group 2 0.128×10−12 0.880×10−27

Frank system 2-10 years 0.002 0.003

Frank system 11-19 years 0.094 0.147

McFee system 2-10 years 0.045 0.227

McFee system 11-19 years 0.005 0.019

Frank system boys 0.450×10−5 0.410×10−6

Frank system girls 0.410 0.971

McFee system boys 0.807×10−5 0.360×10−6

McFee system girls 0.218 0.684

Judgments earnings 0.295×10−5 0.899×10−5

Judgments social status 0.217 0.083

Judgments reward 0.315×10−5 0.569×10−6

Judgments social usefulness 0.943×10−5 0.196×10−6

Table 1: P-values of the rotational symmetry tests, von Mises-Fisher versus Kent and IAG

versus ESAG distributions for each group of the datasets.

than the von Mises-Fisher and IAG, as expected. The k-NN was shown to underestimate the

true percentage of correct classification, even when the sample sizes were 1, 000 for each group.

In the empirical evaluation studies, the conclusions were the opposite. The k-NN algorithm

outperformed the maximum likelihood discriminant analysis. In real life it is rather unusual to

find datasets following a parametric model and perhaps this is why the distribution free k-NN

algorithm performed so well.

A natural question arises as to what should be the general strategy? Which results should

one trust? We will put more weight on the real data analysis results. With simulation studies,

it is hard to evaluate the true performance of a classifier, even if the data are generated from

distributions with strange shapes.6 This is because real data will not obey any parametric

assumptions and the noise to signal ratio can be really high. In the classification setting, we

believe one should gather and use as many real data as possible to compare their methods.

Simulation studies can help validate a model when the assumptions hold true. And this is

exactly our point of discussion. In real life, the assumptions do not hold true. Hence, there is

need for a model or algorithm robust to model miss-specification and k-NN is such an example.

Based on our findings, a prioritization scheme would be to use the k-NN algorithm first, fol-

lowed by the Kent and ESAG distributions. To our surprise, the von Mises-Fisher and IAG dis-

6Our goal is not to suggest an algorithm or method that works well under ideal conditions, but works well in

realistic scenarios.
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Dataset vMF IAG ESAG Kent S k-NN NS k-NN

Paleomagnetic 0.970 0.970 0.939 0.939 1.000 1.000

Ordovician 0.570 0.579 0.525 0.509 0.432 0.440

Stones 0.867 0.875 0.891 0.888 0.905 0.903

Magnetic 0.528 0.518 0.492 0.520 0.548 0.538

Frank system age 0.608 0.627 0.566 0.584 0.566 0.559

McFee system age 0.603 0.604 0.582 0.595 0.555 0.528

Frank system gender 0.496 0.540 0.555 0.510 0.557 0.562

McFee system gender 0.529 0.544 0.510 0.502 0.486 0.455

Judgments earnings-social status 0.496 0.487 0.581 0.519 0.744 0.749

Judgments earnings-reward 0.416 0.384 0.757 0.686 0.790 0.802

Judgments earnings-social usefulness 0.593 0.581 0.752 0.735 0.855 0.868

Judgments social status-reward 0.545 0.549 0.589 0.582 0.526 0.546

Judgments social status-social usefulness 0.631 0.644 0.664 0.656 0.650 0.649

Judgments reward-social usefulness 0.551 0.554 0.550 0.550 0.583 0.632

Table 2: Average estimated predictive performance of all methods based on repeated 10-fold

CV. The highest performances are highlighted with bold.

tribution performed well and should be also utilised, for the task of discrimination/classification.

Unfortunately our conclusions are limited to spherical data only. In addition, the ESAG dis-

tribution though was only recently suggested (Paine et al., 2018) and has not been extended

to higher dimensions. The Kent distribution on the other hand has been extended (Scealy and

Welsh, 2011), yet it is not available in any R package. The k-NN algorithm on the other hand

and the von Mises-Fisher distribution, available in the R package Directional (?), are applicable

to higher dimensions.

Closing this paper we will mention that real data can be highly complex, hence more ad-

vanced discriminant analysis algorithms should be used. The machine learning field is rich in

such algorithms and statisticians coping with spherical (or hyper-spherical) should borrow, or

at least consider them.
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βββ = 0

βββ = 2

βββ = 4

βββ = 6

βββ = 8

φ = 10◦ φ = 30◦ φ = 50◦

Figure 2: Spherical plots of 500 points from each population generated from Kent (γγγ, 20,βββ)

distribution. The φ numbers denote the angle between the mean vector of each population.
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κκκ = 5

φ = 0◦ φ = 10◦ φ = 20◦

κκκ = 5

φ = 30◦ φ = 40◦ φ = 50◦

κκκ = 10

φ = 0◦ φ = 10◦ φ = 20◦

κκκ = 10

φ = 30◦ φ = 40◦ φ = 50◦

Figure 3: Data generated from a Kent (γγγ, κ, 0) distribution.
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κκκ = 15

φ = 0◦ φ = 10◦ φ = 20◦

κκκ = 15

φ = 30◦ φ = 40◦ φ = 50◦

κκκ = 20

φ = 0◦ φ = 10◦ φ = 20◦

κκκ = 20

φ = 30◦ φ = 40◦ φ = 50◦

Figure 4: Data generated from a Kent (γγγ, κ, 0) distribution.
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(a) Paleomagnetic data (b) Ordovician data

(c) Stones data (d) Magnetic data

Figure 5: Spherical plots of the real datasets with different colours indicating the two groups.
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Grouping according to age

(a) Frank system (b) McFee system

Grouping according to gender

(c) Frank system (d) McFee system

Figure 6: Spherical plots of the vectorcardiogram data with different colours indicating the two

groups (age group and gender group).

21



(a) Earnings vs social status (b) Earnings vs reward

(c) Earnings vs social usefulness (d) Social status vs reward

(e)Social status vs social usefulness (f) Reward vs social usefulness

Figure 7: Spherical plots of the Judgments data with different colours indicating the two groups.
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(a) Ordovician data (b) Stones data

(c) Magnetic data

Figure 8: Box plots of the estimated predictive performance of all methods based on repeated

10-fold CV.
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Grouping according to age

(a) Frank system (b) McFee system

Grouping according to gender

(c) Frank system (d) McFee system

Figure 9: Box plots of the estimated predictive performance of all methods based on repeated

10-fold CV.
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(a) Earnings vs social status (b) Earnings vs reward

(c) Earnings vs social usefulness (d) Social status vs reward

(e)Social status vs social usefulness (f) Reward vs social usefulness

Figure 10: Box plots of the estimated predictive performance of all methods based on repeated

10-fold CV.
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