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Abstract

The present paper develops a novel methodology for measuring the economic losses resulting from

the negative health impacts of pesticides while taking into account their role as a damage control

agent. To this effect a production model is presented that takes into account both the effect of

the health impairment caused by pesticides on labor units and the pest control and crop enhanc-

ing properties of pesticides. The supply-responses and optimal cost adjustments made by rational

farmers in the absence of health effects are examined, which facilitates the proper measurement of

the private economic losses associated with the health effects of pesticides. The biases in previous

pest-damage measures that ignore the presence of health effects are also examined. The model

is empirically applied to a unique panel dataset of Greek greenhouse producers where the use of

health-hazardous pesticides is particularly prominent. Moreover the estimation of health impair-

ment indices takes into account the observational nature of the data collected, applying recently

developed treatment effects methods. The results show that farmers suffer considerable quasi-rent

losses due to the negative effect of pesticides on health with the average being 1,511 Euros.
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Introduction

The adverse effects of chemical pesticides on food safety and consumers’ health have been at the

centre of public discussions and policy regulation over the last two decades. However, one important

effect of pesticides that was rather neglected from this policy debate, is the impact that these

chemicals have on the health of farm workers. Chemical pesticides besides being toxic for pests, are

also toxic for humans posing serious threats to the health of farm operators (Antle and Pingali, 1994;

Sunding and Zivin, 2000; Calvert et al., 2004; Thundiyil et al., 2008; Huang et al., 2016). Each year

approximately one million farm workers experience severe unintentional poisoning from pesticides

with pesticide applications listing amongst the top level of the most health-risky occupational

activities in both developed and developing countries (WHO, 2009; Abdalla et al., 2017). Besides

the obvious social cost, health impairments due to pesticides entail also private costs for individual

farms in the form of productivity losses arising from decreases in effective farm work (Crissman et

al., 1998; Loureiro, 2009; Sheahan et al., 2017). Absenteeism from work due to illness, decreases

in the physical capacities of farm workers, such as strength and endurance, and decreases in their

mental capabilities, such as cognitive functioning and reasoning ability, are the most common paths

through which pesticide-related health impairments decrease effective farm work.

The existing research in developing countries’ agriculture1 suggests that pesticide-related deci-

sions are made by farmers in a sub-optimal way due to misinformation and myopic behaviour about

the health risks of pesticides (Zilberman and Castillo, 1994). Low education levels of the rural pop-

ulation, poor spraying technology, and ignorance of safety rules are pointed out to play a major

role in explaining farmers’ bounded rationality and sub-optimal decisions in the rural areas of the

developing world (Cropper, 1994; Athukorala et al., 2012).2 However, although these behavioural

conditions have been empirically tested and confirmed in a set of developing countries, both casual

scepticism and empirical evidence question their validity in developed countries’ agriculture. In

developed countries, educational levels are much higher and information about pesticide-related

diseases is widespread. At the same time, pesticide application technologies are more advanced and

safety rules and methods are likely to be well understood by farmers (FAO, 2019).

Thus, if farmers are indeed aware about both the health effects of pesticides and the available

protection methods, then lack of averting behaviour is the only reason for the high rates of pesticide-

related illnesses observed in rural populations of developed countries. According to Zilberman and

1A series of studies by Antle and Pingali (1994), Antle and Capablo (1994), Pingali et al. (1994), Crissman et al.
(1994), Antle et al. (1998) and others have provided valuable insights on the economic consequences of the trade-offs
between farm productivity and farmer’s health status.

2Under misinformation and myopic behaviour, the health effects of pesticides can be perceived as exogenous to
farm operations. Farmers apply pesticides even when their total private costs exceed total benefits simply because
they ignore the health costs of pesticides. Hence, the health effects of pesticides take the form of a negative externality
for farms.
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Castillo (1994) and Cropper (1994), there are three reasons for the lack of averting behaviour:

(a) the cost of protective equipment, (b) the inconvenience cost that these practices entail for

farm operators, and (c) the personal traits of individual farmers such as how careless they are.3

While the cost of protective equipment seems to be trivial in most cases, the latter two reasons

provide a significant non-arbitrary rationale in explaining why protection actions are not always

undertaken by farmers in developed countries. In either case, under informed decision-making and

rational behaviour, pesticide-related impairments in farmer’s health are endogenous implying that

farmers equate marginal costs to marginal benefits while accounting for the expected health costs

of pesticides and the personal inconvenience costs related to the use of protective equipments.

Along these lines, based on the work of Antle and Pingali (1994), we extend Chambers et al.,

(2010) theoretical framework developing a model to measure quasi-rent losses associated with the

health effects of pesticides under rational producer behavior. Although the social cost of health

impairments might not be of the interest of the farmers, the associated reductions in effective labor

do matter for them since such reductions are accompanied by lower productivity rates. Hence,

measuring the economic losses due to the negative effects of pesticides on human capital, may

indirectly enforce safety standards in farm working environments reducing the associated social

cost. If these economic losses are important for individual farms, then indeed improving farm

workers’ knowledge or applying more effective management practices would result to significant

gains for them internalizing at the same time social costs.

The model is empirically applied to a unique panel dataset of Greek greenhouse producers. The

data come from a primary survey covering five consecutive cropping seasons during the 2003-07

period and include rich information on pesticide-related health problems and costs faced by green-

house producers. Using this information, health impairment indices are estimated for individual

farm workers using the recent treatment effects estimation method developed by Cerulli (2015).

More importantly, this approach accounts for treatment endogeneity and restores consistency mak-

ing use of an instrumental variable approach. The endogeneity issue arises from the fact that

pesticide application levels and pesticide-related health effects may depend on unobserved person-

ality traits of farmers resulting in inconsistent estimates. This important source of endogeneity has

been largely overlooked by previous studies in the field.

The rest of the paper is structured as follows. Next section develops the theoretical framework

for measuring economic losses associated with the health effects of pesticides and economic losses

due to pests. This is followed by the description of the survey and a discussion on the behavioral

implications arising from the analysis of the farmers in the sample. The next two sections present

3For many pesticide-related hazards, the true probabilities of getting ill (or even getting killed) are not known
by farmers. Due to the underdeveloped state of occupational medicine, even the underlying medical ramifications of
different exposures to aspects of the farming environment including chemical vapors are little understood.
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the econometric specification of the health impairment and profit model, respectively, along with

information on the variables used. The estimation results are then presented. Finally, the last

section concludes the paper.

Theoretical Framework

Farm Crop Technology

The crop production technology in period t for a farm household with specific characteristics s ∈ <r+
is represented by the following closed, non-empty production possibilities set:

T (s, t) = {(`, x, k, z, y) : (`, x, k, z) can produce y for a given level of (s, t)}

where ` ∈ <+ are the hours worked by family members4, x ∈ <n+ is a vector of variable-inputs used

in farm production, k ∈ <m+ is a vector of quasi-fixed inputs, z ∈ <+ are the pesticide materials

applied on field, and y ∈ <+ is crop output.5 Farmers make typically their choices about pesticide

use at the beginning of each cropping period. They observe pest population, market conditions

such as pesticide costs and crop price, consider the health costs related to pesticide use and form

expectations about farm profit flows. Based on this information set, farmers make next their

decisions about the level of pesticide use. Although changes in application schedules in later stages

can happen, these changes do not constitute a common practice. This is because in later stages of

the production process, the use of pesticides is largely ineffective since damage is largely irreversible.

Hence, pesticide materials are considered as a pre-determined input in crop production.

Exposure to pesticides affects equally both family and hired farm workers. Assuming though

that farmers remunerate hired labor in effective units, this should have an impact on hired workers’

income but not on the productivity of the farm as long as farmers face an elastic supply of hired

labor (Antle and Pingali, 1994).6 Hence, our focus is on the health effects arising only from

impairments in the health of family workers. According to Antle and Pingali (1994) impairments

in family members’ health status due to application of pesticide materials, can be described from

the following general function:

h = h(z, s) (1)

4In a farm household setting, the total hours of family work devoted to crop production are highly correlated with
the number of family members which is a fixed resource endowment of the household. Therefore, family labor is
treated as a quasi-fixed input in crop production.

5To keep the notation simple, we develop the model for a scalar output technology which is consistent with our
empirical application focusing on a single crop. However, the extension to a multi-output case is largely an issue of
notation.

6In other words, hired workers are paid the market wage for every unit of effective labor provided.
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where h ∈ <+ is the health impairment variable, and h(z, s) is a continuous and twice differentiable

function, non-decreasing and concave in z.7 Then, following Bliss and Stern (1978), Strauss (1986)

and Deolalikar (1988), effective family labor (`e) is proportional to hours worked on-farm as follows:

`e = q (h(z, s)) ` (2)

where q (h) ∈ (0, 1] is a continuous and twice differentiable decreasing in h concave function. When

h = 0 it holds that q = 1 and when h → +∞ then q → 0. It also holds that ∂`e/∂` ≥ 0 and

∂2`e/∂`2 = 0, that is a linear relationship.

Finally, following Lichtenberg and Zilberman (1986), Fox and Weersink (1995), and an extensive

biological literature, our specification of the technology simultaneously recognizes the asymmetric

role that damage-control agents play in the production technology. Thus, crop farm technology

may be now defined as:

T (s, t) = {(`, x, k, z, y) : y ≤ f (`e, x, k, t) g (br, z, `e, k, t) , `e = q(h)`, h = h(z, s)} (3)

where f (`e, x, k, t) is a continuous and, strictly increasing, twice differentiable concave production

function, representing maximal output obtainable from family labor input, variable inputs and

quasi-fixed inputs with application of pesticides at z. Because our empirical application is for

greenhouse farms, we assume that the long-run maximal output technology exhibits constant returns

to scale in `e, x and k.8 Finally, g (br, z, `e, k, t) whose range is restricted to lie in the unity interval

represents the percentage of maximal output realized in the presence of pest infestation br ∈ <+

with application of pesticides at z.9 It is non-increasing and convex in br and non-decreasing and

concave in (z, `e, k, t) as long as damage-control technology is improved over time.

Using (3) for a farmer facing crop p ∈ <++ and variable-input w ∈ <n++ prices, the quasi-rents

obtained from the endowment of family labor and quasi-fixed inputs with application of pesticides

at z is

Π (p, w, `, k, br, z, s, t) ≡ max
x,y

{
py − w′x : y ≤ f (`e, x, k, t) g (br, z, `e, k, t) , `e = q(h)`, h = h(z, s)

}
= max

x

{
pg (br, z, `e, k, t) f(`e, x, k, t)− w′x, `e = q(h)`, h = h(z, s)

}
= π (pg (br, z, q (h(z, s)) `, k, t) , w, q (h(z, s)) `, k, t) (4)

where π(·) is the restricted profit function. By standard results π(·) is sublinear (positively linearly

7It’s monotonicity properties with respect to farm-specific characteristics are discussed in the following sections.
8This assumption does not imply that T (s, t) exhibits constant returns to scale as marginal returns in the damage-

control agents, z, can be either increasing or decreasing.
9Accordingly, 1 − g (br, z, `e, k, t), measures the percentage of output lost due to pests.
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homogenous and convex) in (p, w), non-decreasing in p, and non-increasing in w. Because f(·)
exhibits constant returns to scale, π(·) is also positively linearly homogeneous in the endowment

of quasi-fixed factors of production. Thus, if the technology is smooth, the quasi-rent to the fixed

input endowment can be decomposed into returns to each of the quasi-fixed factors of production

as π(·) = πk(·)′k + π`(·)`, where πk ∈ <m+ and π` ∈ <+ denote the gradient of π(·) in k and

`, respectively. They define the shadow price for the relevant quasi-fixed factor while the inner

product of the shadow-price vector and the vector of fixed factors completely exhausts quasi-rents.

Some useful insights can be gained by looking more carefully at relation (4). If there are no

health impairments, then farmers utilize ` units of family labor with ` ≥ `e. In this case, farmers

collect revenues which are equal to pg (br, z, `, k, t) f(`, x, k, t), with pg (br, z, `, k, t) f(`, x, k, t) ≥
pg (br, z, `e, k, t) f(`e, x, k, t). There are two reasons for which revenues increase if health impair-

ments are absent: first, maximal output increases, f(`, x, k, t) ≥ f(`e, x, k, t), given that ` ≥ `e, and

second, effective output price increases, pg
(
br, z, `, k, t

)
≥ pg

(
br, z, `e, k, t

)
, as g(·) is non-decreasing

in family labor input.

If there is a unique quasi-rent maximizing variable-input demands and supply, then through

Hotelling’s Lemma the profit function above is differentiable in p and w providing:

y (p, w, `, k, br, z, s, t) = Πp (p, w, `, k, br, z, s, t)

= π1 (pg (br, z, q (h(z, s)) `, k, t) , w, q (h(z, s)) `, k, t)

×g (br, z, q (h(z, s)) `, k, t) (5a)

x (p, w, `, k, br, z, s, t) = −Πw (p, w, `, k, br, z, s, t)

= −πw (pg (br, z, q (h(z, s)) `, k, t) , w, q (h(z, s)) `, k, t) (5b)

where Πw ∈ <n− and πw ∈ <n− are the gradient of Π(·) and π(·) with respect to w, respectively,

Πp(·) denotes the partial derivative of Π(·) with respect to p, and π1(·) is the partial derivative of

π(·) with respect to its first argument.

Quasi-Rent Losses due to Health Impairments

To simplify notation, we first drop function arguments and then we denote with ge, gd, ye and yd

crop damage and crop supply with and without the health effects, respectively.10 We also denote

with `e effective family labor as defined by (2). Then in the absence of health effects, a farmer

10Crop supply without the health effects of pesticides is obtained by applying Hotelling’s Lemma to the solution
of the maximization problem in (4) excluding last two constraints.
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applying pesticides at z, realizes a quasi-rent of:

Π (·) = π
(
pgd, w, `, k, t

)
= pgdπ1

(
pgd, w, `, k, t

)
+ w′πw

(
pgd, w, `, k, t

)
= pyd − cd

(
w,
yd

gd
, `, k, t

)
(6)

where cd(·) is the minimal variable cost associated with production in the absence of health effects.

Similarly, with health effects present, quasi-rents from farming are:

Π (·) = π (pge, w, `e, k, t)

= pgeπ1 (pge, w, `e, k, t) + w′πw (pge, w, `e, k, t)

= pye − ce
(
w,
ye

ge
, `e, k, t

)
(7)

where ce(·) is the minimal variable cost associated with production in the presence of health effects.

Subtracting (7) from (6), we obtain a complete measure of the economic losses related to the health

effects of pesticides as:

Qh (p, w, `, k, br, z, s, t) = π
(
pgd, w, `, k, t

)
− π (pge, w, `e, k, t) ≥ 0 (8)

which is non-negative as the restricted profit function is non-decreasing in output price and non-

decreasing in family labor input. It captures both changes in the revenues realized by farmers and

changes in the variable costs associated with the optimal adjustments of supply and variable inputs

demand, respectively, i.e.,

Qh (p, w, `, k, br, z, s, t) = Rh (p, w, `, k, br, z, s, t)− Ch (p, w, `, k, br, z, s, t) (9)

where

Rh (·) = p
[
π1

(
pgd, w, `, k, t

)
gd − π1

(
pge, w, `e, k, t

)
ge
]
≥ 0 (10a)

Ch (·) = w′
[
πw

(
pge, w, `e, k, t

)
− πw

(
pgd, w, `, k, t

)]
≥ 0 (10b)

where Rh (·) is the difference between revenues in the absence of health effects and revenues realized

by farmers in the presence of health effects. Note that in the absence of health effects, supply

increases directly due to the increase in the endowment of family labor input but also indirectly due

to the decrease in pest-damage. Therefore, this difference which is non-negative can been thought

as the supply effect measuring revenue losses due to the health effects of pesticides. Moreover, Ch (·)

7



is the difference between the minimal variable cost in the absence of health effects and the optimal

variable cost in the presence of health effects. This difference is also non-negative since w′πw is

decreasing in output price with pgd ≥ pge and non-increasing in family labor input with l ≥ `e.

This cost saving component tends to mitigate the revenue loss associated with the adverse health

effects. Farmers realizing that variable-input use necessarily involves losses due to the presence of

health impairments curtail the use of variable factors of production, and that input curtailment

brings with it a variable-input cost saving that would not exist if there were no health effects.11

Some interesting insights can be gained by examining more carefully relations (10a) and (10b).

Assuming that farmers have perfect information on the health effects of pesticides and the use

of protective equipment is fully efficient, then Qh (·) can be used as a measure of how farmers

implicitly price the inconvenience of using protective equipment.12 If farmers do not understand

the health consequences of exposure to the pesticides they are using, then health impairments

increase exogenously in the model. In this case, pesticide-related choices are made in a way that is

sub-optimal from a private perspective due to misinformation. The later suggests a utilization of

pesticides beyond their optimal level.13

Quasi-Rent Losses due to Pest Incidence

Apart from the adverse health effect of pesticide application, it is important to identify the total

economic losses suffered by farmers in the presence of pests. In the absence of pests, br = 0, farmers

do not apply pesticides, z = 0 and realize a maximal possible quasi-rent of Π (p, w, `, k, 0, 0, t) =

π(p, w, `, k, t). In this case, there are no pesticide-related health impairments and therefore q = 1

indicating that farmers utilize effectively ` units of family labor. If pests are present, a farmer who

applies pesticides at z realizes quasi-rents Π (p, w, `, k, br, z, s, t) = π (pge, w, `e, k, t).

Therefore, a complete measure of the private quasi-rent losses associated with pest infestation

can be obtained from:

Qb (p, w, `, k, br, z, s, t) = π(p, w, `, k, t)− π
(
pge, w, `e, k, t

)
(11)

Quasi-rent losses related to the health effects of pesticides, Qh (·), is a component of Qb (·). To

11Given that expressions Qh (·),Rh (·), and Ch (·) are non-negative, it follows that Rh (·) ≥ Qh (·).
12A complete measure of farmers’ inconvenience would require to account also for the cost of buying the protective

equipment. However, this cost is considered in many cases as trivial for farmers. For instance, parts of safety
equipment are commonly included for free in pesticide packages purchased by farmers.

13Note though that even if health impairments are exogenous to farmers, rational farmers would still make ad-
justments in variable inputs use in the presence of the unexpected reductions in the endowment of family labor
input.
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demonstrate this, we solve relation (8) for π (pge, w, `e, k, t) and substitute it into (11):

Qb (p, w, `, k, br, z, s, t) = Qh (p, w, `, k, br, z, s, t) +
[
π(p, w, `, k, t)− π

(
pgd, w, `, k, t

)]
≥ 0 (12)

which is composed of two terms: the first captures the quasi-rent losses due to the health effects

of pesticides, and the second is the difference between maximal possible quasi-rent and quasi-rent

realized in the presence of pests assuming no health effects. This second component is identical

with the measure of quasi-rent losses due to pests proposed by Chambers et al., (2010). If health

effects are present but ignored in the measurement of the quasi rent-losses due to pests, then the

later measurement underestimates total quasi-rent-losses.

A measure of output-damage caused by pests can be obtained by dividing the revenue component

of (11) by the crop price:14

Rb (p, w, `, k, br, z, s, t)

p
= π1 (p, w, `, k, t)− π1 (pge, w, `e, k, t) ge (13)

Dividing relation (10a) by output price, solving it for for π (pge, w, `e, k, t) and then substitute

it into (13), yields:

Rb (p, w, `, k, br, z, s, t)

p
=
Rh (p, w, `, k, br, z, s, t)

p
+
[
π1 (p, w, `, k, t)− π1

(
pgd, w, `, k, t

)
gd
]

(14)

implying that output damage due to pests consists of two components. The first captures the

output losses caused by the health effects of pesticides. These losses are due to the decrease in

optimal supply caused by the lower endowment of family labor input. The second is the difference

between maximal potential output in the absence of pests and output realized in the presence of

pests assuming no health effects which is identical with the measure of output-damage due to pests

proposed by Chambers et al., (2010). This is higher than the traditional output-damage measure

given by (1− ge)π1 (pge, w, `e, k, t) for two reasons. First, in the presence of pests, effective output

price decreases. As a result, a rational farmer realizing that the use of variable inputs is less

profitable responds by lowering maximal potential output (i.e., maximal potential supply adjusts

downwards). Second, in the presence of pests, a farmer who applies pesticides faces a decrease in

effective family labor due to health impairments caused by exposure to pesticides. In turn, the

reduction in the endowment of family labor decreases further maximal potential supply.

The quasi-rent loss due to pest infestation in (11) can be expressed in percentage terms as:

1− π (pge, w, `e, k, t)

π (p, w, `, k, t)

14Relation (11) can be distinguished between a revenue and a cost component in a similar manner with (9).
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The difference between the expression above and the traditional percentage output damage, 1− ge,
measures the bias inherent in the traditional percentage output damage measure:

Db(·) = ge − π (pge, w, `e, k, t)

π (p, w, `, k, t)

=
geπ (p, w, `, k, t)− π (pge, w, `e, k, t)

π (p, w, `, k, t)

=
π (pge, wge, `, k, t)− π (pge, w, `e, k, t)

π (p, w, `, k, t)

=
Qh (p, w, `, k, br, z, s, t)

π (p, w, `, k, t)
+
π (pge, wge, `, k, t)− π

(
pgd, w, `, k, t

)
π (p, w, `, k, t)

≥ 0

In the above expression, the third line is obtained from the second as a result of the sub-linearity of

the restricted profit function in input and output prices, while the last line of the expression is due to

relation (8). It follows thatDb(·) is non-negative since the restricted profit function is non-increasing

in input price with ge ≤ 1 and non-decreasing in family labor input with q ≤ 1. This implies that the

traditional percentage output-damage measure underestimates the true percentage damage caused

by pests. One source of bias is the health effects of pesticides captured by term Qh(p,w,`,k,br,z,s,t)
π(p,w,`,k,t)

measuring percentage quasi-rent losses due to the adverse health effect of pesticide materials on

family workers. As health impairments become small, Qh(·) approaches zero and the associated bias

tends to zero as well. The other source of bias is the profit adjustment component for the economic

losses realized by individual farmers due to pest incidence and reduction of effective labor hours.

Farmers realizing that decreased revenues from crop due to variable input use necessarily involves

revenue losses due to the presence of the pest curtail the use of variable factors of production, and

that input curtailment brings with it a variable-input cost saving that would not exist if there were

no pest infestation.

In the presence of health impairments, the shadow price of pesticides decreases due to the adverse

health effects of pesticides. Assuming a smooth technology, with quasi-fixed input endowment of k

and `, the shadow prices are the marginal contributions to quasi-rent (variable profit):

νz(·) = Πz (p, w, `, k, br, z, s, t)

= π1 (pge, w, `e, k, t) p

[
∂ge

∂z
+
∂ge

∂`e
∂`e

∂z

]
+ π3 (pge, w, `e, k, t)

∂`e

∂z
(15)

where Πz ∈ <+ is the gradient of Π(·) in z, and π3(·) is the partial derivative of π(·) with respect

to its third argument. The first term measures marginal changes in revenues due to changes in the

effective price of crop. Effective crop price changes with changes in z for two reasons: first, changes

in pesticides affect directly ge altering effective crop price, and second, changes in pesticides affect

indirectly ge as a health-hazardous input changing effective family labor. Finally, the last term in
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(15) measures marginal changes in revenues due to changes in effective family labor.

Another more informative interpretation is available here using the shadow price of family labor,

ν`(·) = [π1(·)p∂g
e

∂`e + π3(·)]q
(
h(z, s)

)
. Solving this for π3(·), replacing it into (15), and multiplying

both sides by z, yields:

νz(·)z = π1 (pge, w, `e, k, t) pge
∂ln ge

ln z
+ ν`(·)`∂ln `e

∂ ln z

where, the first term in the right-hand side measures the quasi-rent gains associated with application

of pesticides at z. The second term captures decreases in the quasi-rent of pesticides due to

reductions in effective family labor caused by application of pesticides at z. The magnitude of

these losses depend on the elasticity of effective family labor with respect to pesticides.

Survey Design

Our empirical application focuses on a panel of greenhouse farmers cultivating vegetables in the

Western part of the island of Crete in Greece. All data used in the empirical analysis were obtained

through a survey undertaken within the context of the Research Program TEAMPEST financed by

the European Commission.15 In this part of the island, vegetable cultivation under greenhouses is

flourishing mainly due to the favorable climatic conditions prevailing in the area. Crop production

under greenhouses became strongly chemically oriented over the last three decades. It is indicative

that at the time of the survey (2003-2007), more than 90% of the greenhouse producers were relying

heavily on the use of pesticides. Hence, greenhouse farmers in this area are likely to have been

exposed heavily to dangerous pesticide ingredients during farming activities, insofar as applications

are more frequent in greenhouses than in open-air fields, environmental conditions are extreme

(high temperature and relative humidity), and ventilation is poor in partially-closed spaces.

The survey consisted of three parts, namely, the main, the complementary and the prelimi-

nary survey. The main survey covered a sample of 50 randomly selected conventional farms for

five cropping seasons during the 2003 to 2007 period. Farms in the sample were visited twice per

year by a survey team of experts consisting of two specialised doctors, two agronomists and four

economists. The visits took place both at the beginning of the cropping season (end of August)

and the end (end of May). During the first visit, on-field measurements of pest populations were

made in each farm. In addition, personal interviews were conducted with farmers to gain infor-

mation about their personal characteristics and their expectations about the forthcoming cropping

15The TEAMPEST project (Theoretical Developments and Empirical Measurement of the External Costs
of Pesticides) was financed within the EU 7th Framework Programme under Theme 2 on Food, Agricul-
ture and Fisheries, and Biotechnology. More information on the TEAMPEST project can be found in
http://www.eng.auth.gr/mattas/teampest.htm
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season. In the second visit, farm-level information on output volumes, gross revenues, inputs usage

and expenditures including pesticides were retrieved directly from farmers’ accounting books. In

addition, the medical and social security records of all family members working at the farm were

examined to obtain information on pesticide-related health problems and medical costs faced by

farmers16

The complementary survey covered a sample of 26 randomly selected organic farms from the

same area and for the same five-year period as the main survey. The sample of organic farmers was

only used as a control group to lessen potential biases arising from mis-identification of pesticide-

related diseases and errors in the measurement of the health costs of pesticides in the sample of

conventional farmers.17 The preliminary survey included the same 50 conventional farmers as the

main survey and took place at the beginning of the project, shortly before the beginning of the

main survey (early of August 2003). The preliminary survey was designed to examine farmers’

awareness about the health effects of pesticides and the timing of pesticide-related decisions. In

addition, it was aimed at evaluating farmers’ knowledge about methods for safe storage, handling

and usage of pesticide materials.

Results from the main survey revealed that convetional farmers in the sample use systemati-

cally pesticides to target a specific pest, namely, the greenhouse whitefly, Trialeurodes Vaporariorum

(Westwood). The greenhouse whitefly is considered by farmers as the major harmful pest respon-

sible for about 80% of the total damage in greenhouse production. Adults and immature flies are

phloem feeders and reduce productivity of plants. Furthermore, they produce large amounts of

honeydew on the leaf reducing plants’ photosynthesis. Under greenhouse conditions whiteflies can

multiply quickly many generations increasing dramatically crop damage. To deal with the threat

of greenhouse whitefly, convetional farmers rely mainly on the use of four types of pesticides which

they consider as highly effective. The types of pesticides utilized by farmers contain six highly toxic

ingredients, namely, propetamphos, sodium cyanide, fluoroacetamide, carbofuran, and methomyl.

Results from the preliminary study indicated four notable findings with respect to the behavior

of convetional farmers in the area. First, farmers indicated that application of the specific class

of pesticide ingredients is essential for the control of the main pest since there are no effective

substitutes in the local market. Second, farmers presented a high understanding of the health

consequences of pesticide exposure while they were also able to associate correctly health problems

and medical symptoms with application methods and specific pesticide ingredients. Likewise, farm-

ers demonstrated a very good knowledge on how to avert exposure although they recognised that

16Details on the methods used to identify pesticide-related health problems and measure medical costs are presented
in the next section.

17The procedures used to collect information on health problems and medical costs are the same with those used
for conventional farmers.
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they do not always follow safety guidelines due to the inconvenience of using protective equipment

related mainly to the intense heat prevailing inside the greenhouses.

Third, farmers indicated that pesticide-related decisions including pesticide dose levels and

number of applications are made at the beginning of the cropping season based on their personal

observations on the level of pest infestation. Although changes in the application schedule of

pesticides can happen in case of extreme pest incidences, these changes do not constitute a common

practice among farmers. This is because farmers use pesticides for precautionary purposes. In later

stages of the production process, the use of pesticides is perceived by farmers as ineffective since

damage is considered as irreversible. Finally, farmers indicated that diminished work capacity of

hired workers is accompanied with a lower wage since hired workers are paid according to the daily

hours worked and not a fixed daily wage. In cases of reduced work time because of illness, farmers

do not bear any of the associated health costs of the hired workers.

Health Impairment Index

Econometric Approach

The main problem related to the consistent measurement of the health effects of pesticides is that

observations on farm worker’s health are made only after exposure to a specific level of pesticides.

In an ideal situation, we would like to have data on health impairments for the same farm worker

from exposure to different levels of pesticides. Unfortunately, the only available data are based on

observed outcomes; health impairments from exposure to a specific level of pesticides are observed

for each farm worker when collecting survey data. The later has important implications for the

measurement of the health effects of pesticides since observed differences in health impairments

across farm workers could be further attributed to systematic differences in their baseline charac-

teristics (e.g., educational levels) and not only to differences in pesticide levels. More importantly,

if pesticide application levels depend also on these baseline characteristics, then the assignment of

farm workers to different pesticide application levels is not random.

Under these conditions, traditional linear regression models fail to provide consistent estimates

of the parameters of interest. Therefore, matching methods have been proposed to estimate Average

Treatment Effects (ATE) models which restore the consistency of estimates. When treatment is

continuous as in our case study, treatment levels (pesticide levels) and outcome responses (health

impairments) can be directly correlated and the effects of treatment on outcome can be consistently

estimated without the use of the non-treated units (Hirano and Imbens, 2004). One basic problem

related to the Hirano and Imbens’ (2004) method is the possible endogeneity of the treatment

variable. Endogeneity arises from the fact that that pesticide application levels and pesticide-related
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health effects may depend on unobserved personality traits of farmers and other unobservable

factors (e.g., knowledge about pesticide effects and/or about correct dosages).18 To deal with this

problem, Cerulli (2015) proposed an estimation approach that accounts for treatment endogeneity

and restores consistency making use of an instrumental variable approach. Moreover, it takes

advantage of the continuous treatment while considering both treated (organic farm workers in our

case) and untreated units (conventional farm workers in our case) making therefore complete use

of existing information in the dataset.

Let Nf denote the total number of family farm workers in the two samples (conventional and

organic). Define dit a binary variable which takes the value 1 for conventional farms and 0 for or-

ganic farms, hit is the health impairment variable, and ξit ∈ <r+ is a vector of exogenous observable

characteristics. Finally, assume that zit is a continuous variable indicating the level of pesticides

applied in the farm. Following Cerulli’s (2015), we specify the following system of equations con-

sisting of the baseline outcome equation, the treatment selection equation and the treatment level

equation, respectively:

Baseline Outcome: hit = µ0 + ξ′itδ
ξ + ditATE + dit(ξit − ξ̄)′δ + ditr(zit) + ηit (16a)

Treatment Selection: d∗it = ξdit
′
βd + ηdit (16b)

Treatment Level: zit = ξzit
′βz + ηzit (16c)

where r(zit) is a polynomial function of the treatment level, zit, which is different from zero only

when treatment is positive and in the present application it is given by, r(zit) = β1Z1it + β2Z2it,

where Z1it = zit − E(zit) and Z2it = z2it − E
(
z2it
)
19 . Moreover, µ0, δ

ξ, ATE, δ, β1, β2, β3, β
d,

and βz are parameters to be estimated, ξ̄ is a vector of averages of exogenous variables over time

and farmers, and d∗it is the latent unobservable counterpart of the binary variable; ξdit =
(
ξit, u

d
it

)
and ξzit = (ξit, u

z
it) are two vectors of exogenous regressors with udit and uzit being the vectors of

instrumental variables used to explain treatment selection (organic or conventional) and treatment

levels (pesticide levels), respectively. The instruments in vectors udit and uzit are assumed to be

directly correlated with d∗it and zit, respectively, but not with hit. Finally, ηit, η
d
it, and ηzit are error

terms with zero unconditional mean. The error terms are assumed to be uncorrelated with the

instruments but freely correlated with one another.

The treatment selection and treatment level equations (16b-16c) were estimated using the Heck-

18Although, the Hirano and Imbens (2004) approach reduces the risk of endogeneity, when the status treated versus
not treated rather than the level of treatment is endogenous, by omitting the non-treated units from the analysis,
the latter means that the non-treated units are dropped and relevant information between observed covariates and
treatment assignment is completely ignored.

19A polynomial parametric form of second degree has been assumed here. This specification has been statistically
tested against the first-degree (linear) and third-degree polynomial.

14



man two-step procedure under the assumption that the errors are jointly normally distributed and

homoskedastic (see Cerulli, 2015). Finally, the outcome equation (16a) was estimated using a

two-stage least squares method using the following exogenous variables as instruments: ξit, d̂it,

d̂it(ξit − ξ̄), d̂itẐ1it, and d̂itẐ2it, where a hat over a variable indicates its predicted value. Under

this estimation set-up, the two-stage least squares approach provides consistent estimation of the

basic coefficients of the model, µ0, δ
ξ, ATE, δ, β1, β2, and β3.

Based on these estimates, the dose response function was then estimated as:

ˆATE(zit) = dit

(
ˆATE1 + β̂1 (zit − z̄) + β̂2

(
z2it − z̄2

))
+ (1− dit) ˆATE0 (17)

where ˆATE1 = µ̂0 + ξ̄′z�0δ̂ + r̄z�0 and ˆATE0 = µ0 + ξ̄′z=0δ are the estimated average treatment

effects for the treated and untreated units, respectively, z̄ and z̄2 are the sample means for the

level and the square level of pesticides, respectively, ξ̄′z�0, r̄z�0 are the average of the exogenous

variables in ξ and the r(·) response function defined above taken over zit > 0, respectively, and

ξ̄′z=0 is the average of the exogenous variables taken over zit = 0. The marginal effect of pesticides

is also estimated as the first derivative of the dose response function with respect to pesticides as:
∂ ˆATE(zit)

∂zit
= β̂1 + 2β̂2zit.

Data Construction

To measure pesticide-related health impairments, we followed Pingali’s et al., (1994) and Antle

and Pingali’s (1994) approaches focusing exclusively on diseases and clinical symptoms associated

with exposure to specific pesticide ingredients.20 According to them, the most serious health

problems that arise from exposure to the toxic ingredients found in pesticide materials include

eye, dermal, respiratory, neurological and, kidney problems that together with their associated

clinical symptoms are linked directly to exposure to those chemical compounds.21 The health

problems listed above capture different dimensions of health impairments, while at the same time

they are directly related to farm activities. Eye irritation problems and diminished vision often

occur during application activities. On the other hand, dermal contamination is likely to occur

during application and mixing of pesticides resulting in dermal disorders. Systematic exposure to

pesticide ingredients during different farm activities is also likely to result in bronchial asthma that

is the most common lung disease associated with long-run exposure to pesticide ingredients. In

20Strauss and Thomas (1998) provide a similar approach to proxy health status.
21Obviously this is not an exhaustible list. Pesticides are also responsible for non-specific illnesses that affect farm

workers’ general health (e.g., a simple flu may be related to weak immune efficiency due to pesticides use). However,
it is not possible to identify all these minor clinical symptoms in constructing an index for measuring pesticide-
related health impairments. We can reasonably assume though that these effects are closely related to the above list
and therefore measurement errors are random. In addition, we do not consider cancer incidences and reproductive
problems. These are associated with long-term effects which are difficult to be correlated with pesticide use.
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addition, specific toxic ingredients found in pesticides can act as neurotoxicants resulting in sensory

loss and diminished reflexes. Finally, circulating toxins through human body may lead to significant

kidney abnormalities.

At the second visit of each season, specialised doctors examined in detail the medical and

social security records of all family members working in the farm in order to obtain information

on the above list of health problems and their associated clinical symptoms.22 These records

included personal prescription books as well as medical records kept at the University of Crete

Hospital.23 Once pesticide-related health diseases were identified, data on medical treatment costs

along with information on working days lost for each identified disease were gathered from the

personal prescription books. The same process was used also to identify pesticide-related health

problems and measure medical costs in the sample of organic farms. The sum of the annual direct

and indirect costs concerning pesticide-related health problems was used to measure pesticide-

related health impairments for every family member working on-farm. Direct costs include the

medical costs of treatment, while the indirect costs involve the opportunity cost from the work

days lost. Indirect costs were calculated using the average wage in the local labor market. The

health impairment variable was constructed on an annual basis for every family member and was

used as the dependent variable in the estimation of the outcome equation in (16a).

Exposure to pesticide ingredients was proxied by the ratio of the total amount of active in-

gredients applied during the crop season to the size of cultivated land measured in stremmas (one

stremma equals 0.1 ha). All identified types of pesticide ingredients were found to belong in the sec-

ond category of the most hazardous pesticides according to the classification of pesticides provided

by WHO (2004). The later enables the aggregation of the pesticide ingredients identified into a sin-

gle index. To aggregate pesticide ingredients, a weighted pesticide quantity index was constructed

using the cost shares of pesticide ingredients as weights. The index was next divided by the size of

cultivated land. The resulting index was used as the dependent variable in the estimation of the

treatment level equation in (16c).

The vector of instrumental variables used in the estimation of the treatment selection equation

in (16b), includes: (a) the size of farm measured in stremmas, and (b) the amount of decoupled

subsidies received by farmers measured in Euros. Both of these variables have been shown to exhibit

significant explanatory power in explaining farmers’ choice related to the type of farming (i.e.,

conventional or organic) while not related to health outcomes. Hence, these variables affect directly

the selection variable but are not correlated with the health impairment variable that makes them

22Medical doctors were not aware of the distinction between conventional and organic farm workers to retain
objectivity when identifying pesticide-related health problems.

23Farmers belong to a rather homogenous rural population having all access to the National Health System enjoying
the same social security benefits. Hence, they do not have incentives to over- or under-report morbidity rates and
illnesses.
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valid instruments in the econometric estimation. Similarly, the vector of instrumental variables

used in the estimation of the treatment level equation in (16c) includes the following: (a) pest

density, (b) price of pesticides, (c) crop price, and (d) variable-input prices. Measurements on pest

populations were obtained using chemical traps installed approximately every 250 squared meters in

each field. The number of whiteflies captured in the traps were then used to extrapolate the average

number of whiteflies per greenhouse farm.24 The ratio of this number to the size of the greenhouse

farm was used to measure pest density. Finaly, the vector of exogenous observable characteristics

includes the following variables: (a) family worker’s age measured in years, (b) family worker’s

educational level proxied by years of schooling,25 (c) family worker’s smoking habits measured as

the average number of cigarettes smoked per day multiplied by the tar milligrams contained, and

(d) family worker’s body mass index-BMI constructed as the ratio of weight in kilograms to height

in meters squared.

The inclusion of education in the vector of exogenous factors deserves some attention here.

Studies in the health economics literature highlight that education might be endogenous to health

outcomes due to two reasons. First, health in earlier ages may affect investments in education

suggesting a possible inverse causality from health to education. The rationale behind this view is

that individuals in good health at the earlier years of their lives are more likely to invest in education

since the corresponding returns are expected to accrue for a longer period of time (Schultz, 1961).

Second, unobserved factors such as genetic factors are likely to affect both health and educational

achievements (Brunello et al., 2016). Although this reasoning implying endogeneity is valid when

general health outcomes are considered, it does not seem to entail plausible concerns for our analysis

which focusses on specific health impairments related to a certain occupational activity. It is

rather unlikely that pesticide-related health impairments experienced by family workers affect their

investments in education which commonly have been made in a much earlier stage. It seems also

equally unlikely that genetic factors which explain educational achievements explain at the same

time pesticide-related diseases experienced by family workers.

Table 1 provides a summary of pesticide-related health problems suffered by family farm workers

along with information on medical costs and work days lost. The information presented in the Table

refers solely to conventional family workers. In total, 585 cases of pesticide-related health problems

were recorded over the five-year period. The most frequent types of health problems observed were

the respiratory problems (257 cases), followed by dermal (155 cases) and eye problems (106 cases).

24Adult fly populations are typically monitored using yellow sticky traps (McPhail traps) that are baited with
sex pheromone and ammonium bicarbonate. The sex pheromone is attractive to male flies while the ammonium
bicarbonate is primarily attractive to females. Both sexes are attracted to the trap’s yellow colour. Thus, the
population numbers used in our empirical analysis are not biased with respect to fly gender and can be expected to
reflect, as closely as possible, the actual pest incidence in each greenhouse.

25As Griliches (1963) pointed out the use of specific or more elegant variables than educational level does not alter
significantly the econometric results as all these variables are highly correlated with years of schooling.
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Incidents of neurological and kidney diseases were also observed but with a lower frequency (29 and

38 cases, respectively). The average recovery period from each disease was 11.1 days. For more

than half of these days, family farm workers abstained totally from working activities while during

the remaining recovery days, they were involved in work tasks but their effectiveness was lower by

52.5 per cent.26 Finally, average treatment cost per disease was 117 Euros.

Table 2 presents summary statistics of the variables used in the estimation of the health im-

pairment model. First, it is evident that health impairments, measured as the annual total direct

and indirect costs arising from pesticide related health problems for the average family worker, are

significantly lower in the sample of organic farmers. This implies that our method used to identify

and measure pesticide-related health problems can indeed distinguish health impairments arising

from exposure to pesticides from health impairments attributed to other factors. Concerning the

exogenous variables used in the estimation of the health impairment model, statistical results in-

dicate that conventional farmers are in general older and less educated than organic farmers. The

average age and educational level of the family workers in the sample of conventional farms were

51.3 years of age and 11.1 years of schooling, respectively, while the corresponding figures in the

sample of organic farms were 34.6 years of age and 15.3 years of schooling. Focusing on the two

instrumental variables used in the estimation of the treatment selection equation, results indicate

that conventional farmers operated larger farms cultivating on average in an area of 7.14 strem-

mas, which is considerably higher than that of their organic counterparts, 2.89 stremmas. Finally,

organic farmers received a larger amount of decoupled subsidies.

Profit Function

Econometric Specification

Following Strauss (1984), we adopt a negative exponential in health impairments specification to

approximate the factor of proportionality function in relation (2).27 However, apart from health

status, education level may also influence effective labor input. One way to include education

in the specification of the effective labor function is by assuming perfect substitutability between

labor input and education which in turn would allow the direct multiplication of education variable

with labor input (Griliches, 1963). However, this process would require to inflate the labor input

by ”quality per man” measures estimated by weighting each school-year completed class by the

corresponding income share in this class. Given that this information is not available, we relax the

26The reported reductions in efficiency reflect farm workers’ personal perceptions, since this variable could not be
directly retrieved from their medical records.

27Two more specifications (quadratic and cubic) suggested by Strauss (1986) have been statistically tested but
results fail to show any statistical improvement over the negative exponential specification.

18



assumption of perfect substitutability between labor input and education which allows us to use

directly educational levels as observed. In addition, farm worker’s age and Body Mass Index may

also influence the effective labor units (Wouterse, 2016). Following Deolalikar’s (1988), we introduce

education and other farm-specific human capital variables multiplicatively in the specification of

the effective labor function by assuming a semi-log functional form. Under this set-up, the effective

labor function in logarithmic form is expressed as:

ln `eit = ln `it − γhĥit + γEdu lnEduit + γAge lnAgeit + γBMI lnBMIit (18)

where subscripts i and t indicate the farm and the time period, and ĥit is the health impairment

index obtained from the econometric estimation of the system in (16a-16c). Since more than one

family member may perform work tasks in each farm, an aggregate health impairment index of

family labor was constructed as the weighted sum of health impairment indexes of family workers

in each farm using labor time shares as weights. The same aggregation process was used for the

remaining human capital variables observed for each family member working at the farm.28

Our econometric specification of the damage control function follows the contribution of Fox

and Weersink (1995), which decomposes ge(·) into two components allowing for the possibility of

increasing returns to the damage-control agent:

geit = 1− exp
(
λbrit(1− φit)

)
(19)

with

φit = 1− exp
(
− βzzit − βztzitt− βz`zit`eit −

∑
u

βzku zitkuit
)

where β’s and λ are parameters to be estimated.

Using (18) and (19), the econometric specification of the profit function in (4), has the following

flexible transcendental logarithmic (translog) specification:

lnπit = α0 + αp ln p̃it +
∑
n

αwn lnwnit + α` ln `eit +
∑
u

αku ln kuit + αtt+
1

2

[
αpp(ln p̃it)

2

+
∑
n

∑
q

αwwnq lnwnit lnwqit + αttt2

]
+

1

2

[
α``(ln `eit)

2 +
∑
u

∑
r

αkkur ln kuit ln krit]

+
∑
u

α`ku ln `eit ln kuit

]
+ ln p̃it

[∑
n

αwpn lnwnit + α`p ln `eit +
∑
u

αkpu ln kuit

]
(20)

+
∑
n

αw`n lnwnit ln `eit +
∑
n

∑
u

αwknu lnwnit ln kuit + t

[
αpt ln p̃it +

∑
n

αwtn lnwnit

28Days lost due to illnesses were taken into consideration while constructing labor time shares.
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+α`t ln `eit +
∑
u

αktu ln kuit

]

where ln p̃ = ln pit + ln geit, t is the usual time trend, a’s are parameters to be estimated with

awwnq = awwqn , akkur = akkru, ap +
∑

n a
w
n = 1, app +

∑
n a

wp
n = 0, akpu +

∑
n a

wk
nu = 0 for each u,

a`p+
∑

n a
w`
n = 0, and apt+

∑
n a

wt
n = 0. We also impose that

∑
u a

k
u+a` = 1,

∑
u a

kk
ur +

∑
r a

`k
r = 0

for each r, a`` +
∑

u a
`k
u = 0, aw`n +

∑
u a

wk
nu = 0 for each n, and a`p +

∑
u a

kp
u = 0.

The associated supply and variable input demands in quasi-rent share forms are obtained using

Hotelling’s Lemma:

Syit = αp + αpp ln p̃it +
∑
n

αwpn lnwnit +
∑
j

α`pj ln `ejit +
∑
u

αkpu ln kuit + αptt (21)

−Sxnit = αwn +
∑
q

αwwnq lnwqit + αwpn ln p̃it +
∑
j

αw`nj ln `ejit +
∑
u

αwknu ln kuit + αwtn t (22)

For the identification of the β parameters, a grid search procedure was used. Then, the system

consisting of equations (20) to (22) was estimated conditional on β’s as a seemingly unrelated regres-

sion model using the two-step Feasible Generalized Non-Linear Least Squares estimator (FGNLS).

Data

The data used in the estimation of the profit function were retrieved from the main survey including

only the sample of convetional greehnouse farms. One output and three variable inputs were

considered. Greenhouse farmers produce four different kinds of vegetables, namely, tomatoes,

cucumbers, peppers and aubergines. Different crops (including quantities sold off the farm and

quantities consumed by the farm household during the crop year) were aggregated into a single

aggregate output index with revenue shares of each crop defining the relevant weights. Likewise,

output prices were aggregated into a single aggregate Tornqvist output price index using again

revenue shares as weights. The output prices used are those obtained by farmers at the time that

production was sold to the local market after subtracting indirect taxes.

The variable inputs considered in the analysis are fertilizers, hired labor and intermediate inputs.

Farmers use different types of fertilizers which include a mixture of nitrate, phosphorous, and

potassium ingredients. The cost shares of each type of fertilizer were used as weights to aggregate

the prices of the different fertilizers into a single price index. Compensation of hired workers was

computed as the average hourly wage plus social security taxes paid by farmers. Intermediate

inputs consist of goods and materials used during the crop year and include expenditures on seeds,

fuel and electric power, and irrigation water along with storage expenses. Again, the corresponding

cost shares were used as weights to aggregate the different categories into one price index.
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The quasi fixed inputs considered in the analysis are family labor, land, and capital. Family la-

bor was measured as the total hours devoted by family members to farm activities, e.g., harvesting,

spraying, fertilisation, irrigation. Land includes the total acreage (rented or owned) under green-

houses devoted to vegetable production measured in stremmas. Capital stock was computed using

the perpetual-inventory method. Finally, pesticides were measured as the total quantity of active

ingredient of pesticides applied during the season. Since different types of pesticides were applied,

the cost shares of each type were used to aggregate them into a single quantity divisia index. All

monetary variables were converted into 2000 constant prices. To avoid problems associated with

units of measurement, all variables were normalized by their mean values. Intermediate inputs and

land were used as numeraires in imposing linear homogeneity in crop and variable input prices and

quasi-fixed inputs, respectively. Summary statistics of the variables are presented in Table 2.

Empirical Results

As explained previously when describing the health impairment model given by (16a-16c) different

polynomial specifications were compared when estimating the outcome equation. In particular,

the first-order (linear) and the third-order polynomial specifications were examined against the

second-order polynomial using goodness of fit measures. None of these specifications showed any

statistical improvement over the second-order polynomial. Therefore, the second-order polynomial

specification was adopted. One basic advantage of this particular functional form is that it does not

impose a priori a concave or convex relationship between pesticide intensity and health impairments

but instead allows the data to choose the type of relationship.

The estimation results of the treatment selection equation are presented in the upper panel

of Table 3. Estimation results indicate statistical significant parameters for the majority of the

variables. Focusing first on the two instrumental variables, the results show that land size and

decoupled subsidies exhibit strong statistical power in explaining treatment selection. Large farms

are found to use conventional farming practices while the amount of decoupled subsidies received

by farms is found to be positively correlated with the use of organic farming practices implying

that financial incentives have a significant impact on the selection of family workers towards organic

farming. Likewise, family workers’ age and education were found to exhibit a significant positive

and negative relationship with treatment selection, respectively.

The estimation results of the treatment level equation are presented in the middle panel of

Table 3. Starting again from the instrumental variables, the results indicate a strong and positive

effect of pest density on pesticide intensity which is an expected result. In addition, the price

of pesticides is found to have a significant negative impact on pesticide intensity. Likewise, the

prices of all variable inputs were identified to affect negatively pesticide levels suggesting a possible
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complementarity between pesticide input and variable inputs. Focusing on the exogenous factors,

age exhibits a positive relationship with pesticide intensity while education was found to have a

significant negative effect on pesticide levels.

The parameter estimates of the outcome equations are reported in the lower panel of Table

3 and show that the estimate of the parameter ATE is positive and highly significant, showing

that overall pesticide use has a positive effect on health impairment. Based on these estimates,

the average health impairment index at each level of pesticide intensity was calculated for family

workers. Figure 1 illustrates the estimated dose response function (i.e., average health impairment)

at each level of pesticide intensity together with the 95% confidence bands, while Figure 2 replicates

the same information using though bootstrapped standard errors. Pesticide intensity is scaled in

these figures over the [0, 100] interval.29 The estimated dose response function appears to be

statistically significant as standard errors are small and confidence intervals narrow. Estimates are

very precise for low and middle levels of pesticide intensity but become less reliable for high levels.

Health impairments respond positively to increases in pesticide intensity and these responses are

concave which is consistent with findings of previous studies (Antle and Pingali, 1994). Figure 3

presents the average marginal effect of pesticide intensity on health impairment which verifies the

concavity of the health impairment function with respect to pesticide intensity.

The parameter estimates of the restricted profit function are presented in table 4. Estimates for

the key parameters of the model appear to be statistically significant and have the expected signs.

Table 5 presents the supply and input demand elasticities estimated at sample means. Starting

from the supply elasticity with respect to output price, it is positive and close to unity (1.069)

ensuring that supply is upward sloping in output price. As expected, the own-price elasticity of

demand is negative for all three variable inputs, e.g., hired labor, fertilizers, and intermediate

inputs. Concerning the magnitude of these point estimates, the own-price elasticity of intermediate

inputs exhibits the highest value (-2.028) which is quite large compared to that of hired labor and

fertilizers (-0.545 and -00607, respectively). Note though that the supply elasticity with respect to

the price of intermediate inputs is also large indicating that this high value could be largely driven

by an output effect. The cross-price elasticity of demand is negative in all cases implying that

variable inputs are gross complements.

To further examine the strength of complementarity or substitutability between variable inputs,

we compute the compensated demand elasticities by removing the supply-expansion effect from

input demand. The lower panel of table 5 presents the compensated input demand elasticities

estimated at sample means. The own-price compensated elasticity of demand for all variable

inputs is again negative as expected. Moreover, the magnitude of the compensated elasticity of

29A value of z=10 in the figures corresponds to 78 grams/stremma.
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demand for intermediate inputs drops significantly to -0.093 verifying our initial suspicion that the

high value of the uncompensated own-price elasticity of intermediate inputs is largely driven by an

output effect. Concerning the cross-price compensated elasticities of demand, they are all found to

be positive suggesting that variable inputs are output-compensated (net) substitutes.

Using the parameter estimates of the restricted profit function, the quasi-rent losses associated

with the health effects of pesticides were estimated and the sample mean was computed for each

one of the four profit quartile regions as well as for the whole sample. Results on quasi-rent

loss, Qh (p, w, `, k, br, z, s, t), along with its decomposition into the revenue, and cost effect are

presented in the upper panel of table 6. Quasi-rent losses due to the health effects of pesticides are

estimated at 1,511 Euros on average following a steadily increasing trend across profit quartiles.

Revenue losses associated with the health effects of pesticides are estimated at 2,829 Euros that is

1,318 Euros higher than quasi-rent losses. This deviation is consistent with the predictions of our

theoretical model. Revenue losses are partly attributed to the reduction in effective output price

and the corresponding downward adjustment of optimal supply made by rational farmers caused

by the increase in output damage triggered in turn by the lower endowment of family labor input.

The later decrease in family labor input has also a direct negative impact on output production

explaining the remaining revenue losses. The difference between quasi-rent and revenue loss which

represents the cost effect indicates that adjustments in the use of variable inputs were quite fruitful

in terms of lessening the economic losses of the health effects of pesticides leading to an average

saving of 1,318 Euros.

Quasi-rent losses due to pests, Qb (p, w, `, k, br, z, s, t), are estimated at 7,648 Euros following

an increasing trend across profit quartiles. This loss is decomposed into two components. The first

component, Qh (p, w, `, k, br, z, s, t), is related to the health effects of pesticides accounting for the

20% of the estimated quasi-rent loss due to pests which is undoubtedly an important share. The

second component, π (p, w, `, k, t) − π
(
pgd, w, `, k, t

)
, is the difference between maximal possible

quasi-rent and quasi-rent realized in the presence of pests assuming no health effects. This second

component which is identical to the measure of quasi-rent loss due to pests proposed by Chambers et

al. (2010) captures quasi-rent losses associated with pest infestation ignoring though the associated

health effects induced by pesticide application. The second component predicts an average loss of

6,136 Euros accounting therefore for the remaining 80% of the total quasi-rent loss due to pests.

Two measures of output loss due to pests are reported in the middle panel of table 6. The

first measure is the one used in Chambers’ et al. (2010) analysis defined as revenue loss due to

pests divided by output price, R
b(p,w,`,k,br,z,s,t)

p . The other is the traditional output-damage measure

defined as maximal potential output in the presence of pests times damage, (1−ge)π1(pge, w, le, k, t).
Output loss due to pests, as measured by Rb(p,w,`,k,br,z,s,t)

p , is estimated at 21,325 kgs and is again
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decomposed into two components. The first component refers to the health effects of pesticides on

maximal production, Rh(p,w,`,k,br,z,s,t)
p , indicating an average output loss of 4,099 kgs attributed to

decreases in the endowment of family labor. The lower endowment of family labor input decreases

directly output but also indirectly by reducing effective output price leading to a downward supply

response by farmers. The second component is the difference between maximal potential output

in the absence of pests and output realized in the presence of pests assuming no health effects,

π1 (p, w, `, k, t) − π1(pg
d, w, `, k, t)gd. Therefore, it measures output losses associated with pest

infestation ignoring though the health effects emerging from the use of pesticides. It indicates an

average output loss of 17,226 kgs accounting for the 80% of the output damage due to pests.

The traditional output damage measure, (1− ge)π1(pge, w, le, k, t), suggests an average output

loss of 6,581 kgs which is 14,744 kgs lower compared to that predicted by the Rb(p,w,`,k,br,z,s,t)
p

measure. This substantial deviation which quantifies the bias introduced in the traditional output-

damage measure is due to the fact that the latter fails to account for the optimal supply adjustments

made by rational farmers in the absence of pests. These optimal supply adjustments ignored by

the traditional measure are further triggered by the higher utilization of family labor implied by

the absence of health effects.

Finally, estimates on the percentage quasi-rent losses due to pests, 1 − π(pge,w,`e,k,t)
π(p,w,`,k,t) , along

with those on traditional percentage damage measure, 1 − ge, are reported at the lower panel

of of table 6. The quasi-rent loss due to pest infestation is estimated to be 32.10% while the

traditional percentage damage measure indicates a percentage loss of 15.71%. This difference

of 16.39 percentage units is substantially high implying that the traditional percentage damage

measure underestimates percentage losses due to pests by almost 50% in our analysis. Optimal

adjustments made by farmers related to the health effects of pesticides ignored by the traditional

measure explain an important share of this bias (5.23 percentage units). Both percentage damage

measures follow a general decreasing trend across profit quartiles. This result is mainly attributed

to a higher utilization of pesticides by larger farms which is also verified by our data.

Table 7 reports estimates on the shadow price of pesticides along with its components. The

shadow price of pesticides increases steadily across profit quartiles indicating that marginal returns

to pesticides are larger for more profitable farms. On average, the shadow price of pesticides is

estimated at 0.5372 Euros. The largest share is due to marginal increases in revenues arising from

increases in effective output price triggered in turn by small increases in pesticides use. These

marginal increases in revenues are estimated at 0.5682 Euros and include both the direct positive

effect of pesticides on effective output price (first term in the bracket) and the indirect negative effect

of pesticides on effective output price through their impact on effective family labor (second term

in the bracket). The latter indirect effect, albeit not reported in the table, is found to decrease the
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shadow price of pesticides by 0.0986 Euros, on average. Moreover, marginal increases in pesticide

use decrease also the shadow price of family labor reducing further marginal revenues. This latter

negative effect is found to reduce the shadow price of pesticides by 0.0310 Euros.

Conclusions

In this paper, we developed a method for measuring quasi-rent losses associated with the health

effects of pesticides under informed decision-making and rational farmer behavior. Starting from a

production model modified to account for the health effects of pesticides on effective labor units,

we developed a restricted profit model which enables to identify the optimal supply-response and

optimal cost adjustments made by farmers in the presence and absence of pesticide-related health

effects. Using this model, we showed how to measure economic losses associated with the health

effects of pesticides when endogeneity of health effects is induced by informed decision-making.

As an important by-product of the analysis, we demonstrated how ignoring the health effects of

pesticides when those are present, introduces bias in pest damage measures and in the measurement

of the marginal returns to pesticides.

The model was empirically applied on a unique panel dataset of Greek greenhouse producers

where the use of health-hazardous pesticides is particularly prominent. The survey covered a

five-year period making it the longest survey exploring the effects of pesticides on farmers’ health.

Using this unique dataset, health impairment indices were estimated for family workers using recent

treatment effects estimation methods. To measure quasi-rent loss due to health effects, a translog

profit function was estimated augmented to account for the asymmetric role of pesticides as a

damage control input.

Empirical results attributed significant quasi-rent losses to the health effects of pesticides. Al-

though cost adjustments made by farmers in the sample lessened significantly these adverse effects,

estimated economic losses were found to remain substantially high. Moreover, results indicated that

impairments in farmers’ health due to exposure to pesticides constitute an important component of

quasi-rent and output loss due to pests suggesting that ignoring the health effects of pesticides may

bias downward pest-damage measures. In our case study analysis, this bias was quantified to be

approximately 20%. Finally, the health effects of pesticides were also found to affect significantly

the marginal returns to pesticides decreasing significantly the shadow price of pesticides.
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Tables and Figures

Table 1: Health Problems and Associated Economic and Medical Costs

Health No of Recovery Days of Effectiveness Medical
Problem Cases Days Absence Decrease (%) Cost (in e)

Eye 106 10.8 6.0 52.8 118
Dermal 155 11.5 6.3 54.0 112
Respiratory 257 10.4 5.9 52.1 109
Neurological 29 11.7 8.0 43.3 255
Kidney 38 14.3 7.2 55.0 86

All problems 585 11.1 6.2 52.5 117

Table 2: Summary Statistics of the Variables

Conventional Farmers Organic Farmers

Variable Mean Max Min Mean Max Min

Pesticide intensity (grams/stremma1) 199 797 46 0 0 0
Land size (in stremmas1) 7.14 31.40 2.40 2.89 9.00 1.60
Decoupled subsidies (in e) 1,121 1,905 390 1,551 2,280 892
Pest density (pests per m2) 1.36 3.40 0.32 – – –
Price of output (in e) 0.65 0.99 0.35 – – –
Price of pesticides (in e) 0.48 0.85 0.24 – – –
Price of fertilizers (in e) 0.35 0.55 0.16 – – –
Price of hired labor (in e) 4.02 7.51 2.20 – – –
Price of intermediate inputs (in e) 5.36 7.46 3.04 – – –
Capital stock (in e) 1,934 7,672 695 – – –
Family labor (in hours) 1,042 2,981 234 – – –
Age (in years) 51.3 70.0 18.0 34.6 59.0 18.0
Education (in years) 11.1 18.0 6.0 15.3 20.0 9.0
Smoking habits (tar units) 15.3 50.0 0.0 13.9 50.0 0.0
BMI (kg/m2) 27.1 33.4 21.8 25.5 31.4 19.8
Health impairment (in e) 584 1,281 190 34 154 0

1 One stremma equals 0.1 ha.
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Table 3: Estimation of the Health Impairment Model

Variable Estimate St.Error

Treatment Selection Equation:
Constant 2.0878 (1.9290)
Land Size 0.6670 (0.0842)∗∗

Subsidies -0.0029 (0.0005)∗∗

Age 0.0626 (0.0112)∗∗

Education -0.3983 (0.0577)∗∗

Smoking habits 0.0064 (0.0108)
BMI 0.0672 (0.0617)

Treatment Level Equation:
Constant 35.835 (12.330)∗∗

Pest density 6.8799 (1.2928)∗∗

Price of output 26.556 (5.7851)∗∗

Price of pesticides -21.534 (5.4515)∗∗

Price of fertilizers -3.4339 (0.6839)∗∗

Price of hired labor -1.2880 (0.6883)∗

Price of intermediate inputs -42.738 (9.0626)∗∗

Age 0.3220 (0.0748)∗∗

Education -2.5115 (0.3182)∗∗

Smoking habits 0.1225 (0.0634)∗

BMI 0.7528 (0.3668)∗

Mill’s λ 2.4250 (2.9114)

ρ 0.1834 –
σ 13.221 –

Outcome Equation:
Constant 299.63 (52.529)∗∗

d-(ATE) 530.50 (15.865)∗∗

z-(β1) 12.882 (2.2638)∗∗

z2-(β2) -0.0611 (0.0234)∗∗

Age -4.2618 (0.4828)∗∗

Education -3.5529 (3.1123)
Smoking habits -0.0230 (0.3431)
BMI -2.7864 (1.9144)

∗ and ∗∗ indicate statistical significance at the 5 and 1 per cent level,
respectively.
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Figure 1: Dose-Response Function
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Figure 2: Dose-Response Function with Bootstrapped Standard Errors
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Figure 3: Derivative of the Dose-Response Function
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Table 4: Parameter Estimates of The Restricted Translog Profit Function

Par. Estimate StError Par. Estimate StError Par. Estimate StError

α0 2.0695 (1.1761)∗ αwwDI 0.1826 – αwkIC 0.3401 –
αp 1.8580 (0.1435)∗∗ αwwFI 0.0294 – αwkIA -0.3386 –
αwD -0.3197 (0.0693)∗∗ α`` 0.2163 (0.1109)∗ αpt -0.0817 (0.0441)∗

αwF -0.0978 (0.0117)∗∗ αkkCC -0.0018 (0.1384) αwtD 0.0053 (0.0200)
αwI -0.4406 – αkkAA 0.2568 – αwtF -0.0059 (0.0066)
α` 0.3772 (0.1507)∗∗ α`kC 0.0212 (0.0379) αwtI 0.0823 –
αkC 0.3084 (0.1626)∗ α`kA -0.2374 – α`t 0.0281 (0.0252)
αkA 0.3144 – αkkCA -0.0194 – αktC 0.0500 (0.0979)
αt 0.4790 (0.2437)∗ α`p 0.0099 (0.0054)∗ αktA -0.0781 –

αtt 0.2937 (0.3248) αkpC -0.4922 (0.0427)∗∗ γh -0.2067 (0.0649)∗∗

αpp 0.3258 (0.1207)∗∗ αkpA 0.4823 – γsE 0.5396 (0.1097)∗∗

αwwDD -0.2732 (0.0454)∗∗ αw`D -0.0083 (0.0031)∗∗ γsB -0.1061 (0.8837)
αwwFF -0.0488 (0.0115)∗∗ αwkDC 0.1095 (0.0198)∗∗ γsG 0.4184 (0.2014)∗

αwwII -0.2120 – αwkDA -0.1013 – λ -0.6566 (0.3128)∗

αwpD 0.1093 (0.0401)∗∗ αw`F -0.0001 (0.0009) βz -0.3500 (0.1013)∗∗

αwpF 0.0380 (0.0140)∗∗ αwkFC 0.0426 (0.0073)∗∗ βzt -0.1000 (0.0511)∗

αwpI 0.1786 – αwkFA -0.0425 – βz` -0.0500 (0.0212)∗∗

αwwDF -0.0187 (0.0104)* αw`I -0.0015 – βzkC -0.1000 (0.0524)∗

where D stands for hired labor, F for fertilizers, I for intermediate inputs, C for capital, A for land, E for education,
B for Body Mass Index (BMI), and G for age. ∗ and ∗∗ indicate statistical significance at the 5 and 1 per cent level.
Standard errors were estimated using bootstrapping techniques.
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Table 5: Crop Supply and Variable-Input Demand Elasticities

Hired Labor Fertilizers Intermediate Crop
Inputs Output

Uncompensated Demand and Supply Elasticities:
Hired Labor -0.5452 -0.0447 -0.9888 1.5787
Fertilizers -0.1545 -0.6073 -0.7526 1.5144
Intermediate Inputs -0.7431 -0.1638 -2.0287 2.9355
Output -0.2850 -0.0792 -0.7052 1.0693

Compensated Demand Elasticities:
Hired Labor -0.1241 0.0720 0.0521 –
Fertilizers 0.2490 -0.4952 0.2463 –
Intermediate Inputs 0.0392 0.0543 -0.0934 –

Table 6: Quasi-Rent Losses, Output Losses and Pest-Damage Measures

Profit Quartiles Mean
1st 2nd 3rd 4th Values

Quasi-Rent Loss (in e)
Qb (p, w, `, k, br, z, s, t) 5,398 5,684 7,728 11,635 7,648

Qh (p, w, `, k, br, z, s, t) 456 853 1,337 3,335 1,511
Rh (p, w, `, k, br, z, s, t) 844 1,534 2,433 6,376 2,829
−Ch (p, w, `, k, br, z, s, t) -388 -681 -1,097 -3,041 -1,318

π (p, w, `, k, t)− π
(
pgd, w, `, k, t

)
4,942 4,831 6,392 8,300 6,136

Output Loss (in kgs)
Rb(p,w,`,k,br,z,s,t)

p 16,182 16,347 21,281 31,103 21,325
Rh(p,w,`,k,br,z,s,t)

p 1,408 2,402 3,641 8,777 4,099

π1 (p, w, `, k, t)− π1(pgd, w, `, k, t)gd 14,774 13,945 17,640 22,326 17,226
(1− ge)π1(pge, w, le, k, t) 4,687 5,460 6,902 9,214 6,581

Crop Damage (in %)

1− π(pge,w,`e,k,t)
π(p,w,`,k,t) 0.3890 0.3090 0.3122 0.2720 0.3210

1− ge 0.1965 0.1578 0.1562 0.1177 0.1571
Qh(p,w,l,k,br,z,s,t)

π(p,w,l,k,t) 0.0338 0.0461 0.0524 0.0766 0.0523

π(pge,wge,`,k,t)−π
(
pgd,w,`,k,t

)
π(p,w,`,k,t) 0.1587 0.1050 0.1037 0.0777 0.1116

Table 7: Marginal Returns to Pesticides

Profit Quartiles Mean
1st 2nd 3rd 4th Values

νz (p, w, `, k, br, z, s, t) 0.0937 0.2061 0.4741 1.3750 0.5372

π1 (pge, w, `e, k, t) p
[
∂ge

∂z + ∂ge

∂`e
∂`e

∂z

]
0.0991 0.2181 0.5015 1.4542 0.5682

π3 (pge, w, `e, k, t) ∂`
e

∂z -0.0054 -0.0120 -0.0273 -0.0792 -0.0310
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