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ABSTRACT
Discriminant analysis for spherical data (directional data in general) has not been
studied to a great degree and most papers focus on one distribution, the rotation-
ally symmetric (or isotropic) von Mises-Fisher. This is the first paper on maximum
likelihood discriminant analysis with spherical data that considers non rotationally
symmetric distributions, while the k-Nearest Neighbours algorithm is included as a
model-free alternative. Extensive Monte Carlo simulations and experiments with nu-
merous real data yield multiple conclusions regarding the algorithms’ predictive per-
formance and computational cost. Maximum likelihood discriminant analysis using
rotationally non-symmetric distributions performed satisfactorily and surprisingly
enough, rotationally symmetric distributions performed well in some cases. Overall,
the k-NN algorithm is suggested because it is non-parametric hence flexible, com-
putationally efficient, scalable to large sample sizes and suitable for big data, and
on average is on par or outperforms the other methods.
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1. Introduction

Directional data are multivariate data constrained to lie on a unit radius (hyper-
)sphere. Such data arise in many different fields, such as biology (Paterson et al.
2017), bioinformatics (Audit and Ouzounis 2003), zoology (Amson et al. 2017), ecology
(Vanni, Baldaccini, and Giunchi 2017), geophysics (Rutkowska, Kohnová, and Banasik
2018), political sciences (Gill and Hangartner 2010) and transportation (Laha and
Putatunda 2018) to name a few. In mathematical terms, their sample space, denoted
by Sp−1, is given by

Sp−1 =
{
y ∈ Rp, yTy = 1

}
.

In the special case of p = 2 they are termed circular or angular data and they lie on
the unit circle. If p = 3, they lie on the unit sphere, and hence are termed spherical
data; see Figure 1 for an example.
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Figure 1. An example of spherical data taken from (Wood 1982). Measurements regarding previous magnetic
pole position obtained using palaeomagnetic techniques.

Mathematically speaking, the sphere is an example of a manifold in 3 dimensions1.
On the earth’s surface for example, we can claim that a city (or even a county) con-
stitutes a plane in R2 and data collected on that region can be considered Euclidean
(locally). However, this is a Euclidean approximation (locally) to the sphere and for
this reason appropriate spherical models have been developed since the middle of the
20th century. For example, Fisher (1953) proposed the von Mises-Fisher distribution
and Mardia (1975) proposed the Fisher-Bingham distribution.

Clustering (unsupervised learning) with directional data has been addressed by ei-
ther using hierarchical clustering (Lund 1999), the k-means algorithm (Hornik et al.
2012) or by model based clustering with the von Mises-Fisher (Banerjee et al. 2005)
or the Kent distribution Peel, Whiten, and McLachlan (2001). More recently, Amayri
and Bouguila (2013) included the task of feature selection into model based cluster-
ing, using mixtures of von Mises-Fisher distributions. In the context of discriminant
analysis (supervised learning, or classification), both Morris and Laycock (1974) and
Figueiredo (2009) conducted simulation studies considering the von Mises-Fisher dis-
tribution alone. Hamsici and Martinez (2007) explored the approximation of the multi-
variate Gaussian to the von Mises-Fisher distribution, while Lopez-Cruz et al. (2015)
López-Cruz, Bielza, and Larrañaga (2015) proposed a naive Bayes classifier that is
again based on the von Mises-Fisher distribution. Kent, Ganeiber, and Mardia (2013)
on the other hand, briefly examined the use of the Kent distribution, but with no
simulation studies or real data analysis whatsoever.

The drawback of the aforementioned papers is that they examine the problem of
classification with distributions of limited capabilities. Broadly speaking, most papers
applied or not, employ the von Mises-Fisher distribution, perhaps due to its conve-
nient form and ease to work with, neglecting its rather unrealistic rotational symmetry
assumption, the isotropic covariance matrix. Kent (1982) addressed this limitation by
proposing the first rotationally non-symmetric distribution, and only recently Paine
et al. (2018) proposed the second rotationally non-symmetric distribution, the Ellip-
tically Symmetric Angular Gaussian (ESAG) distribution. Both the Kent and ESAG
distributions have elliptical shape, allowing for correlation between the variables2.

1In general a manifold is a topological space that locally resembles Euclidean space near each point. Each
point of a p-dimensional manifold has a neighbourhood (tangent plane for example) that is homeomorphic.

Homeomorphism is a mapping that preserve all the topological properties of a given space to the Euclidean
space Rp.
2The correspondence with the Euclidean discriminant analysis is to match the Von Mises-Fisher to Gaus-

sian linear discriminant analysis with isotropic covariance matrix and the Kent to the quadratic discriminant
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Another common drawback of these papers is that they do not compare with more
alternative distributions and algorithms. The literature contains more spherical dis-
tributions and more algorithms than maximum likelihood discriminant analysis, but
no one to the best of our knowledge, has studied discriminant analysis for directional
(or even spherical) data by using either more distributions or more algorithms. There
is no comparative evaluation of the Kent to the von Mises-Fisher distribution in the
context of discriminant analysis. It is true that no ”free lunch” exists and no algo-
rithm unanimously outperforms all other algorithms, yet a concrete and solid large
scale comparison of the existing methods/algorithms does not exist.

These reasons motivated us to extend the work of Figueiredo (2009), with a focus on
spherical data only, by including three more distributions, the Independent Angular
Gaussian (IAG), or projected normal (Mardia and Jupp 2000), the Kent distribution
(Kent 1982), and the ESAG distribution (Paine et al. 2018). We also consider the k-
Nearest Neighbours k-NN algorithm Cover and Hart (1967), coupled with the cosine
distance, as the non-parametric competitor. The aim of this paper is to provide evi-
dence for the suitability of each distribution and whether practitioners and researchers
working with spherical data should consider maximum likelihood discriminant analy-
sis or the k-NN algorithm. To this end we have implemented extensive Monte Carlo
simulations with various scenarios assessing the predictive performance and the com-
putational cost of each method. In addition, we have performed empirical evaluation
studies using various real data from geology, medicine and sociology in order to draw
safer, and more realistic, conclusions regarding the algorithms’ predictive performance.

In the next section we mention some preliminaries regarding discriminant analysis;
a) the spherical distributions we will examine, along with the maximum likelihood
estimation of their parameters and b) the standard k-NN algorithm and a variant of
it. We compare these methods via Monte Carlo simulations in Section 3 and by using
real data analysis in Section 4. Finally, we conclude the paper in Section 5.

2. Discriminant analysis with spherical data

Discriminant analysis constructs discrimination rules or boundaries between groups
of observations and unlike clustering, the label of each observation, or the group to
which each observation belongs, is known. Examples of discriminant analysis with
spherical data include the case of separating the longest axis and shortest axis ori-
entations of tabular stones Fisher, Lewis, and Embleton (1993) and the classification
of the constitutes measurements of magnetic remanence in rock specimens, after each
specimen had been partially thermally demagnetised to the same stage (Fisher, Lewis,
and Embleton 1993).

2.1. Maximum likelihood discriminant analysis

The first algorithm we will use is maximum likelihood discriminant analysis. For each
group of observations, the same family of distributions is assumed and we estimate the
parameters for each group using maximum likelihood estimation. In order to allocate a
new observation into a group, the density of the new observation is computed for each
group and the observation is allocated to the group with the highest density value.
Below, we discuss the maximum likelihood discriminant analysis for spherical data.

analysis.
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2.1.1. The von Mises-Fisher distribution

The density of the von Mises-Fisher distribution on S2 is given by (Mardia and Jupp
2000)

f (y;γγγ, κ) =
κ

2π (eκ − e−κ)
eκγγγ

Ty, (1)

where κ ≥ 0 (concentration parameter, scalar), γγγ ∈ S2 is the mean direction and
y ∈ S2. The corresponding log-likelihood is given by

` = n log
κ

2π
− n log

(
eκ − e−κ

)
+ κ

n∑
i=1

γγγTyi.

The estimated mean direction is available in closed form γ̂γγ = ȳ
‖ȳ‖ , where ȳ =

n−1 (
∑n

i=1 y1i,
∑n

i=1 y2i,
∑n

i=1 y3i)
T and ‖ · ‖ denotes the Euclidean norm. The con-

centration parameter is independent of the mean direction and its estimation is
achieved using a truncated Newton-Raphson algorithm3 (Sra 2012)

κ̂(t) = κ̂(t−1) −
A3

(
κ̂(t−1)

)
− R̄

1−
[
A3

(
κ̂(t−1)

)]2 − 2
κ̂(t−1)A3

(
κ̂(t−1)

) (2)

and similarly to Sra (2012) we will set the starting value in (2) equal to κ̂(0) =
R̄(p−R̄2)

1−R̄2 .

A3 (κ̂) = I3/2 (κ̂) /I3/2−1 (κ̂), Iν (κ̂) is the modified Bessel function of the first kind4

Abramowitz and Stegun (1970) of order ν evaluated at κ̂ and R̄ =
‖
∑n

i=1 yi‖
n is the

mean resultant length.

2.1.2. The Isotropic Angular Gaussian distribution

The density of the Angular Gaussian (AG) distribution is (Mardia and Jupp 2000)

f (y;µµµ,V) =
1

2π|V|1/2 (yTV−1y)3/2
× exp

{
1

2

[(
yTV−1µµµ

)2
(yTV−1y)

−
(
µµµTV−1µµµ

)]}

×M2

[(
yTV−1µµµ

)2
(yTV−1y)

]
, (3)

where M2(α) = (1 + α2)Φ(α) + αφ(α) and Φ(.), φ(.) denote the cumulative and
probability density function, respectively, of the standard normal distribution. µµµ ∈ R3

is the mean vector and V is a positive definite matrix. When V = I3, we end up with
the IAG distribution

f(y;µµµ) =
1

2π
exp

[
1

2

{(
yTµµµ

)2 −µµµTµµµ}]M2

(
yTµµµ

)
, (4)

3The iterative solution in (2) is the general solution. For the spherical case a simpler form exists.
4The modified Bessel function in R gives us the option to scale it exponentially. This is useful because when

large numbers are plugged into the Bessel function, R needs the exponential scaling to calculate the ratio of

the two Bessel functions and avoid numerical overflow.
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whose log-likelihood is given by

` = −n log (2π) +
1

2

n∑
i=1

(
yTi µµµ

)2 − n

2

(
µµµTµµµ

)
+

n∑
i=1

log
{
M2

[(
yTi µµµ

)2]}
. (5)

We estimate the mean vector using the Newton-Raphson algorithm µµµt+1 = µµµt−H−1J,
where J denotes the first derivative and H (Hessian matrix) is the second derivative
of (5), both with respect to µµµ

J =
∂`

∂µµµ
=

n∑
i=1

(
yTi µµµ

)
yTi − nµµµT +

n∑
i=1

g′i (µµµ)

gi (µµµ)
and

H =
∂2`

∂µµµ∂µµµT
=

n∑
i=1

yiy
T
i − nI3 +

n∑
i=1

g′′i (µµµ) gi (µµµ)− [g′i (µµµ)]2

g2
i (µµµ)

,

where

gi (µµµ) = Φ
(
yTi µµµ

) [
1 +

(
yTi µµµ

)2]
+ yTi µµµφ

(
yTi µµµ

)
,

g′i (µµµ) = 2
[
yTi µµµΦ

(
yTi µµµ

)
yTi + φ

(
yTi µµµ

)]
yTi and

g′′i (µµµ) =

n∑
i=1

yiy
T
i − nI3 + 2

n∑
i=1

Φ
(
yTi µµµ

)
gi (µµµ)

yiy
T
i −

n∑
i=1

g′i (µµµ) g′i (µµµ)T

g2
i (µµµ)

.

2.1.3. The Kent distribution

Kent (1982) defined the distribution whose density is given by

f (y;γγγ, κ, β) =
1

C (κ, β)
exp

{
κγγγy + β

[
(ααα1y)2 − (ααα2y)2

]}
, (6)

where β is the ovalness parameter, k is the concentration parameter5, γγγ is the mean
direction and ααα1, ααα2 are the major and minor axis respectively with γγγ,ααα1,ααα2 ∈ S2.
The normalizing constant C (κ, β) has a closed form (as a sum of infinite terms) in
the spherical case Kent (1982) and the corresponding log-likelihood is

` = −nC (γγγ, κ, β) + κ

n∑
i=1

γγγTyi + β

[
n∑
i=1

(
αααT1 yi

)2 − n∑
i=1

(
αααT2 yi

)2]
. (7)

When estimating the parameters of the Kent distribution we first estimate the
matrix A = (γγγ,ααα1,ααα2) via moments. By choosing an orthogonal matrix H to rotate
the mean vector ȳ to the north polar axis (1, 0, 0)T , H can be written as

H =

 cos θ − sin θ 0
sin θ cosφ cos θ cosφ − sinφ
sin θ sinφ cos θ sinφ − cosφ

 ,
5Uni-modality of the distribution requires that |β| < κ/2.
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where θ and φ are the polar co-ordinates of ȳ. Let B = HTSH, where S =
n−1

∑n
i=1 yiy

T
i . We then choose a rotation K about the north pole to diagonalize

BL, where

BL =

[
b22 b23

b32 b33

]
is the lower 2×2 sub-matrix of B, with eigenvalues λ1 > λ2. If we choose ψ (the angle
of rotation between the mean direction and the major axis ααα2) such that tan (2ψ) =
2b23/ (b22 − b33), ensuring that ‖ ȳ ‖> 0 and λ1 > λ2 then we can take

K =

 1 0 0
0 cosψ − sinψ
0 sinψ cosψ

 .
The moment estimate of A is given by Ã = HK. As for the parameters κ and β
we maximize (6) with respect to these two parameters using a numerical optimizer,
such as the Nelder-Mead algorithm (Nelder and Mead 1965), available in R via the
command optim.

2.1.4. The Elliptically Symmetric Angular Gaussian distribution

The ESAG distribution Paine et al. (2018) is another non rotationally symmetric
distribution whose density is given by

f (y;µµµ,V) =
1

2π (yTV−1y)3/2
× exp

{
1

2

[ (
yTµµµ

)2
yTV−1y

−µµµTµµµ

]}
×M2

[ (
yTµµµ

)2
yTV−1y

]
. (8)

The log-likelihood of (8) is given by

` = −n log (2π)− 3

2

n∑
i=1

log
(
yTi V

−1yi
)

+
1

2

n∑
i=1

(
yTi µµµ

)2
yTi V

−1yi
− n

2
µµµTµµµ+

n∑
i=1

M2

[ (
yTi µµµ

)2
yTi V

−1yi

]
. (9)

ESAG (8) was derived from AG (3) as a result of two conditions, a) Vµµµ = µµµ and b)
|V| = 1. The largest eigenvalue of the positive definite matrix V is 1 due to the first
condition. The other two eigenvalues are 0 < ρ1 ≤ ρ2, and hence V−1 can be written
as

V−1 = ξdξ
T
d +

2∑
j=1

ξjξ
T
j /ρj , (10)

where ξ1, ξ2 and ξ3 = µ/‖µ‖ is a set of mutually orthogonal unit vectors. The second
condition implies

∏2
j=1 ρj = 1. Once the 3 parameters in µµµ are fixed, then from the two

conditions there is 1 remaining degree of freedom for the eigenvalues of V , and 1 degree
of freedom for its unit eigenvectors, thus similarly to the Kent distribution (6), the
total number of free parameters is 5. Similarly to the Kent distribution, maximisation
of (9) can be implemented in R using the command optim.
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2.2. Characteristics of the above densities

The IAG distribution is very similar to the von Mises-Fisher distribution (Wat-
son 1983) and they share common properties. For example the concentration pa-
rameter of the von Mises-Fisher distribution is roughly similar to the norm of the
mean vector of the IAG, κ ≈‖ µµµ ‖. Their main difference lies in their construc-
tion. The von Mises-Fisher is a multivariate normal distribution with a covariance
matrix equal to the identity matrix conditioned to lie on the unit (hyper-)sphere,
y ∼ vMF (γγγ, κ) ≡ N3

(
µµµ, I3|yTy = 1

)
. IAG, on the contrary, is a multivariate nor-

mal distribution projected on the (hyper-)sphere y ∼ IAG(µµµ), where y = x
‖x‖ and

x ∼ N3 (µµµ, I3). The von Mises-Fisher and IAG distributions are both rotationally
symmetric about their mean direction µµµ. This is the analogue of a bivariate normal
in R2 with isotropic or spherical covariance matrix. Their contours plot consists of
many concentric circles as presented in Figure 2(a). The von Mises-Fisher (1) stems
from the Kent distribution (6) with β = 0, vMF (γγγ, κ) ≡ Kent (γγγ, κ, 0). The IAG (4)
distribution corresponds to V = I3 ⇔ (γ1, γ2)T = (0, 0)T , IAG (µµµ) ≡ ESAG (µµµ, I3).

The Kent and ESAG distributions on the other hand have elliptical shape (see
Figures 2(b) and 2(c)), overcoming the restraining rotational symmetry assumption.
They can be seen as the analogue of a bivariate normal distribution, with some re-
strictions on the covariance matrix. The Kent distribution is a special case of the
Fisher-Bingham distribution (Mardia 1975). Instead of 8 parameters, it has 5 (hence
the name FB5). The ESAG distribution, similarly to the Kent, comes from the more
general AG distribution (3), which also has 8 parameters, with proper constraints on
the covariance matrix (Paine et al. 2018). The proximity between the Kent and the
ESAG can be graphically examined in the contours plot in Figure 2(c).

2.3. The maximum likelihood discriminant boundaries

The general rule is to allocate a new observation vector x ∈ S2 in the group whose
log-likelihood value has the highest value. The rule in our case with two groups is

• For the von Mises-Fisher, allocate x to group 1 iff

log
κ1

κ2
− log

eκ1 − e−κ1

eκ2 − e−κ2
+
(
κ1γγγ

T
1 − κ2γγγ

T
2

)
x > 0

and to group 2 otherwise.
• For the IAG, allocate x to group 1 iff

1

2

[(
xTµµµ1

)2 − (xTµµµ2

)2 − (µµµT1µµµ1

)
+
(
µµµT2µµµ2

)]
+M2

[(
xTµµµ1

)2]−M2

[(
xTµµµ2

)2]
> 0

and to group 2 otherwise.
• For the Kent, allocate x to group 1 iff

−C (γγγ1, κ1, β1) + C (γγγ2, κ2, β2) +
(
κ1γγγ

T
1 − κ2γγγ

T
2

)
x

+β1

[(
αααT2,1x

)2 − (αααT3,1x)2]− β2

[(
αααT2,2x

)2 − (αααT3,2x)2] > 0

and to group 2 otherwise.
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Figure 2. Contour plots of (a) the von Mises-Fisher and (b) the Kent distribution. (c) Comparison of the

contour plots of the Kent and ESAG distributions.

• And for the ESAG, allocate x to group 1 iff

−3

2
log

(
xTV−1

1 x
)(

xTV−1
2 x

) +M2

[ (
xTµµµ1

)2(
xTV−1

1 x
)]−M2

[ (
xTµµµ2

)2(
xTV−1

2 x
)]

+
1

2

[ (
xTµµµ1

)2(
xTV−1

1 x
) − (

xTµµµ2

)2(
xTV−1

2 x
) − (µµµT1µµµ1

)
+
(
µµµT2µµµ2

)]
> 0

and to group 2 otherwise.

We could simplify the above inequalities by assuming equal concentration parame-
ters (see (Figueiredo 2009) for example) and/or ovalness parameters etc. In the case
of the von Mises-Fisher for example, that would be the analogue of a linear Naive
Bayes classifier in R3. We argue against this practice because parametric discriminant
analysis puts constrains on the shape of the data which might be unrealistic. The von
Mises-Fisher for example is a restrictive distribution; there is no reason to further
restrict it.
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2.4. The k-NN algorithm

The k-NN (k Nearest Neighbours) algorithm is an intuitive classifier that makes no
parametric assumptions about the data. The standard k-NN works by determining
the k observations in the sample that are closest, by some choice of distance measures,
to some new observation(s). The new observation will be allocated to the sample that
is most common amongst these k ”nearest neighbours”. In the occasion of two more
samples being the most common can be broken by allocating uniformly at random
amongst the tied samples (the strategy we use in our simulation studies) or else by
using a secondary tie-breaking criterion. In this work we also used a variant that
calculates the distances of the k ”nearest neighbours” from the test observation from
each group and allocates it to the group with the smallest average distance. We term
this the non-standard k-NN. It is computationally more expensive, but could yield
more accurate allocations.

The performance of the k-NN algorithm depends of the choice of k: small k allows
for classification boundaries which are flexible but with a tendency to overfit, while the
opposite is true when k is large. It also depends on the choice of distance measure, but
since we are dealing with directional data we shall use the cosine distance (or cosine
dissimilarity)

D (yi,yj) = cos−1
(
yTi yj

)
. (11)

When the angle between the two vectors is 0, their inner product is 1 and the arc
of the cosine is 0◦. The maximum value of (11) is achieved when the angle between
the two vectors is 180◦, their inner product is -1 and the hence the arc of the cosine is
π/2. However, in order to reduce the computational cost, we do not compute the arc
of the cosine in (11), as the inner product is sufficient and the nearest neighbours are
the observations with the highest inner product value6.

3. Simulation studies

We have conducted extensive simulation studies to draw useful and helpful conclu-
sions, and to get better insights into the behaviour of the two classification algorithms
with spherical data. We examined the case of two groups only, compensating for the
many situations and cases to be examined. Specifically, we examined many different
combinations of sample sizes n = (50, 100, 150, 200, 300, 500, 1000), concentration pa-
rameter values κ = (5, 10, 15, 20), ovalness parameter values β = (0, 4, 8) and angles
between the mean directions of the two samples φ = (0◦, 20◦, 50◦)7.

Maximum likelihood estimation of the aforementioned densities and an implemen-
tation of the k-NN algorithm with spherical (and hyper-spherical) data are publicly
available in the R package Directional (Tsagris et al. 2018) which we will utilize in
our simulation and empirical evaluation studies. All computations took place in an
HP laptop with Intel Core i5-5300U CPU @ 2.3GHz and 16 GB RAM.

6When it comes to large scale data, with tens or even hundreds of observations, computing the arc of the
cosine of thousands of numbers becomes time consuming. We further discuss the computational cost in Section
3.5
7We have performed simulations with more angles, but the results are similar and due to the page limit we

only show these numbers
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3.1. Monte Carlo estimation of the true miss-classification error

Evaluating the true (theoretical) miss-classification error is difficult even in the Eu-
clidean case, where many methods exist Ganeshanandam and Krzanowski (1990). In
the spherical case, its computation is more complicated. This is why we will rely on
Monte Carlo and evaluate the true miss-classification error empirically. Since we have
two groups only, its computation is easier as it comprises of the proportion of wrongly
classified observations to one group when in fact it belongs to the other group

P (C) = P (y is classified to G2 | y ∈ G1) + P (y is classified to G1 | y ∈ G2)

To empirically estimate this quantity we will simulate 10, 000, 000 values from one
group and compute the proportion of values that were miss-classified in the other
group

P̂ (C) = 0.5

[∑n
i=1 I [`2 (yi) > `1 (yi) | `1]

10, 000, 000
+

∑n
i=1 I [`1 (yi) > `2 (yi) | `2]

10, 000, 000

]
, (12)

where I(.) is the indicator function and `j (yi), j = 1, 2 denotes the likelihood value of
group j calculated at yi.

3.2. Predictive performance estimation

We conducted a 10-fold cross-validation (CV) using stratified random sampling en-
suring that the group allocation was similar for each of the 10 folds. The estimated
predictive performance of each algorithm was estimated using the percentage of correct
classification8. The estimated predictive performance of the k-NN with the chosen k is
optimistically biased (the performance of the chosen model is overestimated) and the
bootstrap-based bias correction method (Tsamardinos, Greasidou, and Borboudakis
2018) described below was applied.

The predicted values produced by all methods across all k folds are collected in an
n ×M matrix P , where n is the number of observations and M the total number
of strained models. We sample with replacement a fraction of rows (or predictions)
from P and denote them by in-sample values, while the non re-sampled values (rows)
are termed out-of-sample values. The performance of each algorithm in the in-sample
values is calculated and the model with the optimal performance is selected, followed
by the computation of its performance in the out-of-sample values. This process is
repeated B (for example B = 1000) times and the average performance is returned.

3.3. Spherical plots of Kent simulated data

When the ovalness parameter (β) is equal to 0, the shape of the distributions of the
two groups is similar. This indicates, that a von Mises-Fisher or the IAG distribution
would not differ from the Kent or the ESAG distribution. As we move to higher ovalness
values (β ≥ 4), the difference between the rotational symmetric and the rotationally
non-symmetric distributions appears. The elliptical shape of the data is apparent; this

8An alternative measure would be the area under the curve (AUC) (Hand and Till 2001). The benefit of AUC

over the percentage of correct classification is that AUC is independent of the group allocation and provides a
better view of the discriminative power of an algorithm. A drawback of AUC is that its theoretical value even

when assuming a parametric model cannot be computed.
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is the point where Kent and ESAG will start outperforming the von Mises-Fisher and
the IAG distributions. A final point we must put emphasis on is the proximity between
the Kent and the ESAG distribution. In Figures 3-5 the lines of ESAG and Kent are
indistinguishable.

3.4. Results of the simulation studies

3.4.1. Simulated data from the Kent (γγγ, κ, 0) distribution

Figure 3 presents the estimated predictive performance of all methods for the 4 differ-
ent values of concentration parameter and the 3 different angles. For all angles greater
than 0◦, and regardless of the concentration values, maximum likelihood discriminant
analysis has outperformed the k-NN algorithm. The difference can be deemed negli-
gible in some cases (≈ 0.05%), whereas in other cases it is substantial (≈ 4%). With
regards to the empirical classification rate, the k-NN algorithm usually underestimates
it, even when the sample sizes are large (1,000 observations).

3.4.2. Simulated data from the Kent (γγγ, κ, 4) distribution

Figure 4 presents the estimated predictive performance for the 3 different values of
concentration parameter and the 3 different angles. When the angle between the two
group mean directions is 0◦ all methods have good performance, their predicted per-
centage of correct classification moves about 50%. For all other angles, and regardless of
the concentration values, maximum likelihood discriminant analysis has outperformed
with the ESAG and Kent distributions perform better than their corresponding rota-
tionally symmetric distributions, the IAG and vMF respectively. The k-NN algorithm
is ranked in the middle of these two families of distributions. The difference can be
deemed negligible in some cases (≈ 0.05%), whereas in other cases it is substantial
(≈ 4%). Similarly to the previous case, the k-NN underestimates the empirical rate of
correct classification.

3.4.3. Simulated data from the Kent (γγγ, κ, 8) distribution

Figure 5 presents the estimated predictive performance for the 3 different angles when
the ovalness parameter and the concentration parameter are equal to 8 and 20 respec-
tively. For all angles greater than zero (φ > 0◦), and regardless of the concentration
values, the graphs show a behaviour similar to the one observed in Figure 4. Maxi-
mum likelihood discriminant analysis with rotationally symmetric distributions were
ranked first in the estimated accuracy (percentage of correct classification). In this
last case, all methods either underestimate or overestimate the empirical rate of cor-
rect classification, regardless of the true angle between the mean directions of the two
samples.

3.5. Computational cost of the algorithms

We also estimated the time required to perform a 10-fold CV with each of the 6 alterna-
tives. Maximum likelihood discriminant analysis using the vMF, IAG, ESAG and Kent
distributions and the k-NN algorithm with either the standard or the non standard
version. Figure 6 presents the estimated computational cost of each method/algorithm
for a range of sample sizes varying from 200 up to 10,000. Maximum likelihood dis-
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criminant analysis using the vMf, Kent or the IAG distributions are by far the fastest
procedures.

The reason for this is that when obtaining the maximum likelihood estimates of the
vMF and the Kent distribution, only one matrix multiplication occurs. The concen-
tration and the ovalness parameters are then estimated using a numerical optimiser in
R. On the contrary, MLE of the IAG distribution requires several matrix-vector mul-
tiplications explaining why this is slower. Nevertheless, the Newton-Raphson is given
with appropriate starting values and the maximization is fast. Similarly, MLE in the
ESAG distribution relies on the a numerical optimiser in R which internally performs
matrix-vector multiplications.

The k-NN algorithm, on the other hand, computes distances between vectors, and
hence it depends upon the sample size, but our C++ implementation is memory
efficient; we can efficiently treat large sample sizes. For example, when computing the
distances of each candidate vector from the available sample, we store the indices of the
vectors with the k smallest distances and based upon them we allocate the candidate
vector to a group. We give the option to predict the group membership for a range of
values of k and parallel computations9 can offer a significant boost in the speed.

Finally, when it comes to large scale (or massive) data, that cannot be loaded into
R, the R package bigmemory (Kane et al. 2018) is necessary. It helps load the data
onto R and allows for maximum likelihood discriminant analysis using the vMF and
Kent distributions, and of the k-NN algorithm.

4. Real data analysis

We also compared the above methods using real spherical data, forming 15 pairs of
samples, in order to obtain a better and more realistic image of the discriminant
analysis.

4.1. Description of the data

Below we list the data and provide some information about them.

• Paleomagnetic (Wood 1982): A set of 33 estimates of a previous magnetic pole
position (Table 2 in Schmidt (1976)) were obtained using palaeomagnetic tech-
niques. Each estimate is associated with a different site coming from a large area
of Tasmania. Following Figueiredo (2009) we will use the same labels for these
data. The first group contains the observations (9, 10, 11, 12, 14, 16, 23, 24, 30).
• Ordovician (Fisher, Lewis, and Embleton 1993): There are two groups of 50

measurements each from L1
0 axes (intersections between cleavage and bedding

planes of F, folds) in Ordovician turbidites, collected in the same sub-domain.
• Stones (Fisher, Lewis, and Embleton 1993): There are 202 measurements of the

longest axis (101) and shortest axis (101) orientations of tabular stones on a
slope at Windy Hills, Scotland.
• Magnetic (Fisher, Lewis, and Embleton 1993): These are measurements of mag-

netic remanence in specimens of Mesozoic Dolerite from Prospect, New South
Wales, after successive partial demagnetisation stages (200◦ and 350◦) for each
of 62 specimens as part of an experiment to determine the blocking temperature
spectrum of components of magnetisation.

9In our case we used a laptop with 4 cores, from which 2 are physical cores.
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• Vectorcardiogram (Downs, Liebman, and Mackay 1971): The data are derived
from vectorcardiogram measurements of the electrical activity of the heart of
children of different ages (2-10 and 11-19 years old) and genders. Sometimes, used
as a summary for clinical diagnosis, is a unit vector defined as the directional
component of the vector at a particular extremum. The data come from for two
different lead placement systems, the Frank system and for the McFee system
for each of 98 children of different ages and gender.
• Judgements (Fisher, Lewis, and Embleton 1993): In a sociological study of the

attitudes of 48 individuals to 16 different occupations, judgements were made
according to 4 different criteria (Earnings, Social Status, Reward, Social Use-
fulness), giving rise to 4 samples (each of 48 multivariate measurements). From
so-called external analysis of the occupational judgements, each multivariate
measurement was reduced to a (spherical) unit vector, yielding the 4 samples
of unit vectors. Eeach response was transformed to a unit vector according to 4
different criteria (Earnings, Social Status, Reward, Social Usefulness).
• Midatlantic ridge: This is data set which compares hand selected landmarks

of contents and the midatlantic ridge. 70 landmarks of the Somalian and 70
landmarks of the Arabian plate are available.

The datasets Vectorcardiogram and Judgements had more than two groups.
Since we wanted to draw conclusions for the two sample case, we considered all possible
combinations of 2 samples for these two datasets, making a total of 15 pairs for all
datasets. All pairs are graphically presented in Figures 7-8 and Table 1 presents the
p-values of the rotational symmetry hypothesis test for each group of observations.
The p-values were produced by using the log-likelihood ratio test for the IAG versus
the ESAG.

4.2. Predictive performance estimation

To estimate the predictive performance of each method, we repeated the 10-fold CV
protocol 50 times, on each real dataset for reducing the variability of the estimation.
The exception is with the paleomagnetic dataset, for which the leave-one-out CV
(LOOCV) was implemented due to its small sample size.

4.3. Results of the empirical evaluation studies

Table 1 presents the p-values of the rotational symmetry assumption for each sample,
whereas Table 2 summarizes the predictive performance of each algorithm applied to
each dataset. IAG, ESAG and the k-NN algorithm were the only ones that managed to
outperform all the others in some datasets. Maximum likelihood discriminant analysis
with the von Mises-Fisher or the Kent distribution were never selected as ”winners”
in any dataset. The k-NN algorithm produced the highest predictive performance in
9 out of 16 pairs, whereas IAG and ESAG MLE discriminant analysis were chosen
in 6 out of 16 pairs. We cannot make a decision whether to use maximum likelihood
discriminant analysis or the k-NN based on the whether the assumption of rotational
symmetry is rejected or not. Hence the p-values in Table 1 do not seem to affect the
performances of the algorithms in Table 2 and are rather unrelated.

Overall, the maximum likelihood discriminant analysis is on par with the k-NN
algorithm. However, when the data are only separable in higher dimensions, as is the
case with the midatlantic data (see Figure 12), the k-NN algorithm seems to be the
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only option.

Table 1. P-values of the rotational symmetry tests of the IAG versus ESAG distributions for each group of

the datasets. The test of von Mises versus Kent produced similar results and hence omitted.

Dataset p-value Dataset p-value

Paleomagnetic group 1 0.632 Frank system boys 0.410×10−6

Paleomagnetic group 2 0.096 Frank system girls 0.971
Ordovician group 1 0.139 McFee system boys 0.360×10−6

Ordovician group 2 0.466 McFee system girls 0.684
Stones group 1 0.634 Judgements earnings 0.899×10−5

Stones group 2 0.610×10−28 Judgements social status 0.083
Magnetic group 1 0.511×10−27 Judgements reward 0.569×10−6

Magnetic group 2 0.880×10−27 Judgements social usefulness 0.196×10−6

Frank system 2-10 years 0.003 Midatlantic Somalian 0.019
Frank system 11-19 years 0.147 Midatlantic Arabic 6.33×10−18

McFee system 2-10 years 0.227
McFee system 11-19 years 0.019

Figures 9-11 show the results of the repeated CV. For each pair of samples and
for each method a boxplot of their estimated predictive performance allows for a
comparison among them. In general, all methods exhibit the same variability more
or less. A remarkable difference in the performances can be seen in Figures 10(a)-
(c), where the k-NN algorithm has outperformed the maximum likelihood method.
If we see Figures 8(a)-8(c) we can justify this behaviour. For example it is obvious
that rotationally symmetric distributions cannot separate such data. By examining
the other Figures, we can draw similar conclusions.

In the simulation studies we showed that the predictive performance of the ESAG
and the Kent distributions is nearly equal. In conjunction with the computational
efficiency of the Kent compared to the ESAG distribution (centiseconds to seconds)
the conclusion is that Kent is to be preferred. The empirical evaluation study though
supports the ESAG distribution over the Kent distribution. The ESAG distribution
performed 9 times better than the Kent distribution, Kent performed better in 3 times
and in the other 3 times they performed equally well.

Figure 12 shows the Midatlantic ridge data and the box plot of the cross-validate
estimated of the performance of all methods. It can be seen that the two groups cannot
be separated adequately by the parametric models considered. Surprisingly enough,
the estimated accuracy of the ESAG and Kent distribution is as high as 80%. The
k-NN algorithm has outperformed (by far) though the parametric models achieving
almost perfect classification.

5. Conclusions

We compared maximum likelihood and the k-NN algorithm in the context of discrim-
inant analysis with spherical data. The first method employed 4 distributions, 2 with
rotational symmetry and 2 without this restrictive assumption.

In the simulation studies, maximum likelihood discriminant analysis with non-
rotational symmetric distributions outperformed k-NN, but in many cases the dif-
ference between them was 1% or less. The extensive simulation studies showed that
when the rotational symmetry holds, the choice of the distribution does not matter.
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Table 2. Average estimated predictive performance of all methods based on repeated 10-fold CV. The highest

performances are highlighted with bold.

Dataset vMF IAG ESAG Kent S k-NN NS k-NN

Paleomagnetic 0.970 0.970 0.939 0.939 1.000 1.000
Ordovician 0.570 0.579 0.525 0.509 0.432 0.440
Stones 0.867 0.875 0.891 0.888 0.905 0.903
Magnetic 0.528 0.518 0.492 0.520 0.548 0.538
Frank system age 0.608 0.627 0.566 0.584 0.566 0.559
McFee system age 0.603 0.604 0.582 0.595 0.555 0.528
Frank system gender 0.496 0.540 0.555 0.510 0.557 0.562
McFee system gender 0.529 0.544 0.510 0.502 0.486 0.455
Judgements earnings-social status 0.496 0.487 0.581 0.519 0.744 0.749
Judgements earnings-reward 0.416 0.384 0.757 0.686 0.790 0.802
Judgements earnings-social usefulness 0.593 0.581 0.752 0.735 0.855 0.868
Judgements social status-reward 0.545 0.549 0.589 0.582 0.526 0.546
Judgements social status-social usefulness 0.631 0.644 0.664 0.656 0.650 0.649
Judgements reward-social usefulness 0.551 0.554 0.550 0.550 0.583 0.632
Midatlantic ridge 0.590 0.582 0.780 0.794 0.993 0.999

When this assumption does not hold the more general distributions were clearly su-
perior to the restrictive distributions. The Kent and ESAG distributions performed
better than the von Mises-Fisher and IAG, as expected. This pattern was observed
regardless of the concentration and the ovalness values. The k-NN algorithm on the
other hand was always in between these two families of distributions. It was also shown
to underestimate the true percentage of correct classification, even when the sample
sizes were 1, 000 for each group.

In real data, the k-NN algorithm outperformed maximum likelihood discriminant
analysis in most cases, providing strong evidence to support its use. The k-NN al-
gorithm outperformed the maximum likelihood discriminant analysis in most cases.
Among those cases, the non standard version of the k-NN was chosen 6 times, the
standard version was chosen 2 times and they tied in one time. Further, when com-
paring between the two families of distributions only, the result was ”tie”, with and
IAG and vMF ”winning” exactly half of the times. These two rotationally symmetric
distributions half of the times performed better than their rotationally non-symmetric
distributions. Examining the boxplots of the real data more carefully one can see the
superiority of the k-NN algorithm. When maximum likelihood discriminant analysis
performed better, the difference with the k-NN algorithm was at most 10%. When
k-NN outperformed the parametric models the difference could be more than 25%
(see for example Figures 10(b) and 10(c)).

Relying heavily on the empirical evaluation studies we favour the k-NN algorithm
because it is computationally efficient and scalable to large sample sizes and since
we are living in the era of large scale or massive data, these two features are highly
appreciable. Further, a prioritization scheme would be to use the k-NN algorithm
first, followed by the Kent and ESAG distributions. To our surprise, the von Mises-
Fisher and IAG distribution performed well and should be also utilised, for the task of
discrimination/classification. When prioritizing the algorithms, rotational symmetric
distributions should be used last. The ESAG and the Kent distributions are available
in the R package Directional (Tsagris et al. 2018) but only for the spherical case.
The k-NN algorithm on the other hand and the von Mises-Fisher distribution, also
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available in the R package Directional, are applicable to higher dimensions. Even
though our conclusions are limited to spherical data only, we managed to draw some
useful conclusions. A natural question arises as to what should be the general strategy?
Which results should one trust? We will weigh heavier the real data analysis results.
Simulation studies can help validate a model when the assumptions hold true. They
can help validate a model when the assumptions hold true. This is exactly our key
argument and key point of discussion. In real life, the assumptions do not hold true
and the need for a model or algorithm robust to model miss-specification, k-NN for
example, is apparent. Ideally, we would like to suggest an algorithm or method that
works well not only under ideal conditions, but works well in realistic scenarios. Real
data will not obey any parametric assumptions and the noise to signal ratio can be
really high.

Our final conclusion, based our evidence in the classification setting, is that one
should employ numerous algorithms and methods; there is no panacea. Real data
can be highly complex and there is need for development of more advanced machine
learning discriminant analysis algorithms. In our case, the k-NN algorithm clearly
outperformed maximum likelihood discriminant analysis.

Our future plans include a) develop more flexible algorithms for spherical data and
b) adopt the current and future algorithms to large scale data, for example data with
millions of observations that cannot be loaded onto R.
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Rutkowska, Agnieszka, Silvia Kohnová, and Kazimierz Banasik. 2018. “Probabilistic properties
of the date of maximum river flow, an approach based on circular statistics in lowland,
highland and mountainous catchment.” Acta Geophysica 1–14.

Schmidt, PW. 1976. “The non-uniqueness of the Australian Mesozoic palaeomagnetic pole
position.” Geophysical Journal of the Royal Astronomical Society 47 (2): 285–300.

Sra, S. 2012. “A short note on parameter approximation for von Mises-Fisher distributions:
and a fast implementation of Is(x).” Computational Statistics 27 (1): 177–190.

Tsagris, M., G. Athineou, A. Sajib, E. Amson, and M.J. Waldstein. 2018. “Directional: direc-
tional statistics.” R package version 3.3.

Tsamardinos, Ioannis, Elissavet Greasidou, and Giorgos Borboudakis. 2018. “Bootstrapping
the out-of-sample predictions for efficient and accurate cross-validation.” Machine Learning
107 (12): 1895–1922.

Vanni, Lorenzo, N Emilio Baldaccini, and Dimitri Giunchi. 2017. “Cue-conflict experiments
between magnetic and visual cues in dunlin Calidris alpina and curlew sandpiper Calidris
ferruginea.” Behavioral Ecology and Sociobiology 71 (4): 61.

Watson, G.S. 1983. Statistics on Spheres. New York: Wiley.
Wood, Andrew. 1982. “A bimodal distribution on the sphere.” Applied Statistics 31 (1): 52–58.

17



κκ κ
=

5
κκ κ

=
1
0

κκ κ
=

1
5

κκ κ
=

2
0

φφφ = 0◦ φφφ = 20◦ φφφ = 50◦

Figure 3. Estimated performance of each method for a variety of sample sizes, when the data have been

generated from a Kent (γγγ, κ, 0) distribution, for different values of κ and φ. The grey line is the estimated

percentage of correct classification (12).
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Figure 4. Estimated performance of each method for a variety of sample sizes, when the data have been

generated from a Kent (γγγ, κ, 4) distribution, for different values of κ and φ. The grey line is the estimated
percentage of correct classification (12).
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Figure 5. Estimated performance of each method for a variety of sample sizes, when the data have been

generated from a Kent (γγγ, 20, 8) distribution, for different values φ. The grey line is the estimated percentage

of correct classification (12).
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Figure 6. (a) Estimated time versus sample sizes for the vMF, IAG and Kent distributions. (b) Estimated

time versus sample size for the ESAG and the k-NN algorithm, using the standard version (with and without
parallel computations). The non standard version of the k-NN is not presented as it was 3 times slower than

ESAG.

20



Figure 7. Spherical plots of the Paleomagnetic, Ordovician, stones, Magnetic and Vectorcardiogram data

with different colours indicating the two groups.

Figure 8. Spherical plots of the Judgements data with different colours indicating the two groups.
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Figure 9. Box plots of the estimated predictive performance of all methods based on repeated 10-fold CV
applied to the Paleomagnetic, Ordovician, stones, and Magnetic data.

Figure 10. Box plots of the estimated predictive performance of all methods based on repeated 10-fold CV
applied to the Judgements data.
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Figure 11. Box plots of the estimated predictive performance of all methods based on repeated 10-fold CV

applied to the Vectorcardiogram data.

Figure 12. (a) Spherical plot of the Midatlantic data with different colours indicating the two groups. (b)

Box plot of the estimated predictive performance of all methods based on repeated 10-fold CV applied to the

Midatlantic data.
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