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1 Introduction

Horizontal ownership concentration, where a small number of institutional investors hold

significant minority stakes in competing firms, is an increasingly pervasive phenomenon

which has raised regulatory concern because of its potential to foster anticompetitive

behavior (Backus et al. 2021, Posner et al. 2016). Horizontal minority shareholding,

where firms take non-controlling stakes in product market rivals, has also been a growing

concern since the turn of the millennium. Such forms of overlapping ownership have

attracted a wave of academic interest, kindled notably by evidence of pricing distortions

in the airline industry due to common ownership (Azar et al. 2018). New forms of evidence

such as natural and laboratory experiments continue to emerge (Heim et al. 2022, Hariskos

et al. 2022), altogether lending broad credence to the thesis that managers account for

ownership structure in their decision-making by internalizing some of the effects they

exert on rival firms.

In the discussion surrounding common ownership, the causal mechanism linking own-

ers to the managerial decisions that determine product market outcomes is a central theme

(Hemphill and Kahan 2019, Anton et al. 2021). Institutional investors regularly engage

with the management of their portfolio firms (Shekita 2022), and chief among the strate-

gic decisions that top management makes is the exercise of a firm’s real options (Smit and

Trigeorgis 2017). So far the study of strategic effects of common ownership has centered

mostly around R&D investments, but in many of the industries concerned by common

ownership firms hold other options, like the option to build production capacity, which

are equally important. We propose therefore to examine how increased internalization

modifies the timing and size of irreversible capacity investments under uncertainty, and

ultimately find a variety of effects whose product-market consequences can be either anti
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or pro-competitive.

Our model extends the framework for strategic capacity investment in Huisman and

Kort (2015) to incorporate overlapping ownership. We thus study two firms holding

competing projects in a market which evolves over time. These firms have ownership

structures which overlap (either because of common shareholders or because of cross-

holdings) so their management internalizes rival value when making investment decisions.

Other than this, the firms determine when and how much capacity to install in the

standard way. In equilibrium, one of the firms acts as a leader and invests first, whereas

the second firm is a follower and reacts to the leader’s timing and capacity decision.

We find first of all that internalization invariably exerts an anticompetitive effect on

the follower firm, in contrast with prior work involving fixed-size investments where the

follower entered earlier if product market profits were very sensitive to internalization

(Zormpas and Ruble 2021). In the present model, the weight attributed to leader profit

effectively magnifies its capacity from the follower’s perspective, driving the follower to

enter at a higher demand threshold and to choose a smaller capacity upon entry.

The follower’s less aggressive timing and quantity reactions benefit the leader firm,

which enjoys a protracted monopoly period followed by less intense duopoly competition.

With internalization the leader has the novel possibility of blocking the follower entirely,

though it ultimately prefers to either just delay the follower’s entry or to accommodate it.

The leader prefers to delay (deter) the follower by investing in relatively larger capacities

than it otherwise would at low demand states, but shifts to accommodation at higher

demand states at which delaying the follower this way becomes prohibitively expensive.

Because the leader benefits from both less aggressive capacity and timing reactions if

it induces delay strategically, internalization strengthens leader preference for deterrence

relative to accommodation. Overall we find that the leader’s optimal investment behavior
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resembles the case without internalization if the level of internalization is not too high,

but also that qualitative differences otherwise arise, e.g. accommodation can fail to ever

be optimal with suffi cient internalization.

If firms compete for the leadership role, we find that the follower’s less aggressive

reaction makes leading relatively more attractive. Internalization therefore has a procom-

petitive effect on entry timing in preemption equilibrium. Entry occurs at a low enough

demand state that the leader chooses a capacity which delays follower entry. The pro-

competitive effect of internalization on entry timing is offset however by a lower leader

capacity. Introducing endogenous capacities therefore leads us to nuance the results ob-

tained in prior work with fixed investment size.

Beyond these effects at the preemption threshold, we also find that if leader investment

occurs at an intermediate demand state, a moderate degree of internalization can exert

a procompetitive effect through an altogether different channel pertaining to the leader’s

strategy choice. Specifically the leader’s increased preference for delay with internalization

can push it to shift from accommodation to deterrence. Delaying the follower requires

a sharp increase in capacity, and we find that this capacity increase can be substantial

enough that consumers ultimately benefit, despite the detrimental effect on follower entry.

We complement our analytical results with a numerical analysis which bears out these

insights, i.e. that internalization is anticompetitive for the follower but also has a procom-

petitive effect on the timing of investment in preemption equilibrium. We show moreover

that the second procompetitive effect mentioned above due to procompetitive shift in the

leader’s strategy effectively occurs, and that the resulting increase in capacity can be large

enough that overall consumer surplus increases.

To illustrate the idea of a strategic shift which arises in our dynamic model, it is useful

to start with the standard Stackelberg-Spence-Dixit model with linear demand Q = 1−P ,
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zero production cost, and a fixed cost of entry f = .0025. The firms choose their capacities

sequentially. At this fixed cost, the first-mover ordinarily prefers to accommodate follower

entry. Suppose however that there is symmetric cross-ownership: each firm i holds an s

percent stake in the rival so that, up to a normalization, it maximizes πi + .01sπ−i, with

s ∈ {0, 10, 20}. The resulting equilibrium leader, follower, and total capacities are:

Table 1: Procompetitive strategic shift (static)

Q∗L Q∗F (Q∗L) QTotal

no cross-ownership .5 .25 .75

10% cross-ownership .82 0 .82

20% cross-ownership .75 0 .75

Table 1 shows that a small degree of ownership overlap can have a procompetitive effect

on total output and hence consumer surplus (which here is positively related to total

output). This is because the overlap (mutual 10% stakes in the rival) induces the leader

to adopt a deterrence strategy which increases its output, and this output increase is large

enough to outweigh the absence of follower entry and output. With more overlap (mutual

20% stakes), internalization still drives the leader to shift to deterrence, but the effect on

total output is no longer procompetitive. In Appendix A.1, we characterize the parameter

region over which overlapping ownership causes a procompetitive strategic shift in this

model, and further below in Section 6, we return to the idea of a strategic shift in the

context of our dynamic model and derive an analogous numerical example involving both

follower capacity and timing (see Table 3).

Our study contributes to the growing literature on the effect of overlapping own-

ership on strategic behavior. Innovation is a key dimension of business strategy, and
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overlapping ownership has been shown to have a positive effect on investment and welfare

in the presence of R&D spillovers (Vives 2020), in innovation contests (Stenbacka and

Van Moer 2022), and to facilitate welfare-enhancing technology transfers (Papadopoulos

et al. 2019). Our model complements this stream by showing that procompetitive effects

arise even more broadly, in industries which are less R&D-intensive. Another research

stream addresses how internalization affects Stackelberg leadership, and finds that it fa-

cilitates entry deterrence and may raise effi ciency (Li et al. 2015, Ma and Zeng 2021).

Few authors to our knowledge have studied how the insights regarding overlapping own-

ership and product market outcomes originally developed in a static setting (Reynolds

and Snapp 1986) extend to strategic decisions in a stochastic, dynamic market.

This paper also contributes to the literature on strategic investment with timing and

capacity choice (Huisman and Kort 2015) by complementing other studies which have

allowed for pre-existing capacities or introduced time-to-build considerations (Huberts

et al. 2019, Jeon 2021). The dimension of internalization which we add extends the

space of strategies available to the leader firm so as to encompass three possibilities,

accommodation, strategic delay, and blockade, that mirror early work on this topic (Dixit

1980).

Section 2 below states the main assumptions of our model. Section 3 studies the

follower problem. Section 4 studies the leader’s capacity choice and derives its reduced

form payoff. Section 5 describes equilibrium investment. In Section 6 we discuss welfare

and report a numerical analysis illustrating possible procompetitive effects such as the

leader’s shift toward delay.
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2 Model

An industry consists of two firms which are initially inactive. Their ownership structures

are symmetric and overlap. Up to a normalization, each firm maximizes a perceived value

Ωi = Vi + λV−i, λ ∈ [0, 1] (1)

where Vi denotes the value of its own assets and V−i denotes the value of its rival’s assets.

Vives (2020) discusses common and cross-ownership structures that yield this objective.

The parameter λ represents the weight each firm attributes to rival value. It is referred to

as the degree of internalization, with λ = 0 representing purely self-interested behavior and

λ = 1 representing joint value maximization. Backus et al. (2021) report average values

for the degree of internalization up to .7 for U.S. firms. Estimates vary widely across

both countries and industries, but the degree of internalization needn’t vary much across

firms. To motivate our assumption of symmetric λ, in U.S. pharmaceutical industry for

example the fraction of total shares held as of August 2022 by the top three institutional

shareholders (BlackRock, State Street and Vanguard) in the top three firms (Johnson &

Johnson, Merck, and Pfizer) amounted to 19, 18, and 18% respectively.1

The market demand firms face is uncertain. At any time t ≥ 0, inverse demand is

X(t) (1− ηQ(t)) (2)

where η > 0, Q(t) is industry capacity, and X(t) is an exogenous shock. The exogenous

1Ownership structures are less likely to be symmetric in situations of cross-ownership, such as the
minority share acquisitions which Heim et al. (2022) report.
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shock evolves over time according to a geometric Brownian motion

dX(t) = µX(t)dt+ σX(t)dω(t) (3)

where µ is the drift, σ ≥ 0 the volatility, and ω(t) is a standard Wiener process.

The firms choose when and at what scale to enter the market. Market entry involves

a single capacity investment. Capacity has a constant unit cost δ > 0 and can be neither

altered nor resold once it is installed. There are no production costs and firms are assumed

to operate at capacity.2

Finally the discount rate r is constant with r > µ to focus on the case where the

expected revenue stream is bounded.

3 Follower investment

Suppose one of the firms, the leader, invests a capacity QL and denote the current value

of the demand state at that time by X. It is then up to the remaining firm, the follower,

to choose when to invest and what capacity level QF to install when it enters. Letting

T denote the follower’s stopping time and Q∗F (T ) its optimal capacity, the follower’s

perceived value is

ΩF (X) = sup
T≥0

EX

[
λ

∫ T

0

X(s) (1− ηQL)QLe
−rsds

+

∫ ∞
T

X(s) (1− η (QL +Q∗F (T ))) (λQL +Q∗F (T )) e−rsds− δQ∗F (T )e−rT
)]
. (4)

2Ghemawat and Nalebuff (1985) explain how operating below capacity is technically ineffi cient in
many real-world industries.
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The conditional expectation in Eq. (4) has two parts. The first integral term is perceived

discounted profit that accrues during the leader’s monopoly phase, which lasts up until

the stochastic time T at which the follower enters. The second set of terms is perceived

net value upon entry, which consists of perceived discounted duopoly profit net of the

follower’s discounted investment cost.

The analysis of the follower’s decision proceeds in two steps, first by characterizing the

follower’s capacity choice upon investment and then by determining its optimal timing.

To find the follower’s optimal capacity, let X ′ = X(T ) denote the demand state at

which the follower ultimately enters. Because EX′
[∫∞
0
X(s)e−rsds

]
= X′

r−µ , the perceived

duopoly profit net of investment cost is

X ′

r − µ (1− η (QL +QF )) (λQL +QF )− δQF (5)

at time T . This expression is strictly concave in QF . Optimizing therefore gives a unique

follower capacity upon investment which is a piecewise function of the state,

Q∗F (X ′) = max

{
0,

1

2η

(
1− η (1 + λ)QL −

δ (r − µ)

X ′

)}
. (6)

Eq. (6) indicates directly that internalization softens the follower’s quantity reaction.

Moreover, the leader can block the follower’s entry permanently while obtaining a positive

price if the degree of internalization is positive, by choosing a capacity QL ∈
[

1
η(1+λ)

, 1
η

)
.

Substituting Q∗F (X ′) back into the expected net present value expression (Eq. 5) gives

the follower’s payoff upon investment, which is

GF (X ′) =
(1− η (1− λ)QL)2

4η

X ′

r − µ −
δ

2η
(1− η (1 + λ)QL) +

δ2

4η

r − µ
X ′

(7)
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provided that QL <
1

η(1+λ)
so the leader does not block entry.

With respect to the follower’s entry timing, the follower holds a valuable real option

if QL < 1
η(1+λ)

. This option involves both the terminal payoff in Eq. (7) and a per-

ceived dividend flow λX(t) (1− ηQL)QL stemming from the leader’s monopoly position.

A dynamic programming argument establishes that the follower’s optimal policy is an

investment threshold so that it invests once the demand state reaches

X∗F =


β+1
β−1

δ(r−µ)
1−η(1+λ)QL , if QL <

1
η(1+λ)

∞, if QL ≥ 1
η(1+λ)

(8)

where

β =
1

2
− α

σ2
+

√(
1

2
− α

σ2

)2
+

2r

σ2
> 1 (9)

is a constant that reflects discounting in a stochastic environment (see Appendix A.2). It

is apparent from Eq. (8) that ∂X∗F/∂λ > 0, so greater internalization is associated with

a higher investment threshold and consequently delayed entry. An increase in the degree

of internalization thus raises the follower’s perceived dividend relative to the perceived

net duopoly payoff enough to delay investment. Together Eqs. (6) and (8) indicate that

there is a monotonic effect of internalization on both the timing and size of the follower’s

investment, with λ effectively scaling up the leader’s capacity by 100λ percent. Finally,

if X < X∗F so the follower delays entry, its optimal capacity takes the value

Q∗F (X∗F ) =


1−η(1+λ)QL
(β+1)η

, if QL <
1

η(1+λ)

0, if QL ≥ 1
η(1+λ)

.
(10)

The next proposition sets out the main results concerning follower investment.

Proposition 1. The follower’s investment threshold is X∗F (Eq. 8), and its perceived
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value ΩF (X,QL) is


λ (1−ηQL)QLX

r−µ + δ(1−η(1+λ)QL)
(β2−1)η

(
X
X∗F

)β
, if X < X∗F

(1−η(1−λ)QL− δ(r−µ)X )
2
X

4η(r−µ) , if X ≥ X∗F ,
(11)

if QL <
1

η(1+λ)
, and

λ
(1− ηQL)QLX

r − µ (12)

if QL ≥ 1
η(1+λ)

.

The expressions in Proposition 1 apply once the leader has invested, and do not

therefore account for perceived leader investment cost λδQL which is sunk at that time

even if follower investment is immediate. If the leader does not block entry so that the

follower’s option is valuable, the follower value (Eq. 11) consists of two pieces. The first

piece is its value if the demand state is low and it chooses to delay investment, so it obtains

the sum of internalized leader value and its perceived option value. The second piece is

the follower’s perceived value if the demand state is high, so that it invests immediately.

If the follower’s real option is valueless, the follower’s value (Eq. 12) consists only of

internalized leader value.

4 Leader capacity choice

The leader’s investment threshold cannot be lower than the net present value threshold

for monopoly investment. We therefore can restrict attention to demand states X >
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δ (r − µ).3 The leader’s perceived value from investing at given X has the general form

ΩL(X) = max
QL≥0

EX

[∫ T

0

X(s) (1− ηQL)QLe
−rsds− δQL (13)

+

∫ ∞
T

X(s) (1− η (QL +Q∗F (X(T )))) (QL + λQ∗F (X(T ))) e−rsds− λδQ∗F (X(T )) e−rT
]

where T = inf {t ≥ 0 |X(t) ≥ X∗F } is the follower’s stopping time and Q∗F (X(T )) its

capacity choice. Investment is assumed to be definitive, so the leader cannot reinvest at

a later date if it chooses QL = 0.

In this section we study the leader’s capacity choice upon investment. Because it

affects the follower’s entry timing and capacity, the leader’s capacity choice is strategic.

If the leader sets a small enough capacity, follower entry can be immediate (so T = 0) if

the demand state is large enough. On the other hand if the leader sets a large enough

capacity, the follower may never enter (so T = ∞). Intermediate capacity levels induce

the follower to delay entry until a finite threshold X∗F > X is reached. Over the set of

admissible capacities and demand states ℵ =
[
0, 1

η

]
×(δ (r − µ) ,∞), the expression of the

conditional expectation in Eq. (13) depends on which of these three alternatives applies.

We partition ℵ according to follower entry behavior to obtain specific forms that allow us

to study the leader’s capacity choice problem.

3The value of monopoly investment in demand state X is

max
Q≥0

EX

[∫ ∞
0

X(s) (1− ηQ)Qe−rsds− δQ
]

= max
Q≥0

[
X

r − µ

(
1− δ (r − µ)

X
− ηQ

)
Q

]
so monopoly capacity investment is positive only if X > δ (r − µ).
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First, for all X ≥ X̂L where

X̂L = min
QL∈[0, 1η ]

X∗F =
β + 1

β − 1
δ (r − µ) (14)

bounds the set of possible follower entry thresholds from below, let

Q̂L (X) =
1

η (1 + λ)

(
1− β + 1

β − 1

δ (r − µ)

X

)
(15)

denote the leader capacity at which the follower’s threshold takes the value X∗F = X.

In (QL, X) space, the locus Q̂L (X) discriminates between those leader capacity levels at

which follower entry is immediate and those at which it is delayed. Then, define

ℵa =
{

(QL, X) ∈ ℵ|X ≥ X̂L and QL ∈
[
0, Q̂L (X)

]}
,

ℵb =

{
(QL, X) ∈ ℵ|QL ≥

1

η (1 + λ)

}
, and

ℵd = ℵ \
(
ℵa ∪ ℵb

)
. (16)

If (QL, X) ∈ ℵa there is immediate duopoly, which can be interpreted as accommodation

by the leader (T = 0). If (QL, X) ∈ ℵb the leader has a permanent monopoly and

follower entry is blocked (T = ∞). Finally if (QL, X) ∈ ℵd there is delayed duopoly

(X < X∗F < ∞), which can be construed as a dynamic version of strategic deterrence.

The forms that the conditional expectation term in Eq. (13) takes over ℵa, ℵb, and ℵd

and the behavior with respect to QL over these regions are as follows.

ℵa (immediate duopoly):
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Figure 1: Leader capacity choice regions in (Q,X) space for r = .1, µ = .06, σ = .1, δ = .1,
η = .05 and λ = 0 (gray) or .1 (black). Immediate duopoly is only possible at demand
states above X̂L. With internalization, the accommodation region ℵa shrinks and the
delayed duopoly region ℵd expands. The dashed curves QaL(X) and QdL(X) respectively
plot local capacity choice maxima with immediate or delayed duopoly.

In this region, T = 0 and the conditional expectation term has the form

EX

[∫ ∞
0

X(s) (1− η (QL +Q∗F (X))) (QL + λQ∗F (X)) e−rsds− δ (QL + λQ∗F (X))

]
.

(17)

This expectation is over the leader’s perceived perpetual duopoly profit net of perceived

investment cost. Although both firms effectively enter at the same moment, the follower’s

entry decision occurs “immediately after” the leader’s. Because it observes the leader’s
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investment and this investment is irreversible, the follower reacts to the leader’s capacity

through Q∗F (X). Evaluating the expectation gives

X
(

1− η (1− λ)QL − δ(r−µ)
X

)(
λ+ η (2 + λ) (1− λ)QL − λ δ(r−µ)X

)
4η (r − µ)

. (18)

Viewed as a function of QL, Eq. (18) is concave with interior maximum

QaL(X) =
1− δ(r−µ)

X

η (2 + λ) (1− λ)
. (19)

For λ <
√

2−1, or for λ >
√

2−1 and β > 3−λ2

(λ+1−
√
2)(λ+1+

√
2)
, there exists a unique demand

state Xa
1 > X̂L at which QaL(X) intersects Q̂L (X) from below in (Q,X) space. For

demand states above Xa
1 , the maximum is interior, at Q

a
L(X). Otherwise (for λ =

√
2− 1

or λ >
√

2−1 and β ≤ 3−λ2

(λ+1−
√
2)(λ+1+

√
2)
), Eq. (18) is increasing and reaches its maximum

on the boundary, at Q̂L (X). Solving the condition QaL(X) = Q̂L (X) gives

Xa
1 =

β (2− (1 + λ)2) + 3− λ2

(β − 1) (2− (1 + λ)2)
δ (r − µ) . (20)

As λ increases, the boundary Q̂L (X) moves to the left. Greater internalization there-

fore shrinks the accommodation region, whereas the interior maximumQaL(X) shifts right-

ward.

ℵd (delayed duopoly):

In this region, T = inf {t > 0 |X(t) ≥ X∗F } with a finite follower threshold X∗F > X and
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the conditional expectation term has the form

EX

[∫ T

0

X(s)(1− ηQL)QLe
−rsds− δQL (21)

+

∫ ∞
T

X(s) (1− η (QL +Q∗F (X∗F ))) (QL + λQ∗F (X∗F )) e−rsds− λδQ∗F (X∗F ) e−rT
]

where X∗F is the follower’s threshold reaction function (Eq. 8 above). Inside this expres-

sion, the first two terms are the leader’s discounted monopoly profit net of investment

cost, and the last two terms are perceived discounted duopoly profit and internalized

follower investment cost. Evaluating the expectation yields

(1− ηQL)QLX

r − µ − δQL +

(
X

X∗F (QL)

)β
δ (λ− η (1 + λ) (β + 1− λβ)QL)

η
(
β2 − 1

) . (22)

To characterize the behavior of Eq. (22) as leader capacity varies, differentiate with

respect to QL to get the first-order condition at an interior optimum, which we denote by

QdL,

(
1− 2ηQdL

)
X

r − µ − δ −
(

X

X∗F
(
QdL
))β

δ (1 + λ)
(
1− η (1 + λ) (β + 1− λβ)QdL

)
(β − 1)

(
1− η (1 + λ)QdL

) = 0. (23)

The second-order condition is satisfied for β or λ small enough, and notably for λ <√
β+1
β
−1. The range of demand states for which an interior optimum exists is determined

as follows (see also Appendix A.3). First, settingQdL = 0 in Eq. (23) gives the lower bound

of the demand states at which an interior optimum exists, Xd
1 , as the lower root of

(1 + λ) (β − 1)β−1

(β + 1)β

(
Xd
1

δ (r − µ)

)β
− Xd

1

δ (r − µ)
+ 1 = 0. (24)

The left-hand side of Eq. (24) is convex in the demand state and negative at X̂L, so
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the lower root satisfies Xd
1 < X̂L, and Xd

1 increases unambiguously as λ increases. If

λ /∈
[√

β+1
β
− 1, 1

β

]
, there exists a finite demand state at which setting QdL = Q̂L (X)

solves the first-order condition (Eq. 23),

Xd
2 =

(β + 1) (2 + λ)(1− βλ)

(β − 1)
(
1− 2βλ− βλ2

)δ (r − µ) , (25)

which represents the upper bound of the demand states at which an interior optimum

exists. Otherwise if λ ∈
[√

β+1
β
− 1, 1

β

]
there is no such upper bound.

ℵb (permanent monopoly):

In this region T =∞ and the conditional expectation term has the form

EX

[∫ ∞
0

X(s)(1− ηQL)QLe
−rsds− δQL

]
. (26)

Inside this expression is the perpetual monopoly profit net of investment cost. Evaluating

the expectation gives (
X

r − µ(1− ηQL)− δ
)
QL. (27)

Because λ ≤ 1, capacities in the ℵb region lie at or above the monopoly level. The leader’s

payoff is therefore decreasing in capacity, and hence maximized on the left boundary of

this region by setting QL = 1
η(1+λ)

, for which the leader obtains

ΩL

(
1

η (1 + λ)
, X

)
=

λX

η (r − µ) (1 + λ)2
− δ

η (1 + λ)
. (28)

To summarize, the payoffΩL(QL, X) which the leader obtains from choosing capacity

QL upon investment is given by the following proposition.

Proposition 2. At the capacity choice stage,
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ΩL(QL, X) =


(1−η)QLX

r−µ − δQL +
(

X
X∗F

)β
δ(λ−η(1+λ)(β+1−λβ)QL)

η(β2−1)
, if 0 ≤ QL <

1
η(1+λ)(

X
r−µ(1− ηQL)− δ

)
QL, if 1

η(1+λ)
≤ QL ≤ 1

η

(29)

if X < X̂L,

and


X(1−η(1−λ)QL− δ(r−µ)X )(λ+η(2+λ)(1−λ)QL−λ δ(r−µ)X )

4η(r−µ) , if 0 ≤ QL ≤ Q̂L (X)

(1−ηQL)QLX
r−µ − δQL +

(
X
X∗F

)β
δ(λ−η(1+λ)(β+1−λβ)QL)

η(β2−1)
, if Q̂L (X) < QL <

1
η(1+λ)(

X
r−µ(1− ηQL)− δ

)
QL, if 1

η(1+λ)
≤ QL ≤ 1

η

(30)

if X ≥ X̂L.

In Proposition 2, the first part (Eq. 29) states that at low demand states the leader’s

capacity choice problem involves two pieces corresponding to the delay and blockade

regions. The second part (Eq. 30) states that the payoff at high demand states consists

of these two pieces along with an additional low capacity range where accommodation

occurs.

As discussed in the preceding paragraphs, the conditions under which the leader’s

payoff admits a local maximum and under which such a maximum is interior over each

piece depend on the level of the demand state. Moreover because the optimal capacity

under delay QdL is defined only implicitly, there is no analytic solution to the capacity

choice problem maxQL∈[0,1/η] ΩL(QL, X). In some cases however, the set of candidate

solutions can be significantly narrowed.

To better visualize the leader’s capacity choice problem, Figure 1 depicts ℵ for a low

degree of internalization (λ = .1, in black) and without internalization (λ = 0, in grey).
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Figure 2: Leader capacity choice regions in (Q,X) space for r = .1, µ = .06, σ = .1,
δ = .1, η = .05 and λ = .42. With these parameter values there is no local maximum
with immediate duopoly whereas a local maximum with delayed duopoly QdL(X) exists
for all demand states above Xd

1 , indicated by the dashed curve.

The configuration is similar for all levels of internalization λ <
√

β+1
β
− 1 at which Xa

1

and Xd
2 are finite, with X

a
1 < Xd

2 . The three regions ℵa, ℵb, and ℵd are delimited by solid

curves. On the left, ℵa and ℵd are similar to the standard case without internalization

whereas ℵb is specific to our framework. The local maxima QaL and QdL, where they exist,

are plotted with dashed curves. Over the range of demand states
(
Xa
1 , X

d
2

)
therefore, the

leader’s capacity choice problem has multiple local optima.

With higher levels of internalization, the leader’s strategic behavior differs markedly

from the situation without internalization. For example if λ >
√

2−1 and β ≤ 1
λ
, both Xa

1
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andXd
2 are undefined which implies that the relevant strategies for the leader induce either

delayed duopoly or permanent monopoly, but never accommodation. Figure 2 illustrates

this possibility where the blockade region is significantly expanded, accommodation is

possible in principle for any demand state above X̂L but takes the form of a corner

solution at Q̂L (which is never optimal), so the leader invariably chooses strategic delay

for any demand state above Xd
1 .

At low levels of internalization, the leader’s capacity choice problem resembles the case

without internalization insofar as the regions ℵa and ℵd and the local maxima QaL and

QdL shift on the margin. Blockading the follower turns out not to be an optimal strategy,

because it is more effi cient for the leader to delay strategically than to blockade at low

demand states whereas accommodation is preferable thereafter. The following proposition

describes these ideas.

Proposition 3. For λ <
√

β+1
β
− 1, the leader’s payoff from the capacity choice stage

is

ΩL(X) =



λ(β−1)β−1Xβ

(β+1)β+1ηδβ−1(r−µ)β , if δ (r − µ) ≤ X ≤ Xd
1

(1−ηQdL)QdLX
r−µ − δQdL +

(
X
X∗F

)β δ(λ−η(1+λ)(β+1−λβ)QdL)
η(β2−1)

, if Xd
1 < X < Xa

1

max

{
(1+λ)2X

4η(2+λ)(r−µ)

(
1− δ(r−µ)

X

)2
,
(1−ηQdL)QdLX

r−µ − δQdL

+
(

X
X∗F

)β δ(λ−η(1+λ)(β+1−λβ)QdL)
η(β2−1)

}
,

if Xa
1 ≤ X < Xd

2

(1+λ)2X
4η(2+λ)(r−µ)

(
1− δ(r−µ)

X

)2
, if X ≥ Xd

2 .

(31)

Proof. See Appendix A.4.

The main consequence of this proposition is that with lower degrees of internalization

the solution of the leader’s capacity choice problem resembles the situation without inter-
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nalization. That is to say, despite the possibility of a blockade strategy, the only optimal

capacities are either those which induce delay (0 or QdL) or an interior accommodation

solution (QaL). In addition the relevant thresholds satisfy X
d
1 < Xa

1 < Xd
2 just as they do

in the absence of internalization. The suboptimality of blockade is all the more striking

at high demand states (X ≥ Xd
2 ) where the outcomes of the leader’s capacity decision

converge towards those of the static model so that the leader’s strategies might be ex-

pected to include blockade as in the standard entry deterrence model so the outcome of

its capacity choice might be expected to be accommodation or blockade as in the standard

entry deterrence model of Dixit (1980).

In the absence of internalization, Huisman and Kort (2015) observe that the accom-

modation and delay payoffs cross once in
(
Xa
1 , X

d
2

)
, so that the leader chooses delayed

duopoly at lower demand states and accommodation at higher demand states, with an

upper bound of the range over which the leader opts for deterrence that we denote by X
d
L.

Intuitively, because internalization softens both the follower’s timing and capacity choice,

we expect internalization to favor deterrence (where both dimensions of the follower’s

reaction matter) relative to accommodation (where only quantity choice matters) so that

X
d
L increases. The numerical analysis we conduct in Section 6 also bears out these ideas.

5 Equilibrium investment

To characterize equilibrium investment in an early stage of the industry, suppose that the

roles of each firm (leader or follower) are determined noncooperatively (implying λ < 1)4

and that the initial demand state is low enough that no firm invests immediately.5 At

4If λ = 1 joint profit is maximized by having a single firm invest as a monopoly, i.e. with capacity
1

η(β+1) at the demand state threshold
β+1
β−1δ(r − µ).

5The demand state is suffi ciently low for firms to wait if X ≤ XP , where XP is defined further below in
the section. In addition we assume that the delayed duopoly capacity QdL is well-defined over

(
Xd
1 , X

d
2

)
,

21



any demand state X at which no investment has yet occurred, the firms have the choice

to invest or to wait. The instantaneous payoff from investing as a leader is the payoff

ΩL(X) described in the preceding section (e.g. Eq. 31 if the degree of internalization is

suffi ciently small). If the rival invests at X on the other hand, the instantaneous payoff

for the remaining firm is the follower payoffΩF (X,Q∗L) in Eq. (11) net of the internalized

leader investment cost λδQ∗L, where Q
∗
L denotes the leader’s optimal capacity at X. The

incentive of each firm to preempt its rival is therefore given by the payoff difference

f(X) = ΩL(X)− (ΩF (X,Q∗L)− λδQ∗L) . (32)

The set of demand states over which firms prefer to lead rather than follow is called the

preemption range. In equilibrium, the first investment in the industry takes place at the

lower bound of this range. We denote this lower bound by XP . Intuitively, since XP is the

smallest demand state at which firms prefer to lead rather than follow and as the payoff to

following is non-negative, if one firm were to set a higher investment threshold X ′ > XP

its rival would have an incentive to enter before it at a lower threshold in (XP , X
′). If

the initial state is low enough therefore (X < XP ), in equilibrium one firm must invest as

a leader at XP .6 The preemption threshold does not have an explicit expression but the

following proposition identifies a range for it and establishes that firms invest sequentially

in equilibrium.

Proposition 4. For initial states X ≤ Xd
1 , in a preemption equilibrium the leader

invests at the demand state threshold XP = inf {X > 0, s.t. f(X) > 0} satisfying XP ∈(
Xd
1 ,min

{
Xa
1 , X

d
2

})
and chooses capacity QdL(XP ). The follower invests at the demand

e.g. because the second-order condition (Eq. 54) is satisfied.
6This is a simplified description of preemption. See Thijssen et al. (2012) for a formalization of this

game specifying an appropriate strategy space and outcomes if both firms invest at the same threshold.
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state threshold X∗F and chooses capacity Q
∗
F (X∗F ).

Proof. See Appendix A.5.

Propositions 4 together with Proposition 3 implies that for small enough internaliza-

tion levels, the first equilibrium investment occurs at a threshold in
(
Xd
1 , X

a
1

)
where the

leader’s optimum capacity is Q∗L = QdL so the follower’s investment is delayed. In this

range the preemption incentive takes the form

f(X) = (1− λ)

((
1− ηQdL

)
QdLX

r − µ − δQdL −
(
X

X∗F

)β ((1− ηQdL)QdLX∗F
r − µ − δQdL

)
(33)

+

(
X

X∗F

)β ((1− η (QdL +Q∗F (X∗F )
))
X∗F

r − µ − δ
)(

QdL −Q∗F (X∗F )
))
.

Up to scaling by 1 − λ, Eq. (33) breaks the preemption incentive down into two parts.

The first part is the rent that the leader obtains from the industry’s monopoly phase by

entering ahead of the follower with capacity QdL. The second part consists of the terms

in the second line, which represent the leader’s profit relative to the follower’s during the

industry’s duopoly phase. This relative profit is positive if the leader has a larger capacity

than the follower and negative if the reverse is true.

To see how internalization affects the preemption incentive, recall from Section 3 that

internalization softens the follower’s investment timing and quantity reactions. Because

the follower acts less aggressively, a leader benefits from internalization, both through

its lengthier monopoly phase and through the higher duopoly share it gets once the

follower does enter. These positive effects of internalization are offset, from the leader’s

perspective, by lower perceived follower value. Similarly, from the follower’s perspective

the decrease in its own value with internalization is offset by higher perceived leader

value. Overall we would expect own value effects to dominate at least at low levels of
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internalization, so a small increase in internalization should raise the preemption incentive

and result in earlier initial investment. The counterpart to the anticompetitive effect of

overlapping ownership on follower behavior is thus that firms act more competitively ex-

ante. The implicit expressions for QdL and XP prohibit showing this in full generality, but

in the next proposition we establish that internalization does have such procompetitive

effect on the preemption equilibrium at low levels of internalization.

Proposition 5. For small enough λ, the preemption threshold and leader capacity

decrease with internalization ( dXP/dλ, dQ
d
L (XP ) /dλ < 0).

Proof. See Appendix A.6.

The negative effect of internalization on the preemption threshold is similar to a corre-

sponding result in the fixed investment size case where a weaker follower timing reaction

due to internalization accelerates preemptive investment (Zormpas and Ruble 2021). The

negative capacity effect in Proposition 5 shows that the procompetitive effect on timing

must be nuanced if capacities are endogenized. At a high enough demand state the leader

has an incentive to raise capacity because the follower reacts less aggressively, but in

the preemption equilibrium this strategic capacity effect is dominated by the decrease in

equilibrium threshold which drives the leader to lower its capacity overall.

In the next section, we verify in an example that moderate internalization leads to

similar outcomes, with both earlier investment and lower leader capacity. The overall

effect of internalization on welfare is generally involved because of the contrasting effects

on leader timing and capacity as well as on the follower’s behavior. In the numerical

analyses we conduct, we find the procompetitive effect of moderate internalization on

leader timing is offset by these other effects, so consumer surplus ultimately decreases.
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6 Numerical analysis

As the leader’s optimal capacity and the preemption threshold are defined only implicitly,

we use numerical methods in this section to further examine the consequences of inter-

nalization. We use the parameter values r = .1, µ = .06, σ = .1, δ = .1 and η = .05

as in Huisman and Kort (2015) and measure the effects of moderate internalization lev-

els (λ = .1 or λ = .2). We conducted the same computations varying the values for

the discount rate, drift, and volatility parameters and obtained similar results to those

we report here. Besides corroborating the main insights of the preceding sections, e.g.

an anticompetitive effect of internalization on follower behavior and a procompetitive

effect on equilibrium investment, the numerical analysis also serves to highlight a novel

procompetitive effect of internalization at demand states above the preemption thresh-

old, whereby moderate internalization drives a leader to opt for strategic deterrence by

choosing significantly larger capacity.

To visualize first how internalization affects equilibrium investment timing, Figure 3

plots the leader and follower payoffs as functions of the demand state. The leader payoff

ΩL(X) is the upper envelope of the payoffs under accommodation and delay, i.e. of the

local maxima ΩL

(
min

{
QaL(X), Q̂(X)

}
, X
)
(dashed curve) and ΩL(QdL(X), X) (dotted

curve). With internalization, the leader perceives a positive payoff even below Xd
1 because

it accounts for the follower’s positive option value. The follower’s ex-ante payoff lies above

the leader payoff initially, and crosses below it at the preemption thresholdXP . The figure

indicates there is a single demand state X
d
L at which the leader shifts from deterrence to

accommodation. This shift creates an upward kink in the leader payoff and an upward

jump in the follower payoff. The effect of internalization is gauged by comparing with

the benchmark no-internalization case which is plotted in gray. With respect to the two
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Figure 3: Leader and follower payoffs for r = .1, µ = .06, σ = .1, δ = .1, η = .05 and
λ = 0 (gray) or .1 (black). At the demand state X

d
L the leader shifts from deterrence

to accommodation, resulting in a kink in the leader payoff and an upward jump in the
follower payoff. The preemption equilibrium XP lies at the intersection of the leader and
follower payoffs. Greater internalization results in earlier equilibrium investment (lower
XP ) and drives the leader to pursue deterrence over a broader range (higher X

d
L).

critical demand states, XP decreases with internalization consistently with Proposition 5,

whereas X
d
L increases so the leader chooses to deter the follower over a broader range of

demand states.

The effect of internalization on firm capacities is represented in Figure 4, which plots

optimal leader and follower capacities against the demand state at which the leader invests.

For either of the strategies that a leader can adopt (deterrence or accommodation), higher

demand states result in higher leader capacity. At the demand state X
d
L where the leader
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shifts from deterrence to accommodation however, its optimal capacity jumps downward.

The follower’s capacity is decreasing in the demand state if the leader opts to delay its

entry, but increasing if both firms invest simultaneously. The effect of internalization on

capacities is non-monotonic. Internalization decreases the leader’s optimal capacity at

low demand states though the effect is slight, and increases it at higher demand states.

The follower’s equilibrium capacity on the other hand increases with internalization at

low demand states, albeit very slightly, and decreases at higher demand states.

For a given leader strategy, total capacity (hence static consumer surplus) is invariably

lower with internalization. However, with the moderate internalization levels considered

here, over the range of demand states where internalization shifts the leader’s strategy

from accommodation to deterrence, the procompetitive effect of internalization on leader

capacity outweighs the anticompetitive effect on follower capacity and total capacity in-

creases. Thus, if a leader is brought to invest at a moderately high demand state (e.g.

because the initial value of X(t) is suffi ciently high in the preemption game), moderate in-

ternalization can shift its strategy towards deterrence so as to induce a suffi ciently higher

leader capacity that total capacity increases. Static welfare therefore increases during the

industry’s duopoly phase, but there is also a countervailing dynamic effect because the

follower’s entry is delayed until its optimal threshold X∗F is reached.

To evaluate the effect of internalization on welfare, we assume that consumers have

the same discount rate as firms and use a consumer surplus welfare standard, which is

stricter than total surplus as internalization invariably raises firm values in equilibrium.

The consumer surplus at the moment that the leader invests is

S(X) = EX

[∫ T

0

1

2
X(s)ηQ2Le

−rsds+

∫ ∞
T

1

2
X(s)η (QL +Q∗F (X(T )))2 e−rsds

]
. (34)

27



Q

X
X୔(λ) X୔(0)                                                                                𝑋ത୐

ୢ 0                      𝑋ത୐
ୢ λ                     

strategic shiftdeterrence
(follower delayed)

accommodation 
(static Stackelberg 
outcome)

௅
∗( )

ி
∗ ( )

௧௢௧௔௟

Figure 4: Optimal leader and follower capacities for r = .1, µ = .06, σ = .1, δ =

.1, η = .05 and λ = 0 (gray) or .1 (black). For demand states between X
d
L (0) and

X
d
L (λ) internalization shifts the leader’s strategy from accommodation to deterrence,

which results here in higher total output.

Inside the conditional expectation in Eq. (34), the first term is the discounted consumer

surplus during the industry’s monopoly phase and the second term is the discounted

consumer surplus during the industry’s duopoly phase, evaluated at an optimal leader

capacity. If the demand state is suffi ciently high for the leader to choose positive capacity

and low enough for it to opt for delay, taking the expectation gives

Sd(X) =
η

2

(
QdL
)2
X

r − µ +
η

2

(
X

X∗F

)β ((QdL +Q∗F (X∗F )
)2 − (QdL)2)X∗F

r − µ . (35)
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At demand states which are high enough that the leader accommodates and follower

entry is immediate, substituting values for Q∗F (X) and QL from Eqs (6) and (19) gives a

consumer surplus expression

Sa(X) =
(3 + λ)2

8η (2 + λ)2

(
1− δ (r − µ)

X

)2
X

r − µ . (36)

We first study the preemption equilibrium and resulting welfare. Table 2 reports

the values which we obtain. Consistently with Proposition 5 in the preceding section,

internalization has a procompetitive effect on equilibrium entry timing, but also results in

lower leader capacity. The effect on the follower’s capacity is negative whereas its threshold

increases. Internalization therefore raises instantaneous consumer surplus because the

monopoly phase starts earlier, but also has countervailing consequences on leader capacity

and on the timing and surplus associated with the duopoly phase. To gauge the overall

consumer surplus effect, we take three different degrees of internalization (0, .1, and .2)

and determine the preemption equilibrium in each case. To compare consumer surplus

values we evaluate these at a common demand state XP (.2) = .0100, which is the smallest

of the preemption equilibria. In the present case, the countervailing effects dominate here

so the effect of moderate internalization levels on consumer surplus is negative.

Table 2: Preemption equilibrium

λ XP (λ) Q∗L Q∗F QTotal X∗F S (X)|X=XP (.2)
0 .0105 5.53 5.59 11.12 0.0243 .5269

.1 .0102 5.38 5.44 10.82 0.0250 .4967

.2 .0100 5.22 5.31 10.52 0.0256 .4678

We focus next on the strategic shift effect. To this end we take initial demand states
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around the range where internalization alters the leader’s strategy and suppose that one

of the firms invests immediately as a leader in the initial state, either exogenously or

as a result of competition with the follower. A shift in leader strategy has contrasting

effects on overall consumer surplus, as it raises capacity which mitigates the harm induced

by the monopoly phase (which would not be incurred if the leader accommodated), but

also raises capacity during the industry’s duopoly phase. To assess the balance of these

effects, we take three different degrees of internalization (0, .1, and .2) and evaluate

consumer surplus at the three demand states to the right of which the leader’s strategy

shifts (X
d
L(0) = .0325, X

d
L(.1) = .0397, and X

d
L(.2) = .0559) The resulting capacities and

surplus values are reported in Table 3.

In the top part of the table which corresponds to a demand state just to the left

of X
d
L(0), the leader chooses deterrence for all the internalization levels, as evidenced

by the fourth column (X∗F is invariably larger than X). As described above, with the

leader’s strategy held constant, leader capacity increases with internalization whereas

the follower’s capacity decreases, and both total duopoly output and consumer surplus

decrease with internalization.

The middle part of the table is the most similar to Table 1 in the introduction, though

in the dynamic model the effect of internalization is necessarily more involved as it man-

ifests itself through both capacities and follower timing. The leader chooses accommoda-

tion if λ = 0 and deterrence otherwise, so internalization produces a strategic shift here.

As a result, the leader’s capacity and total capacity increase sharply between λ = 0 and

λ = .1, yielding in an increase in consumer surplus of roughly 5%. Going from λ = .1

to λ = .2, the increase in leader capacity is much smaller and total capacity decreases.

Total capacity is still higher than without internalization, but the follower’s investment

is significantly delayed and consumer surplus decreases.
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Table 3: Procompetitive strategic shift (dynamic)

X = .0325

λ Q∗L Q∗F QTotal X∗F/X S(X)

0 9.75 3.96 13.71 1.06 3.76

.1 10.09 3.44 13.53 1.22 3.54

.2 10.29 2.96 13.24 1.41 3.30

X = .0397

λ Q∗L Q∗F QTotal X∗F/X S(X)

0 8.99 4.50 13.49 1 4.51

.1 10.77 3.15 13.92 1.09 4.72

.2 10.96 2.65 13.60 1.29 4.37

X = .0559

λ Q∗L Q∗F QTotal X∗F/X S(X)

0 9.28 4.64 13.93 1 6.78

.1 9.82 3.88 13.71 1 6.56

.2 12.04 2.14 14.19 1.13 6.89

In the bottom part of the table, the leader’s strategy does not shift at λ = .1 so a

low level of internalization only leads to reduced total capacity and consumer surplus.

At λ = .2 however, the shift to deterrence does occur and the sharp increase in leader

capacity that ensues results in slightly higher welfare than without internalization, again

because the increase in the follower’s threshold is not too large.
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We take from these results that increased competition for the market due to internal-

ization may not be beneficial to consumers if capacities are endogenous, but also that if

competition occurs at a moderately high demand state some degree of common owner-

ship or cross holdings can generate a procompetitive shift in the leader’s strategy which

is beneficial for consumers.

7 Conclusion

In this article, we study how common ownership or symmetric cross holdings affect strate-

gic capacity decisions in an evolving market by driving managers to internalize effects on

rival firms. Greater internalization predictably causes a follower to react less aggressively

with respect to both its timing and capacity decisions. Once a leader has invested these

effects may be construed as anticompetitive. But if firms have endogenous roles and must

compete for industry leadership, then the follower’s softer timing and capacity reactions

raise the attractiveness of leadership, exerting a procompetitive effect on initial entry.

Moreover, because softer timing and capacity reactions are particularly beneficial to the

leader if the follower delays entry, internalization drives leaders to pursue deterrence over

a broader range of demand states. We show through an example that internalization

can thus generate a procompetitive shift in leader strategy which moreover can benefit

consumers, so that the same effect discussed in the two-stage model in the introduction

also arises in a more comprehensive dynamic model. In addition, because they do not

hinge on the presence of spillovers or high R&D intensity, the procompetitive effects of

overlapping ownership which we identify are liable to apply in a broad range of industries.

Our analysis relies on several assumptions which could be relaxed in future work. To

begin with, the assumption of symmetric ownership structures may closely reflect common
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ownership in certain industries but not in others. In the case of unilateral minority share

acquisitions for example, cross holdings are naturally asymmetric. A closer representation

of these situations would therefore account for asymmetric ownership and result in an

asymmetric preemption game, whose equilibrium outcome generalizes the one which we

describe here. In addition, we have restricted our attention to new markets where neither

firm initially operates, but further effects of overlapping ownership could be expected to

arise in markets where firms have preexisting capacities or the ability to make multiple

capacity additions.
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A Appendix

A.1 Internalization in the Stackelberg-Spence-Dixit framework

For simplicity, let inverse demand be P = 1 − Q and suppose that production cost is

zero. Firms have a symmetric ownership structure resulting in a degree of internalization

λ < 1. The firms choose capacities sequentially.

With these assumptions, the follower’s perceived profit function is

ωF (QF , QL) = πF (QF , QL) + λπL (QF , QL)

= (1−QL −QF ) (QF + λQL) . (37)

The follower’s optimal capacity is

Q∗F (QL) = max

{
0,

1− (1 + λ)QL

2

}
, (38)

so internalization softens the follower’s quantity reaction (as occurs in the dynamic model).
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Its perceived profit is

ωF (Q∗F (QL), QL) =


(1−(1−λ)QL)2

4
, if QL <

1
1+λ

λ (1−QL)QL, if QL ≥ 1
1+λ
.

(39)

Given the follower’s reaction Q∗F (QL), the leader’s perceived profit is therefore

ωL (QF , QL) = πL (QF , QL) + λπF (QF , QL)

= (1− (QL +Q∗F (QL))) (QL + λQ∗F (QL)) . (40)

It is straightforward to check ∂ωL
∂QF

(QF , QL) > 0, so internalization raises the incentive to

lead by weakening the follower’s reaction. Evaluating the preceding expression gives

ωL (QF , QL) =


(1−(1−λ)QL)(λ+(2+λ)(1−λ)QL)

4
, if QL <

1
1+λ

(1−QL)QL, if QL ≥ 1
1+λ
.

Because 1
1+λ

> 1
2
, πL is decreasing over the second piece, and for large enough values of λ

the maximum is reached at QL = 1
1+λ
. The optimal leader capacity is therefore

QaL =


1

(2+λ)(1−λ) , if λ <
√

2− 1

1
1+λ
, if λ ≥

√
2− 1.

(41)

This results in a leader profit

ωL (Q∗F (QaL) , QaL) =


(1+λ)2

4(2+λ)
, if λ <

√
2− 1

λ
(1+λ)2

, if λ ≥
√

2− 1.
(42)

Thus, if λ ≥
√

2−1, Q∗F (Q∗L) = 0 and follower entry is deterred entirely by internalization.
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Hereafter, we focus on the case λ <
√

2− 1 and introduce a fixed cost of entry f > 0.

The follower enters if

ωF (Q∗F (QL), QL)− f > ωF (0, QL) , (43)

which holds if

QL < QdL =
1− 2

√
f

1 + λ
. (44)

The follower’s entry is naturally blockaded if QdL ≤ 1
2
, i.e. λ > 1 − 4

√
f . Otherwise, the

leader prefers deterrence over accommodation if

ωL
(
0, QdL

)
> ωL (Q∗F (QaL) , QaL)− λf (45)

where ωL
(
0, QdL

)
=

(1−2
√
f)(2

√
f+λ)

(1+λ)2
and the right hand side accounts for perceived follower

entry cost.

Figure 5 plots the regions in (f, λ) space where the leader accommodates, deters, or

blocks the follower’s entry. The dashed lines represent the accommodation, deterrence

and blockade thresholds for λ = 0. The solid black curves describe the extension of these

accommodation, deterrence and blockade regions for λ > 0. If λ <
√

2 − 1, between

the black curves internalization drives the leader to choose deterrence ((
1−2
√
f)(2

√
f+λ)

(1+λ)2
>

(1+λ)2

4(2+λ)
−λf) whereas to the left of the dashed line, the leader would accommodate without

internalization. Over this region, internalization therefore shifts the leader’s strategy from

accommodation to deterrence.

Consumer surplus is an increasing function of total output in this model. In the figure,

the parameter values where deterrence leads to greater total output (with internalization)

than accommodation (without internalization) lie below the gray curve. Analytically, the
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Figure 5: In the Stackelberg-Spence-Dixit model, internalization shifts the leader’s strat-
egy from accommodation to deterrence in an area delimited by the two solid black curves
and the dashed line (bottom left). This strategic shift raises total capacity below the gray
curve, though at very low fixed costs total capacity is always lowered (inset).

condition is QdL = 1−2
√
f

1+λ
> 3

4
= (QaL +Q∗F (QaL))|λ=0. In the curved wedge therefore (i.e.

the area delimited by the solid gray and black curves and the dashed line), the shift in the

leader’s strategy due to internalization raises consumer surplus. Finally, internalization

leads to a jump in output under deterrence because the leader perceives part of the

follower’s entry cost, λf , which induces a jump in its isoprofit at the horizontal axis.
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A.2 Follower value

The follower’s value satisfies the asset equilibrium condition

rΩF (X)dt = λ (1− ηQL)QLXdt+ EXdΩF (X). (46)

Applying Itô’s lemma and taking the expectation gives a second-order ordinary differential

equation

rΩF (X) = λ (1− ηQL)QLX + µXΩ′F (X) +
1

2
σ2X2Ω′′F (X). (47)

Over the inaction region (0, X∗F ) the boundary conditions are

ΩF (0) = 0 (48)

and

ΩF (X∗F ) = GF (X∗F ) . (49)

Moreover the optimal threshold X∗F satisfies the smooth pasting condition

Ω′F (X∗F ) = G′F (X∗F ) . (50)

To satisfy Eq. (47) and the lower boundary condition, conjecture a solution of the form

ΩF (X) = λ (1− ηQL)QL
X
r−µ+AFX

β where β > 1 is the upper root of 1
2
σ2b(b−1)+µb−r =

0 (see Eq. 9 in the text).
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Substituting into the two remaining conditions yields

 λ (1− ηQL)QL
X∗F
r−µ + AFX

∗β
F = (1−η(1−λ)QL)2

4η

X∗F
r−µ −

δ
2η

(1− η (1 + λ)QL) + δ2

4η
r−µ
X∗F

λ (1− ηQL)QL
1

r−µ + βAFX
∗β−1
F = (1−η(1−λ)QL)2

4η
1

r−µ −
δ2

4η
r−µ
X∗2F
.

(51)

The first equation gives an expression for AFX
∗β
F . Substituting into the second and

rearranging yields a quadratic,

(β − 1) (1− η (1 + λ)QL)2
(

X∗F
δ (r − µ)

)2
− 2β (1− η (1 + λ)QL)

X∗F
δ (r − µ)

+ β + 1 = 0,

(52)

of which the upper root X∗F = (β+1)δ(r−µ)
(β−1)(1−η(1+λ)QL) is consistent with positive capacity invest-

ment. Substituting into either of the preceding conditions then gives the expression for

AF in the text. �

A.3 Leader payoffwith strategic delay

For the first-order condition (Eq. 23), differentiating Eq. (22) gives

(1− 2ηQL)X

r − µ − δ − β

X∗F

(
X

X∗F

)β
δ (λ− η (1 + λ) (β + 1− λβ)QL)

η
(
β2 − 1

) ∂X∗F
∂QL

(53)

−
(
X

X∗F

)β
δ (1 + λ) (β + 1− λβ)(

β2 − 1
)

and substituting for ∂X
∗
F

∂QL

1
X∗F

= η(1+λ)
1−η(1+λ)QL gives the condition in the text. The second-order

condition is

ηX

r − µ

((
X

X∗F

)β−1 β (1 + λ)2
(
2− λ− η (1 + λ) (β + 1− λβ)QdL

)
(β + 1)

(
1− η (1 + λ)QdL

) − 2

)
< 0. (54)
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Observe that 2−λ−η(1+λ)(β+1−λβ)QdL
1−η(1+λ)QdL

= 1 + (1− λ)
1−βη(1+λ)QdL
1−η(1+λ)QdL

< 2 − λ. As X < X∗F , the

second-order condition therefore holds if

β + 1

β
>

(1 + λ)2 (2− λ)

2
(55)

which holds in particular if λ <
√

β+1
β
− 1.

To establish thatXd
1 is unique and constitutes a lower bound, we verify that

dQdL
dX

(Xd
1 ) >

0 (uniqueness of QdL by the second-order condition then implies that Q
d
L(X) separates ℵd

into two distinct subregions). Differentiating Eq. (23) with respect to X gives

1− 2ηQdL
r − µ −

(
X

X∗F

)β−1 β (1 + λ)
(
1− η (1 + λ) (β + 1− λβ)QdL

)
(β + 1) (r − µ)

. (56)

The value of this derivative at Xd
1 is

1

r − µ −
(

Xd
1

δ (r − µ)

)β−1
β (β − 1)β−1 (1 + λ)

(β + 1)β (r − µ)
=

1

r − µ

(
β
δ (r − µ)

Xd
1

− (β − 1)

)
(57)

(using Eq. (24) to substitute for
(

Xd
1

δ(r−µ)

)β−1
(β−1)β−1(1+λ)

(β+1)β
). Evaluating Eq. (24) at X =

β
β−1δ (r − µ) gives 1

β−1

((
β
β+1

)β
(1 + λ)− 1

)
< 0, so Xd

1 > β
β−1δ (r − µ) and therefore

dQdL
dX

(Xd
1 ) > 0.

To establish that Xd
2 (if finite) is an upper bound, we verify that

dQdL
dX

(Xd
2 ) < dQ̂L

dX
(Xd

2 )

From Eq. (23),

dQdL
dX

(
Xd
2

)
= −

1− 2ηQdL −
β(1+λ)
β+1

(
1− η (1 + λ) (β + 1− λβ)QdL

)
Xd
2 η

(
β(1+λ)2

β+1

(2−λ−η(1+λ)(β+1−λβ)QdL)
1−η(1+λ)QdL

− 2

) (58)
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and from Eq. (15),
dQ̂L

dX

(
Xd
2

)
=
β + 1

β − 1

δ (r − µ)

ηXd2
2 (1 + λ)

. (59)

Comparing the two, we find that dQ̂L
dX

(
Xd
2

)
>

dQdL
dX

(
Xd
2

)
if βλ (2− λ(1 + λ)) < 1− λ, the

condition for the existence of Xd
2 . �

A.4 Proof of Proposition 3

The proposition is established by ruling out the possibility of a blockade strategy for the

leader at all demand states.

We first show that if X < Xd
1 , the leader does not choose blockade. From Eqs. (22)

and (28), blockade is more profitable than zero capacity if

(1 + λ) (β − 1)β−1

(β + 1)β

(
X

δ(r − µ)

)β
− β + 1

1 + λ

X

δ(r − µ)
+
β + 1

λ
< 0. (60)

Recall that Xd
1 is the lower root of

(1 + λ) (β − 1)β−1

(β + 1)β

(
X

δ (r − µ)

)β
− X

δ (r − µ)
+ 1 = 0. (61)

The left hand sides of both of the above conditions are convex in X, and decreasing at

X = δ (r − µ). There is a unique intersection at X∗ = 1+λ
λ

β+1−λ
β−λ δ(r − µ) where Eq. (60)

cuts Eq. (61) from above. In order for Eq. (60) to have a lower root which is equal to or

smaller than Xd
1 , i) X

∗ must lie to the left of the minimum X0 = (β+1)
β
β−1

(β−1)β
1

β−1 (1+λ)
1

β−1
δ(r−µ)

at which Eq. (61) is strictly negative and ii) the left hand side of Eq. (61) must be

nonnegative at X∗. i) holds if and only if X∗β−1 < Xβ−1
0 , which gives

Θ :=
β (β − 1)β−1 (1 + λ)β (β + 1− λ)β−1

(β + 1)β λβ−1 (β − λ)β−1
< 1 (62)
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after rearrangement. On the other hand, ii) implies

1 ≤ (β − 1)β−1 (1 + λ)β+1 (β + 1− λ)β

(β + 1)β+1 λβ−1 (β − λ)β−1
=

(1 + λ) (β + 1− λ)

β (β + 1)
Θ (63)

which is incompatible with Θ < 1. Hence, i) and ii) cannot both hold, which implies that

X∗ > Xd
1 . Therefore, QL = 1

η(1+λ)
is strictly suboptimal up to Xd

1 .

Next, for X ∈
[
Xd
1 , X

d
2

]
, the leader’s capacity choice problem has a local maximum

over ℵd at QdL. By continuity of ΩL(QL, X) at QL = 1
η(1+λ)

and because ΩL(QL, X) is

decreasing in QL thereafter, QdL also constitutes a maximum for all QL ≥ Q̂L (X).

Blockade is suboptimal for X > Xa
1 (and hence > Xd

2 ) if ΩL

(
1

η(1+λ)
, X
)
is lower than

the payoff from accommodation. Evaluating Eq. (18) at QaL(X) gives an explicit form,

ΩL(QaL, X) =
(1 + λ)2X

4η (2 + λ) (r − µ)

(
1− δ (r − µ)

X

)2
. (64)

Blockade is therefore ruled out if

λX

η (r − µ) (1 + λ)2
− δ

η (1 + λ)
<

(1 + λ)2X

4η (2 + λ) (r − µ)

(
1− δ (r − µ)

X

)2
(65)

or after rearrangement,

(
2− (1 + λ)2

(1 + λ)2

)2(
X

δ (r − µ)

)2
− 2

λ3 + 3λ2 + λ− 3

(1 + λ)3
X

δ (r − µ)
+ 1 (66)

which is positive as λ <
√

β+1
β
− 1.

Last, to establish that Xd
2 > Xa

1 it is enough to show that
1

1−2βλ−βλ2 >
1

2−(1+λ)2 and

(β + 1) (2 +λ)(1−βλ) > β (2− (1 + λ)2) + 3−λ2. The first inequality is straightforward

for β > 1. The second can be written as − (1 + β)λ2 +
(
β + 1

2

)
λ + 1 > 0, and the left

44



hand side is a concave function of λ which is positive at λ = 0 and λ =
√

β+1
β
− 1 and

therefore positive for all λ <
√

β+1
β
− 1. �

A.5 Proof of Proposition 4

First take demand states X ≤ Xd
1 . If a firm invests as a leader at such demand states, it

sets Q∗L = 0. The value of the preemption incentive is thus f(X) = − (1− λ) ΩF (X, 0),

which is negative because ΩF (X, 0) > 0. The preemption threshold therefore satisfies

XP > Xd
1 .

For the upper bound on XP , suppose to begin with that Xa
1 is finite. It is convenient

to express the preemption incentive as f (X) = (1− λ) ΩL(Q∗L, X)−
(
1− λ2

)
VF (Q∗L, X),

where VF (Q∗L, X) denotes the value of the follower’s own assets (with timing and capac-

ity choices X∗F (Q∗L) and Q∗F being those in Section 3). At X
a
1 , Q

∗
L = QdL is optimal

for the leader and therefore (1− λ) ΩL(QdL, X) constitutes an upper bound for the first

term of the preemption incentive. Higher leader capacity lowers the follower’s residual

demand, so VF (QL, X) is decreasing in QL and therefore −
(
1− λ2

)
VF (QL, X) is in-

creasing. Hence, f (Xa
1 ) > (1− λ) ΩL(QaL, X

a
1 ) −

(
1− λ2

)
VF (QaL, X

a
1 ) = ΩL(QaL, X

a
1 ) −

(ΩF (QaL, X
a
1 )− λδQaL) where the right-hand side is the value of the preemption incentive

if leader capacity were suboptimally set to QaL. At QL = QaL however, investments are si-

multaneous with the follower acting as a Stackelberg quantity follower, so payoffs are those

of the static Stackelberg game with internalization (see Appendix A.1). The leader’s per-

ceived payoff is therefore higher than the follower’s (ΩL(QaL, X
a
1 ) > ΩF (QaL, X

a
1 )− λδQaL),

which implies that f (Xa
1 ) > 0.

If Xa
1 is infinite, a similar argument can be made at X

d
2 (if X

d
2 is finite) with Q̂L

(
Xd
2

)
replacing QaL. Otherwise, both X

a
1 and X

d
2 are infinite and in this case Q

∗
L = QdL for

arbitrarily high demand states. The monopoly rent term in Eq. (33) is then posi-
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tive for large enough X as is the relative profit term because limX→∞
(
QdL(X)−Q∗F

)
≥

limX→∞

(
Q̂L(X)−Q∗F

)
= 1

η(1+λ)
, so f(X) is positive for suffi ciently large X.

We conclude that the preemption range is nonempty therefore, with lower bound

XP ∈
(
Xd
1 ,min

{
Xa
1 , X

d
2

})
. �

A.6 Proof of Proposition 5

The preemption equilibrium is characterized by two conditions, the equilibrium condition

f (XP ) = 0 (with the restriction that XP be the lowest root) and the first-order condition

defining QdL (XP ). To express these compactly, let X̃ = XP
δ(r−µ) and Q̃ = ηQdL so that

f̃
(
X̃, Q̃

)
=
(

1− Q̃
)
X̃ − 1− X̃β (β − 1)β−1

(β + 1)β+1

(
1 + β (1 + λ) Q̃

)(
1− (1 + λ) Q̃

)β
Q̃

= 0

(67)

(for Eq. 33) and

g̃
(
X̃, Q̃

)
=
(

1− 2Q̃
)
X̃−1−X̃β (β − 1)β−1

(β + 1)β
(1 + λ)

(
1− (1 + λ) (β + 1− λβ) Q̃

)(
1− (1 + λ) Q̃

)β−1
= 0

(68)

(for Eq. 23).

By the implicit function theorem, the sensitivities of X̃ and Q̃ with respect to λ are

given by

dX̃

dλ
=

∂f̃

∂Q̃

∂g̃
∂λ
− ∂f̃

∂λ
∂g̃

∂Q̃

∂f̃

∂X̃

∂g̃

∂Q̃
− ∂f̃

∂Q̃

∂g

∂X̃

and
dQ̃

dλ
=

∂f̃
∂λ

∂g̃

∂X̃
− ∂f̃

∂X̃

∂g̃
∂λ

∂f̃

∂X̃

∂g̃

∂Q̃
− ∂f̃

∂Q̃

∂g

∂X̃

. (69)

In the above expressions, the partial derivatives with respect to λ are

∂f̃

∂λ
= X̃β β (β − 1)β−1

(β + 1)β
(1 + λ) Q̃

(
1− (1 + λ) Q̃

)β−1
(70)
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and

∂g̃

∂λ
= −X̃β (β − 1)β−1

(β + 1)β

(
1− (1 + λ) Q̃

)β−2
(71)((

β2 (1− λ) + β(1− 2λ) + 1
)

(1 + λ)2 Q̃2 − (2β + 2− 3λβ) (1 + λ) Q̃+ 1
)
.

To establish the proposition we determine the signs of dX̃
dλ
and dQ̃

dλ
at λ = 0 and argue

by continuity that these hold for small λ. Evaluated at λ = 0, the system Eqs. (67, 68)

becomes 
(

1− Q̃
)
X̃ − 1− X̃β (β−1)β−1

(β+1)β+1
(1+βQ̃)(1−Q̃)

β

Q̃
= 0(

1− 2Q̃
)
X̃ − 1− X̃β (β−1)β−1

(β+1)β

(
1− (β + 1) Q̃

)(
1− Q̃

)β−1
= 0.

(72)

We first establish that a solution to this system satisfies Q̃ < 1
β+1

and X̃ < X̂L
δ(r−µ) . At

X̃ =
Xd
1

δ(r−µ) the optimal leader capacity is Q
d
L = 0, whereas the first-order condition for QdL

(second line in Eq. 72) implies that X̃ = 1

1−2Q̃ = X̂L
δ(r−µ) >

Xd
1

δ(r−µ) is the only demand state

at which the optimal leader capacity is QdL = 1
β+1
. Continuity of QdL (X) then implies

that Q̃ < 1
β+1

for any X̃ < X̂L
δ(r−µ) . Furthermore, at X̃ = X̂L

δ(r−µ) (hence Q̃ = QdL = 1
β+1
),

the preemption incentive (the first line in Eq. 72) is positive, since7

(
1− Q̃

)
X̃ − 1− X̃β (β − 1)β−1

(β + 1)β+1

(
1 + βQ̃

)(
1− Q̃

)β
Q̃

> 0

⇔ 2β + 1

β + 1

(
β

β + 1

)β
< 1.(73)

Therefore, XP < X̂L, implying that a solution to Eq. (72) satisfies Q̃ < 1
β+1
.

7To verify the last inequality, denote the left-hand side by Λ (β). Then Λ(1) = .75 < 1, and Λ′ (β) =
ββ

(β+1)β+1

(
2 + (2β + 1) ln

(
β
β+1

))
. Taking the first terms of the Maclaurin series, ln

(
β
β+1

)
< − 1

β+1 −
1

2(β+1)2
− 1

3(β+1)3
, and substituting back and simplifying yields Λ′ (β) < − 16

ββ(β−1)
(β+1)β+4

< 0.
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It is useful to note that at a solution
(
X̃, Q̃

)
to Eq. (72),

X̃ =
(β2 + β + 1)Q̃2 − 2Q̃+ 1(

1− Q̃
)(

(β2 + 1)Q̃2 − 3Q̃+ 1
) (74)

and

X̃β (β − 1)β−1

(β + 1)β+1

(
1− Q̃

)β−1
=

Q̃2(
1− Q̃

)(
(β2 + 1)Q̃2 − 3Q̃+ 1

) . (75)

For λ = 0, the partial derivatives above (Eqs. 70 and 71) become

∂f̃

∂λ
= X̃β β (β − 1)β−1

(β + 1)β
Q̃
(

1− Q̃
)β−1

(76)

and
∂g̃

∂λ
= −X̃β (β − 1)β−1

(β + 1)β

((
β2 + β + 1

)
Q̃2 − 2 (β + 1) Q̃+ 1

)(
1− Q̃

)β−2
. (77)

Using Eqs. (74) and (75) to substitute for X̃ and X̃β gives

∂f̃

∂X̃
=

(
1− Q̃

)2 (
1− (β + 1)Q̃

)
(β2 + β + 1)Q̃2 − 2Q̃+ 1

> 0 (78)

and
∂f̃

∂Q̃
=

(β + 1)Q̃

(β2 + 1)Q̃2 − 3Q̃+ 1
> 0. (79)

Next observe that

∂g̃

∂X̃
= 1− 2Q̃− X̃β−1β (β − 1)β−1

(β + 1)β

(
1− (β + 1) Q̃

)(
1− Q̃

)β−1
(80)

=
β

X̃
− (β − 1)

(
1− 2Q̃

)
=

∂f̃

∂X̃
+ (β − 1) Q̃ > 0
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where the second line uses g̃
(
X̃, Q̃

)
= 0 to substitute for the last term. Using Eqs. (74)

and (75) once again to substitute for X̃ and X̃β,

∂g̃

∂Q̃
= − (β3 − β − 2)Q̃3 + 6Q̃2 − 6Q̃+ 2(

1− Q̃
)2 (

(β2 + 1)Q̃2 − 3Q̃+ 1
) < 0 (81)

(which is the leader’s capacity SOC).

We show first that the denominator of dX̃
dλ
and dQ̃

dλ
is negative. Using Eq. (80), this

can be expressed as ∂f̃

∂X̃

∂g̃

∂Q̃
− ∂f̃

∂Q̃

∂g

∂X̃
= ∂f̃

∂X̃

(
∂g̃

∂Q̃
− ∂f̃

∂Q̃

)
− ∂f̃

∂Q̃
(β − 1) Q̃. Because ∂f̃

∂X̃
and ∂f̃

∂Q̃

are positive, it is enough to show that ∂g̃

∂Q̃
− ∂f̃

∂Q̃
is negative. The sign of ∂g̃

∂Q̃
− ∂f̃

∂Q̃
is that

of the cubic expression −(β3 − 1)Q̃3 + 2(β − 2)Q̃2 − (β − 5)Q̃ − 2, and this is negative

because the quadratic part 2(β − 2)Q̃2 − (β − 5)Q̃− 2 is itself negative for Q̃ < 1
β+1
.

The proposition is therefore established if we show that the numerators of dX̃
dλ
and

dQ̃
dλ
are positive. Starting with the latter, using Eq. (80) to substitute for ∂g̃

∂X̃
gives

∂f̃
∂λ

∂g̃

∂X̃
− ∂f̃

∂X̃

∂g̃
∂λ

= ∂f̃

∂X̃

(
∂f̃
∂λ
− ∂g̃

∂λ

)
+ ∂f̃

∂λ
(β − 1) Q̃. Because ∂f̃

∂X̃
and ∂f̃

∂λ
are positive, it is

enough to show that ∂f̃
∂λ
− ∂g̃

∂λ
is also positive. Evaluating gives

∂f̃

∂λ
− ∂g̃

∂λ
= X̃β (β − 1)β−1

(β + 1)β

(
1− Q̃

)β−2 (
(β2 + 1)Q̃2 − (β + 2)Q̃+ 1

)
. (82)

The sign is that of the last bracket. Express this term as a quadratic in β, Q̃2β2 − Q̃β +(
1− Q̃

)2
, which is positive for β = 1 and has a negative discriminant Q̃2

(
1− 4

(
1− Q̃

)2)
because Q̃ < .5, so ∂f̃

∂λ
− ∂g̃

∂λ
> 0.
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The other numerator is

∂f̃

∂Q̃

∂g̃

∂λ
− ∂f̃

∂λ

∂g̃

∂Q̃
= X̃β (β − 1)β−1

(β + 1)β

(
1− Q̃

)β−2
×
(
− ∂f̃
∂Q̃

((
β2 + β + 1

)
Q̃2 − 2 (β + 1) Q̃+ 1

)
− ∂g̃

∂Q̃
βQ̃
(

1− Q̃
))

.

The sign is that of the last bracketed term. Developing and simplifying by Q̃
(

1− Q̃
)

leaves a cubic expression,
(
β4 + β3 + β2 + 1

)
Q̃3−

(
β3 + 4β2 + 3

)
Q̃2+

(
2β2 − β + 3

)
Q̃+

β − 1. This is greater than −
(
β3 + 4β2 + 3

)
Q̃2 +

(
2β2 − β + 3

)
Q̃ + β − 1, which takes

the value β − 1 > 0 at Q̃ = 0 and (2β2+1)(β−1)
(β+1)2

> 0 at Q̃ = 1
β+1
, and is hence positive for

all possible Q̃ ∈
[
0, 1

β+1

]
implying ∂f̃

∂Q̃

∂g̃
∂λ
− ∂f̃

∂λ
∂g̃

∂Q̃
> 0. �
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